2023-03-10 19:40:58 +01:00
|
|
|
// Various helper functions and utilities
|
|
|
|
|
|
|
|
#pragma once
|
|
|
|
|
|
|
|
#include <string>
|
2023-03-21 18:21:50 +01:00
|
|
|
#include <unordered_map>
|
2023-03-10 19:40:58 +01:00
|
|
|
#include <vector>
|
|
|
|
#include <random>
|
|
|
|
#include <thread>
|
|
|
|
|
|
|
|
//
|
|
|
|
// CLI argument parsing
|
|
|
|
//
|
|
|
|
|
|
|
|
struct gpt_params {
|
2023-03-21 16:42:43 +01:00
|
|
|
int32_t seed = -1; // RNG seed
|
2023-03-21 16:32:14 +01:00
|
|
|
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
|
|
|
int32_t n_predict = 128; // new tokens to predict
|
2023-03-12 10:27:42 +01:00
|
|
|
int32_t repeat_last_n = 64; // last n tokens to penalize
|
2023-03-21 16:42:43 +01:00
|
|
|
int32_t n_parts = -1; // amount of model parts (-1 = determine from model dimensions)
|
2023-03-21 16:32:14 +01:00
|
|
|
int32_t n_ctx = 512; //context size
|
2023-03-17 20:46:46 +01:00
|
|
|
|
2023-03-10 19:40:58 +01:00
|
|
|
// sampling parameters
|
2023-03-12 21:23:15 +01:00
|
|
|
int32_t top_k = 40;
|
2023-03-10 19:40:58 +01:00
|
|
|
float top_p = 0.95f;
|
2023-03-10 20:50:46 +01:00
|
|
|
float temp = 0.80f;
|
2023-03-21 16:32:14 +01:00
|
|
|
float repeat_penalty = 1.10f;
|
2023-03-10 19:40:58 +01:00
|
|
|
|
|
|
|
int32_t n_batch = 8; // batch size for prompt processing
|
|
|
|
|
2023-03-21 16:32:14 +01:00
|
|
|
std::string model = "models/lamma-7B/ggml-model.bin"; // model path
|
|
|
|
std::string prompt = "";
|
2023-03-12 22:13:28 +01:00
|
|
|
|
2023-03-21 16:32:14 +01:00
|
|
|
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
|
2023-03-12 22:13:28 +01:00
|
|
|
|
2023-03-21 16:32:14 +01:00
|
|
|
bool memory_f16 = false; // use f16 instead of f32 for memory kv
|
|
|
|
bool random_prompt = false; // do not randomize prompt if none provided
|
|
|
|
bool use_color = false; // use color to distinguish generations and inputs
|
|
|
|
bool interactive = false; // interactive mode
|
2023-03-19 20:33:06 +01:00
|
|
|
bool interactive_start = false; // reverse prompt immediately
|
2023-03-21 16:32:14 +01:00
|
|
|
bool instruct = false; // instruction mode (used for Alpaca models)
|
|
|
|
bool ignore_eos = false; // do not stop generating after eos
|
2023-03-21 17:27:42 +01:00
|
|
|
bool perplexity = false; // compute perplexity over the prompt
|
2023-03-10 19:40:58 +01:00
|
|
|
};
|
|
|
|
|
|
|
|
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
|
|
|
|
|
|
|
|
void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
|
|
|
|
|
|
|
|
std::string gpt_random_prompt(std::mt19937 & rng);
|
|
|
|
|
2023-03-20 20:26:01 +01:00
|
|
|
//
|
|
|
|
// Model file parsing
|
|
|
|
//
|
|
|
|
|
|
|
|
#define FILE_MAGIC_UNVERSIONED 0x67676d6c // pre-versioned files
|
|
|
|
#define FILE_MAGIC 0x67676d66 // 'ggmf' in hex
|
|
|
|
#define FILE_VERSION 1
|
|
|
|
|
2023-03-10 19:40:58 +01:00
|
|
|
//
|
|
|
|
// Vocab utils
|
|
|
|
//
|
|
|
|
|
2023-03-21 16:29:41 +01:00
|
|
|
struct llama_vocab {
|
2023-03-10 19:40:58 +01:00
|
|
|
using id = int32_t;
|
|
|
|
using token = std::string;
|
|
|
|
|
2023-03-21 18:21:50 +01:00
|
|
|
struct token_score {
|
|
|
|
token tok;
|
|
|
|
float score;
|
|
|
|
};
|
|
|
|
|
|
|
|
std::unordered_map<token, id> token_to_id;
|
|
|
|
std::vector<token_score> id_to_token;
|
2023-03-10 19:40:58 +01:00
|
|
|
};
|
|
|
|
|
|
|
|
void replace(std::string & str, const std::string & needle, const std::string & replacement);
|
|
|
|
|
|
|
|
// poor-man's JSON parsing
|
2023-03-21 18:21:50 +01:00
|
|
|
std::unordered_map<std::string, int32_t> json_parse(const std::string & fname);
|
2023-03-10 19:40:58 +01:00
|
|
|
|
2023-03-21 16:29:41 +01:00
|
|
|
// TODO: temporary until #77 is merged, need this now for some tokenizer tests
|
|
|
|
bool llama_vocab_load(const std::string & fname, llama_vocab & vocab);
|
2023-03-10 19:40:58 +01:00
|
|
|
|
|
|
|
// TODO: this is probably wrong, but I cannot figure out how this tokenizer works ..
|
|
|
|
// ref: https://github.com/google/sentencepiece
|
2023-03-21 16:29:41 +01:00
|
|
|
std::vector<llama_vocab::id> llama_tokenize(const llama_vocab & vocab, const std::string & text, bool bos);
|
2023-03-10 19:40:58 +01:00
|
|
|
|
|
|
|
// sample next token given probabilities for each embedding
|
|
|
|
//
|
|
|
|
// - consider only the top K tokens
|
|
|
|
// - from them, consider only the top tokens with cumulative probability > P
|
|
|
|
//
|
2023-03-21 16:29:41 +01:00
|
|
|
llama_vocab::id llama_sample_top_p_top_k(
|
|
|
|
const llama_vocab & vocab,
|
2023-03-10 22:46:39 +01:00
|
|
|
const float * logits,
|
2023-03-21 16:29:41 +01:00
|
|
|
std::vector<llama_vocab::id> & last_n_tokens,
|
2023-03-12 10:27:42 +01:00
|
|
|
double repeat_penalty,
|
2023-03-12 21:23:15 +01:00
|
|
|
int top_k,
|
2023-03-10 22:46:39 +01:00
|
|
|
double top_p,
|
|
|
|
double temp,
|
|
|
|
std::mt19937 & rng);
|
|
|
|
|
2023-03-12 21:23:15 +01:00
|
|
|
// filer to top K tokens from list of logits
|
2023-03-21 16:29:41 +01:00
|
|
|
void sample_top_k(std::vector<std::pair<double, llama_vocab::id>> & logits_id, int top_k);
|
2023-03-12 21:23:15 +01:00
|
|
|
|
2023-03-10 19:40:58 +01:00
|
|
|
//
|
|
|
|
// Quantization
|
|
|
|
//
|
|
|
|
|
|
|
|
size_t ggml_quantize_q4_0(float * src, void * dst, int n, int k, int qk, int64_t * hist);
|
|
|
|
size_t ggml_quantize_q4_1(float * src, void * dst, int n, int k, int qk, int64_t * hist);
|