llama.cpp/gguf-py/gguf/gguf_reader.py

265 lines
10 KiB
Python
Raw Permalink Normal View History

gguf-py: Refactor and allow reading/modifying existing GGUF files (#3981) * gguf-py: Refactor and add file reading support * Replay changes from #3871 Credit to @cebtenzzre for that pull * Various type annotation fixes. * sort imports with isort (again) * Fix missing return statement in add_tensor * style cleanup with flake8 * fix NamedTuple and Enum usage * Fix an issue with state init in GGUFReader Move examples to an examples/ directory Clean up examples Add an example of modifying keys in a GGUF file Update documentation with info on examples Try to support people importing gguf/gguf.py directly * Damagage is not a word. * Clean up gguf-py/examples/modify_gguf.py whitespace Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update gguf-py/examples/modify_gguf.py formatting Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update gguf-py/gguf/gguf_reader.py type hint Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Make examples executable, formatting changes * Add more information to GGUFReader and examples comments * Include a gguf Python package version bump * Add convert-gguf-endian.py script * cleanup * gguf-py : bump minor version * Reorganize scripts * Make GGUFReader endian detection less arbitrary * Add JSON dumping support to gguf-dump.py Which I kind of regret now * A few for gguf-dump.py cleanups * Murder accidental tuple in gguf-py/scripts/gguf-dump.py Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * cleanup * constants : remove unneeded type annotations * fix python 3.8 compat * Set up gguf- scripts in pyproject.toml * And include scripts/__init__.py, derp * convert.py: We can't currently support Q8_0 on big endian. * gguf-py: SpecialVocab: Always try available sources for special token ids gguf-py: SpecialVocab: Try to load merges from merges.txt if not in tokenizer.json gguf-py: SpecialVocab: Add 'add_bos_token' type bools to GGUF metadata u * cleanup * Promote add_X_token to GGUF metadata for BOS and EOS --------- Co-authored-by: Jared Van Bortel <jared@nomic.ai> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
2023-11-11 06:04:50 +01:00
#
# GGUF file reading/modification support. For API usage information,
# please see the files scripts/ for some fairly simple examples.
#
from __future__ import annotations
import os
from collections import OrderedDict
from typing import Any, Literal, NamedTuple, TypeVar, Union
import numpy as np
import numpy.typing as npt
if __name__ == "__main__":
import sys
from pathlib import Path
# Allow running file in package as a script.
sys.path.insert(0, str(Path(__file__).parent.parent))
from gguf.constants import (
GGML_QUANT_SIZES,
GGUF_DEFAULT_ALIGNMENT,
GGUF_MAGIC,
GGUF_VERSION,
GGMLQuantizationType,
GGUFValueType,
)
READER_SUPPORTED_VERSIONS = [2, GGUF_VERSION]
class ReaderField(NamedTuple):
# Offset to start of this field.
offset: int
# Name of the field (not necessarily from file data).
name: str
# Data parts. Some types have multiple components, such as strings
# that consist of a length followed by the string data.
parts: list[npt.NDArray[Any]] = []
# Indexes into parts that we can call the actual data. For example
# an array of strings will be populated with indexes to the actual
# string data.
data: list[int] = [-1]
types: list[GGUFValueType] = []
class ReaderTensor(NamedTuple):
name: str
tensor_type: GGMLQuantizationType
shape: npt.NDArray[np.uint32]
n_elements: int
n_bytes: int
data_offset: int
data: npt.NDArray[Any]
field: ReaderField
class GGUFReader:
# I - same as host, S - swapped
byte_order: Literal['I' | 'S'] = 'I'
alignment: int = GGUF_DEFAULT_ALIGNMENT
# Note: Internal helper, API may change.
gguf_scalar_to_np: dict[GGUFValueType, type[np.generic]] = {
GGUFValueType.UINT8: np.uint8,
GGUFValueType.INT8: np.int8,
GGUFValueType.UINT16: np.uint16,
GGUFValueType.INT16: np.int16,
GGUFValueType.UINT32: np.uint32,
GGUFValueType.INT32: np.int32,
GGUFValueType.FLOAT32: np.float32,
GGUFValueType.UINT64: np.uint64,
GGUFValueType.INT64: np.int64,
GGUFValueType.FLOAT64: np.float64,
GGUFValueType.BOOL: np.bool_,
}
def __init__(self, path: os.PathLike[str] | str, mode: Literal['r' | 'r+' | 'c'] = 'r'):
self.data = np.memmap(path, mode = mode)
offs = 0
if self._get(offs, np.uint32, override_order = '<')[0] != GGUF_MAGIC:
raise ValueError('GGUF magic invalid')
offs += 4
temp_version = self._get(offs, np.uint32)
if temp_version[0] & 65535 == 0:
# If we get 0 here that means it's (probably) a GGUF file created for
# the opposite byte order of the machine this script is running on.
self.byte_order = 'S'
temp_version = temp_version.newbyteorder(self.byte_order)
version = temp_version[0]
if version not in READER_SUPPORTED_VERSIONS:
raise ValueError(f'Sorry, file appears to be version {version} which we cannot handle')
self.fields: OrderedDict[str, ReaderField] = OrderedDict()
self.tensors: list[ReaderTensor] = []
offs += self._push_field(ReaderField(offs, 'GGUF.version', [temp_version], [0], [GGUFValueType.UINT32]))
temp_counts = self._get(offs, np.uint64, 2)
offs += self._push_field(ReaderField(offs, 'GGUF.tensor_count', [temp_counts[:1]], [0], [GGUFValueType.UINT64]))
offs += self._push_field(ReaderField(offs, 'GGUF.kv_count', [temp_counts[1:]], [0], [GGUFValueType.UINT64]))
tensor_count, kv_count = temp_counts
offs = self._build_fields(offs, kv_count)
offs, tensors_fields = self._build_tensors_fields(offs, tensor_count)
new_align = self.fields.get('general.alignment')
if new_align is not None:
if new_align.types != [GGUFValueType.UINT64]:
raise ValueError('Bad type for general.alignment field')
self.alignment = new_align.parts[-1][0]
padding = offs % self.alignment
if padding != 0:
offs += self.alignment - padding
self._build_tensors(offs, tensors_fields)
_DT = TypeVar('_DT', bound = npt.DTypeLike)
# Fetch a key/value metadata field by key.
def get_field(self, key: str) -> Union[ReaderField, None]:
return self.fields.get(key, None)
# Fetch a tensor from the list by index.
def get_tensor(self, idx: int) -> ReaderTensor:
return self.tensors[idx]
def _get(
self, offset: int, dtype: npt.DTypeLike, count: int = 1, override_order: None | Literal['I' | 'S' | '<'] = None,
) -> npt.NDArray[Any]:
count = int(count)
itemsize = int(np.empty([], dtype = dtype).itemsize)
end_offs = offset + itemsize * count
return (
self.data[offset:end_offs]
.view(dtype = dtype)[:count]
.newbyteorder(override_order or self.byte_order)
)
def _push_field(self, field: ReaderField, skip_sum: bool = False) -> int:
if field.name in self.fields:
raise KeyError(f'Duplicate {field.name} already in list at offset {field.offset}')
self.fields[field.name] = field
return 0 if skip_sum else sum(int(part.nbytes) for part in field.parts)
def _get_str(self, offset: int) -> tuple[npt.NDArray[np.uint64], npt.NDArray[np.uint8]]:
slen = self._get(offset, np.uint64)
return slen, self._get(offset + 8, np.uint8, slen[0])
def _get_field_parts(
self, orig_offs: int, raw_type: int,
) -> tuple[int, list[npt.NDArray[Any]], list[int], list[GGUFValueType]]:
offs = orig_offs
types: list[GGUFValueType] = []
gtype = GGUFValueType(raw_type)
types.append(gtype)
# Handle strings.
if gtype == GGUFValueType.STRING:
sparts: list[npt.NDArray[Any]] = list(self._get_str(offs))
size = sum(int(part.nbytes) for part in sparts)
return size, sparts, [1], types
# Check if it's a simple scalar type.
nptype = self.gguf_scalar_to_np.get(gtype)
if nptype is not None:
val = self._get(offs, nptype)
return int(val.nbytes), [val], [0], types
# Handle arrays.
if gtype == GGUFValueType.ARRAY:
raw_itype = self._get(offs, np.uint32)
offs += int(raw_itype.nbytes)
alen = self._get(offs, np.uint64)
offs += int(alen.nbytes)
aparts: list[npt.NDArray[Any]] = [raw_itype, alen]
data_idxs: list[int] = []
for idx in range(alen[0]):
curr_size, curr_parts, curr_idxs, curr_types = self._get_field_parts(offs, raw_itype[0])
if idx == 0:
types += curr_types
idxs_offs = len(aparts)
aparts += curr_parts
data_idxs += (idx + idxs_offs for idx in curr_idxs)
offs += curr_size
return offs - orig_offs, aparts, data_idxs, types
# We can't deal with this one.
raise ValueError('Unknown/unhandled field type {gtype}')
def _get_tensor(self, orig_offs: int) -> ReaderField:
offs = orig_offs
name_len, name_data = self._get_str(offs)
offs += int(name_len.nbytes + name_data.nbytes)
n_dims = self._get(offs, np.uint32)
offs += int(n_dims.nbytes)
dims = self._get(offs, np.uint64, n_dims[0])
offs += int(dims.nbytes)
raw_dtype = self._get(offs, np.uint32)
offs += int(raw_dtype.nbytes)
offset_tensor = self._get(offs, np.uint64)
offs += int(offset_tensor.nbytes)
return ReaderField(
orig_offs,
str(bytes(name_data), encoding = 'utf-8'),
[name_len, name_data, n_dims, dims, raw_dtype, offset_tensor],
[1, 3, 4, 5],
)
def _build_fields(self, offs: int, count: int) -> int:
for _ in range(count):
orig_offs = offs
kv_klen, kv_kdata = self._get_str(offs)
offs += int(kv_klen.nbytes + kv_kdata.nbytes)
raw_kv_type = self._get(offs, np.uint32)
offs += int(raw_kv_type.nbytes)
parts: list[npt.NDArray[Any]] = [kv_klen, kv_kdata, raw_kv_type]
idxs_offs = len(parts)
field_size, field_parts, field_idxs, field_types = self._get_field_parts(offs, raw_kv_type[0])
parts += field_parts
self._push_field(ReaderField(
orig_offs,
str(bytes(kv_kdata), encoding = 'utf-8'),
parts,
[idx + idxs_offs for idx in field_idxs],
field_types,
), skip_sum = True)
offs += field_size
return offs
def _build_tensors_fields(self, offs: int, count: int) -> tuple[int, list[ReaderField]]:
tensor_fields = []
for _ in range(count):
field = self._get_tensor(offs)
offs += sum(int(part.nbytes) for part in field.parts)
tensor_fields.append(field)
return offs, tensor_fields
def _build_tensors(self, start_offs: int, fields: list[ReaderField]) -> None:
tensors = []
for field in fields:
_name_len, name_data, _n_dims, dims, raw_dtype, offset_tensor = field.parts
ggml_type = GGMLQuantizationType(raw_dtype[0])
n_elems = np.prod(dims)
block_size, type_size = GGML_QUANT_SIZES[ggml_type]
n_bytes = n_elems * type_size // block_size
data_offs = int(start_offs + offset_tensor[0])
item_type: npt.DTypeLike
if ggml_type == GGMLQuantizationType.F32:
item_count = n_elems
item_type = np.float32
elif ggml_type == GGMLQuantizationType.F16:
item_count = n_elems
item_type = np.float16
else:
item_count = n_bytes
item_type = np.uint8
tensors.append(ReaderTensor(
name = str(bytes(name_data), encoding = 'utf-8'),
tensor_type = ggml_type,
shape = dims,
n_elements = n_elems,
n_bytes = n_bytes,
data_offset = data_offs,
data = self._get(data_offs, item_type, item_count),
field = field,
))
self.tensors = tensors