llama.cpp/ggml-mpi.c

214 lines
7.2 KiB
C
Raw Permalink Normal View History

2023-07-07 02:18:41 +02:00
#include "ggml-mpi.h"
#include "ggml.h"
#include <mpi.h>
2023-07-07 02:18:41 +02:00
#include <stdio.h>
#include <stdlib.h>
#define MIN(a, b) ((a) < (b) ? (a) : (b))
2023-07-07 02:18:41 +02:00
#define UNUSED GGML_UNUSED
struct ggml_mpi_context {
int rank;
int size;
};
void ggml_mpi_backend_init(void) {
MPI_Init(NULL, NULL);
}
void ggml_mpi_backend_free(void) {
MPI_Finalize();
}
struct ggml_mpi_context * ggml_mpi_init(void) {
struct ggml_mpi_context * ctx = calloc(1, sizeof(struct ggml_mpi_context));
MPI_Comm_rank(MPI_COMM_WORLD, &ctx->rank);
MPI_Comm_size(MPI_COMM_WORLD, &ctx->size);
return ctx;
}
void ggml_mpi_free(struct ggml_mpi_context * ctx) {
free(ctx);
}
int ggml_mpi_rank(struct ggml_mpi_context * ctx) {
return ctx->rank;
}
void ggml_mpi_eval_init(
struct ggml_mpi_context * ctx_mpi,
int * n_tokens,
int * n_past,
int * n_threads) {
UNUSED(ctx_mpi);
// synchronize the worker node parameters with the root node
MPI_Barrier(MPI_COMM_WORLD);
MPI_Bcast(n_tokens, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Bcast(n_past, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Bcast(n_threads, 1, MPI_INT, 0, MPI_COMM_WORLD);
}
int ggml_graph_get_node_idx(struct ggml_cgraph * gf, const char * name) {
struct ggml_tensor * t = ggml_graph_get_tensor(gf, name);
if (t == NULL) {
fprintf(stderr, "%s: tensor %s not found\n", __func__, name);
return -1;
}
for (int i = 0; i < gf->n_nodes; i++) {
if (gf->nodes[i] == t) {
return i;
}
}
fprintf(stderr, "%s: tensor %s not found in graph (should not happen)\n", __func__, name);
return -1;
}
2023-07-09 17:26:20 +02:00
// TODO: there are many improvements that can be done to this implementation
void ggml_mpi_graph_compute(
struct ggml_mpi_context * ctx_mpi,
struct ggml_context * ctx,
struct ggml_cgraph * gf,
2023-07-09 21:23:04 +02:00
int n_layers,
int n_threads) {
const int mpi_rank = ctx_mpi->rank;
const int mpi_size = ctx_mpi->size;
2023-07-09 17:26:20 +02:00
struct ggml_tensor * inp_tokens = ggml_graph_get_tensor(gf, "inp_tokens");
if (inp_tokens == NULL) {
fprintf(stderr, "%s: tensor 'inp_tokens' not found\n", __func__);
return;
}
2023-07-09 17:26:20 +02:00
struct ggml_tensor * inp0 = ggml_graph_get_tensor(gf, "layer_inp_0");
if (inp0 == NULL) {
fprintf(stderr, "%s: tensor 'inp0' not found\n", __func__);
return;
}
GGML_ASSERT(inp0 == gf->nodes[0]);
// distribute the compute graph into slices across the MPI nodes
//
// the main node (0) processes the last layers + the remainder of the compute graph
2023-07-09 17:26:20 +02:00
// and is responsible to pass the input tokens to the first node (1)
//
// node 1: [( 0) * n_per_node, ( 1) * n_per_node)
// node 2: [( 1) * n_per_node, ( 2) * n_per_node)
// ...
// node n-1: [(n-2) * n_per_node, (n-1) * n_per_node)
// node 0: [(n-1) * n_per_node, n_nodes)
//
if (mpi_rank > 0) {
2023-07-09 17:26:20 +02:00
if (mpi_rank == 1) { // the first node receives the input tokens from the main node
MPI_Status status; UNUSED(status);
const int mpi_rank_src = mpi_rank - 1;
2023-07-09 17:26:20 +02:00
const int retval = MPI_Recv(inp_tokens->data, ggml_nelements(inp_tokens), MPI_INT, mpi_rank_src, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
GGML_ASSERT(retval == MPI_SUCCESS);
} else { // recv input data for each node into the "inp0" tensor (i.e. the first node in the compute graph)
MPI_Status status; UNUSED(status);
const int mpi_rank_src = mpi_rank - 1;
//printf("%s: node %d: waiting for %d elements from %d\n", __func__, mpi_rank, (int) ggml_nelements(inp0), mpi_rank_src);
const int retval = MPI_Recv(inp0->data, ggml_nelements(inp0), MPI_FLOAT, mpi_rank_src, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
GGML_ASSERT(retval == MPI_SUCCESS);
}
2023-07-09 17:26:20 +02:00
} else if (mpi_size > 1) {
// node 0 sends the input tokens to node 1
{
const int mpi_rank_dst = mpi_rank + 1;
2023-07-09 17:26:20 +02:00
const int retval = MPI_Send(inp_tokens->data, ggml_nelements(inp_tokens), MPI_INT, mpi_rank_dst, 0, MPI_COMM_WORLD);
GGML_ASSERT(retval == MPI_SUCCESS);
}
// recv the output data from the last node
{
MPI_Status status; UNUSED(status);
const int mpi_rank_src = mpi_size - 1;
2023-07-09 17:26:20 +02:00
//fprintf(stderr, "%s: node %d: waiting for %d elements from %d\n", __func__, mpi_rank, (int) ggml_nelements(inp0), mpi_rank_src);
const int retval = MPI_Recv(inp0->data, ggml_nelements(inp0), MPI_FLOAT, mpi_rank_src, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
GGML_ASSERT(retval == MPI_SUCCESS);
}
}
{
const int n_per_node = (n_layers + (mpi_size - 1)) / mpi_size;
const int mpi_idx = mpi_rank > 0 ? mpi_rank - 1 : mpi_size - 1;
const int il0 = (mpi_idx + 0) * n_per_node;
const int il1 = MIN(n_layers, (mpi_idx + 1) * n_per_node);
char name_l0[GGML_MAX_NAME];
char name_l1[GGML_MAX_NAME];
snprintf(name_l0, sizeof(name_l0), "layer_inp_%d", il0);
snprintf(name_l1, sizeof(name_l1), "layer_inp_%d", il1);
const int idx_l0 = ggml_graph_get_node_idx(gf, name_l0);
2023-07-09 17:26:20 +02:00
const int idx_l1 = mpi_rank > 0 ? ggml_graph_get_node_idx(gf, name_l1) + 1 : gf->n_nodes;
if (idx_l0 < 0 || idx_l1 < 0) {
fprintf(stderr, "%s: layer input nodes not found\n", __func__);
return;
}
2023-07-09 17:38:32 +02:00
// attach the input data to all nodes that need it
// TODO: not great - should be able to do this without modifying the compute graph (see next TODO below)
2023-07-09 17:26:20 +02:00
for (int i = idx_l0; i < idx_l1; i++) {
if (gf->nodes[i]->src0 == gf->nodes[idx_l0]) {
gf->nodes[i]->src0 = inp0;
}
if (gf->nodes[i]->src1 == gf->nodes[idx_l0]) {
gf->nodes[i]->src1 = inp0;
}
}
2023-07-09 17:26:20 +02:00
// TODO: instead of rearranging the nodes, we should be able to execute a subset of the compute graph
for (int i = 1; i < idx_l1 - idx_l0; i++) {
gf->nodes[i] = gf->nodes[idx_l0 + i];
gf->grads[i] = gf->grads[idx_l0 + i];
2023-07-09 17:26:20 +02:00
}
2023-07-09 17:26:20 +02:00
// the first node performs the "get_rows" operation, the rest of the nodes get the data from the previous node
if (mpi_idx != 0) {
gf->nodes[0]->op = GGML_OP_NONE;
}
gf->n_nodes = idx_l1 - idx_l0;
//fprintf(stderr, "%s: node %d: processing %d nodes [%d, %d)\n", __func__, mpi_rank, gf->n_nodes, il0, il1);
}
2023-07-09 21:23:04 +02:00
ggml_graph_compute_with_ctx(ctx, gf, n_threads);
//fprintf(stderr, "%s: node %d: done\n", __func__, mpi_rank);
// send the output data to the next node
if (mpi_rank > 0) {
struct ggml_tensor * output = gf->nodes[gf->n_nodes - 1];
const int mpi_rank_dst = (mpi_rank + 1) % mpi_size;
//fprintf(stderr, "%s: node %d: sending %d elements to node %d\n", __func__, mpi_rank, ggml_nelements(output), mpi_rank_dst);
const int retval = MPI_Send(output->data, ggml_nelements(output), MPI_FLOAT, mpi_rank_dst, 0, MPI_COMM_WORLD);
GGML_ASSERT(retval == MPI_SUCCESS);
}
}