llama.cpp/llama.h

304 lines
16 KiB
C
Raw Normal View History

#ifndef LLAMA_H
#define LLAMA_H
#include "ggml.h"
#ifdef GGML_USE_CUBLAS
#include "ggml-cuda.h"
#define LLAMA_MAX_DEVICES GGML_CUDA_MAX_DEVICES
#else
#define LLAMA_MAX_DEVICES 1
#endif // GGML_USE_CUBLAS
#include <stddef.h>
#include <stdint.h>
#include <stdbool.h>
#ifdef LLAMA_SHARED
2023-03-29 15:19:29 +02:00
# if defined(_WIN32) && !defined(__MINGW32__)
# ifdef LLAMA_BUILD
# define LLAMA_API __declspec(dllexport)
# else
# define LLAMA_API __declspec(dllimport)
# endif
# else
# define LLAMA_API __attribute__ ((visibility ("default")))
# endif
#else
# define LLAMA_API
#endif
#define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt'
#define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
#define LLAMA_FILE_MAGIC_GGMF 0x67676d66u // 'ggmf'
#define LLAMA_FILE_MAGIC_GGML 0x67676d6cu // 'ggml'
#define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
#define LLAMA_FILE_VERSION 3
#define LLAMA_FILE_MAGIC LLAMA_FILE_MAGIC_GGJT
#define LLAMA_FILE_MAGIC_UNVERSIONED LLAMA_FILE_MAGIC_GGML
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
#define LLAMA_SESSION_VERSION 1
llama : Metal inference (#1642) * mtl : export the LLaMA computation graph * ci : disable temporary * mtl : adapt the MNIST example as starter * mtl : no need for mtl-export tool, add cli arg for main instead * mtl : export just a small part of the graph for now to make it easier * mtl : move MSL code into separate file for easy editing * mtl : initial get_rows_q4_0 kernel * mtl : confirmed get_rows_q4_0 is working correctly * mtl : add rms_norm kernel + confirm working * mtl : add mul kernel + confirm working * mtl : initial mul_mat Q4 kernel (wrong results) * mtl : mul_mat fixes (still wrong) * mtl : another mul_mat Q4 (still does not work) * mtl : working mul_mat q4 * ggml : fix handling of "view" ops in ggml_graph_import() * mtl : add rope kernel * mtl : add reshape and transpose handling * ggml : store offset as opt arg for ggml_view_xd() operators * mtl : add cpy kernel + handle view ops * mtl : confirm f16 x f32 attention mul mat * mtl : add scale kernel * mtl : add diag_mask_inf kernel * mtl : fix soft_max kernel * ggml : update ggml_nbytes() to handle non-contiguous tensors * mtl : verify V tensor contents * mtl : add f32 -> f32 cpy kernel * mtl : add silu kernel * mtl : add non-broadcast mul kernel * mtl : full GPU inference of the computation graph * mtl : optimize rms_norm and soft_max kernels * mtl : add f16 mat x f32 vec multiplication kernel * mtl : fix bug in f16 x f32 mul mat + speed-up computation * mtl : faster mul_mat_q4_0_f32 kernel * mtl : fix kernel signature + roll inner loop * mtl : more threads for rms_norm + better timing * mtl : remove printfs from inner loop * mtl : simplify implementation * mtl : add save/load vocab to ggml file * mtl : plug Metal inference into llama.cpp (very quick-n-dirty) * mtl : make it work with main example Lots of hacks but at least now it generates text * mtl : preparing for merge * mtl : clean-up ggml mtl interface + suport scratch / inplace * mtl : remove temp / debug code * metal : final refactoring and simplification * Revert "ci : disable temporary" This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63. * metal : add comments * metal : clean-up stuff, fix typos * readme : add Metal instructions * readme : add example for main
2023-06-04 22:34:30 +02:00
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL)
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
#define LLAMA_SUPPORTS_GPU_OFFLOAD
#endif
#ifdef __cplusplus
extern "C" {
#endif
//
// C interface
//
// TODO: show sample usage
//
struct llama_context;
typedef int llama_token;
typedef struct llama_token_data {
llama_token id; // token id
float logit; // log-odds of the token
float p; // probability of the token
} llama_token_data;
typedef struct llama_token_data_array {
llama_token_data * data;
size_t size;
bool sorted;
} llama_token_data_array;
typedef void (*llama_progress_callback)(float progress, void *ctx);
struct llama_context_params {
int n_ctx; // text context
int n_batch; // prompt processing batch size
int n_gpu_layers; // number of layers to store in VRAM
int main_gpu; // the GPU that is used for scratch and small tensors
float tensor_split[LLAMA_MAX_DEVICES]; // how to split layers across multiple GPUs
int seed; // RNG seed, -1 for random
bool f16_kv; // use fp16 for KV cache
bool logits_all; // the llama_eval() call computes all logits, not just the last one
bool vocab_only; // only load the vocabulary, no weights
Rewrite loading code to try to satisfy everyone: - Support all three formats (ggml, ggmf, ggjt). (However, I didn't include the hack needed to support GPT4All files without conversion. Those can still be used after converting them with convert.py from my other PR.) - Support both mmap and read (mmap is used by default, but can be disabled with `--no-mmap`, and is automatically disabled for pre-ggjt files or on platforms where mmap is not supported). - Support multi-file models like before, but automatically determine the number of parts rather than requiring `--n_parts`. - Improve validation and error checking. - Stop using the per-file type field (f16) entirely in favor of just relying on the per-tensor type/size fields. This has no immediate benefit, but makes it easier to experiment with different formats, and should make it easier to support the new GPTQ-for-LLaMa models in the future (I have some work in progress on that front). - Support VirtualLock on Windows (using the same `--mlock` option as on Unix). - Indicate loading progress when using mmap + mlock. (Which led me to the interesting observation that on my Linux machine, with a warm file cache, mlock actually takes some time, whereas mmap without mlock starts almost instantly...) - To help implement this, move mlock support from ggml to the loading code. - madvise/PrefetchVirtualMemory support (based on #740) - Switch from ifstream to the `fopen` family of functions to avoid unnecessary copying and, when mmap is enabled, allow reusing the same file descriptor for both metadata reads and mmap (whereas the existing implementation opens the file a second time to mmap). - Quantization now produces a single-file output even with multi-file inputs (not really a feature as much as 'it was easier this way'). Implementation notes: I tried to factor the code into more discrete pieces than before. Regarding code style: I tried to follow the code style, but I'm naughty and used a few advanced C++ features repeatedly: - Destructors to make it easier to ensure everything gets cleaned up. - Exceptions. I don't even usually use exceptions when writing C++, and I can remove them if desired... but here they make the loading code much more succinct while still properly handling a variety of errors, ranging from API calls failing to integer overflow and allocation failure. The exceptions are converted to error codes at the API boundary.) Co-authored-by: Pavol Rusnak <pavol@rusnak.io> (for the bit I copied from #740)
2023-04-08 21:24:37 +02:00
bool use_mmap; // use mmap if possible
bool use_mlock; // force system to keep model in RAM
bool embedding; // embedding mode only
// called with a progress value between 0 and 1, pass NULL to disable
llama_progress_callback progress_callback;
// context pointer passed to the progress callback
void * progress_callback_user_data;
};
// model file types
enum llama_ftype {
LLAMA_FTYPE_ALL_F32 = 0,
LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
// LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
// LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
ggml : add SOTA 2,3,4,5,6 bit k-quantizations (#1684) * Starting to add k-quantization to ggml I think it is better to have quantization separate from ggml. For now just adding the k-quants there, but it would be better to also factor out the existing ggml quantizations. * Adding Q3_K and Q8_K (de)-quantization * Q3_K now working on CUDA and AVX2/scalar CUDA is not ideal - ~50% slower than Q4_0 for single token prediction, about the same in batch mode (perplexity). CPU single token is ~55 ms (on Ryzen 7950X). * Some improvement for Q3_K on CUDA It is now ~22.5 ms/token on my GPU, so ~30% slower than Q4_0. * Some more CUDA optimizations for Q3_K Single token is now 20.5 ms/token (~20% slower than Q4_0). Perplexity is on par with Q4_0. * Adding Q4_K - scalar, AVX2, CUDA Performance is the same or perhaps very slightly better than Q4_0 on the CPU. On the GPU, single token prediction is ~10% better than Q4_0, batch mode (perplexity is about the same). * Adding Q6_K - scalar, AVX2, CUDA Performance is ~40% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 6-bit model is ~44% larger than the 4-bit. On the GPU, single token prediction is ~6% lower than Q4_0, batch mode (perplexity) is even closer (but still slower). * Adding Q5_K - scalar, AVX2, CUDA Performance is ~20% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 5-bit model is ~22% larger than the 4-bit. On the GPU, single token prediction is about the same as Q4_0 for both, single token and batch prediction. * Per convention, all QX_K quantizations use Q5_K for output.weight * Adding quantization mixes * Quantization mixes: didn't quite get what I wanted in the last commit * Q4_K dot product for ARM_NEON * Q6_K dot product for ARM_NEON * Q5_K dot product for ARM_NEON * Adding Q3_K dot for ARM_NEON It is 22% slower than Q4_K, despite the smaller model size. On x86_64, where we are memory bound, the Q3_K model is quite a bit faster than Q4_K. * A very slightly faster ARM_NEON Q3_K dot * Adding Q2_K - just CUDA for now Token prediction is pretty good - about 15.5 ms on a RTX 4080. Perplexity is about the same as Q4_K. * Adding scalar and AVX2 Q2_K dot * Adding ARM_NEON Q2_K dot About the same performance as Q4_K. * A slightly faster ARM_NEON Q2_K dot Single token prediction is now ~36 ms on M2 Max. The code is much simpler too. * Fixed bug in Q2_K CUDA dot product kernel Stranegly enough, for the few prompts I tried with the 7B model the responses looked perfectly reasonable. Only realized something is not quite right when I tried the larger models and started getting nonse back. In any case, Q2_K single token evaluation time on an RTX 4080 in a Ryzen7950X box iusing CUDA and model fully loaded on the GPU are ~15.5 ms for 7B, ~25.4 ms for 13B, and ~55.8 ms for 30B. The max number of layers that fit in VRAM for The 65B is 32. With that, we get ~330 ms per token, which is not that much faster than just running on the CPU (~470 ms per token). * Don't print zeros/NaNs when no count histogram has been collected * A 10% faster CUDA vector dot kernel for Q3_K Q3_K is now running at ~18.5 ms / token on CUDA, so the gap to Q4_0 is only 10%. It seems memory acccess pattern is more important for performance than the amount of computation the kernel does. * A slightly daster Q4_K AVX2 dot product For perplexity, where we are less memory bound, time per pass drops by ~5%. Barely measurable difference for single token prediction. * A slightly faster ARM_NEON A4_K dot product * Minor * Fix quantization error test We cannot possibly be expecting rmse < 0.002 for 2- and 3-bit quantization variants. * Fix docker build I have been sloppy with vector reinterpret casts on ARM_NEON. It seems clang is very forgiving in that regard. * Added forgotten ggml.o dependence on k_quants.h to the Makefile * Had unintentionally committed the Makefile with -Ofast enabled * ggml : rename k_quants -> ggml-quants-k, use lowercase in code --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-05 21:56:18 +02:00
LLAMA_FTYPE_MOSTLY_Q2_K = 10,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q3_K_S = 11,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q3_K_M = 12,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q3_K_L = 13,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_K_S = 14,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_K_M = 15,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_K_S = 16,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_K_M = 17,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q6_K = 18,// except 1d tensors
};
LLAMA_API struct llama_context_params llama_context_default_params();
Rewrite loading code to try to satisfy everyone: - Support all three formats (ggml, ggmf, ggjt). (However, I didn't include the hack needed to support GPT4All files without conversion. Those can still be used after converting them with convert.py from my other PR.) - Support both mmap and read (mmap is used by default, but can be disabled with `--no-mmap`, and is automatically disabled for pre-ggjt files or on platforms where mmap is not supported). - Support multi-file models like before, but automatically determine the number of parts rather than requiring `--n_parts`. - Improve validation and error checking. - Stop using the per-file type field (f16) entirely in favor of just relying on the per-tensor type/size fields. This has no immediate benefit, but makes it easier to experiment with different formats, and should make it easier to support the new GPTQ-for-LLaMa models in the future (I have some work in progress on that front). - Support VirtualLock on Windows (using the same `--mlock` option as on Unix). - Indicate loading progress when using mmap + mlock. (Which led me to the interesting observation that on my Linux machine, with a warm file cache, mlock actually takes some time, whereas mmap without mlock starts almost instantly...) - To help implement this, move mlock support from ggml to the loading code. - madvise/PrefetchVirtualMemory support (based on #740) - Switch from ifstream to the `fopen` family of functions to avoid unnecessary copying and, when mmap is enabled, allow reusing the same file descriptor for both metadata reads and mmap (whereas the existing implementation opens the file a second time to mmap). - Quantization now produces a single-file output even with multi-file inputs (not really a feature as much as 'it was easier this way'). Implementation notes: I tried to factor the code into more discrete pieces than before. Regarding code style: I tried to follow the code style, but I'm naughty and used a few advanced C++ features repeatedly: - Destructors to make it easier to ensure everything gets cleaned up. - Exceptions. I don't even usually use exceptions when writing C++, and I can remove them if desired... but here they make the loading code much more succinct while still properly handling a variety of errors, ranging from API calls failing to integer overflow and allocation failure. The exceptions are converted to error codes at the API boundary.) Co-authored-by: Pavol Rusnak <pavol@rusnak.io> (for the bit I copied from #740)
2023-04-08 21:24:37 +02:00
LLAMA_API bool llama_mmap_supported();
LLAMA_API bool llama_mlock_supported();
// TODO: not great API - very likely to change
// Initialize the llama + ggml backend
// Call once at the start of the program
LLAMA_API void llama_init_backend();
LLAMA_API int64_t llama_time_us();
// Various functions for loading a ggml llama model.
// Allocate (almost) all memory needed for the model.
// Return NULL on failure
LLAMA_API struct llama_context * llama_init_from_file(
const char * path_model,
struct llama_context_params params);
// Frees all allocated memory
LLAMA_API void llama_free(struct llama_context * ctx);
// TODO: not great API - very likely to change
// Returns 0 on success
// nthread - how many threads to use. If <=0, will use std::thread::hardware_concurrency(), else the number given
LLAMA_API int llama_model_quantize(
const char * fname_inp,
const char * fname_out,
enum llama_ftype ftype,
int nthread);
2023-04-17 17:28:55 +02:00
// Apply a LoRA adapter to a loaded model
// path_base_model is the path to a higher quality model to use as a base for
// the layers modified by the adapter. Can be NULL to use the current loaded model.
// The model needs to be reloaded before applying a new adapter, otherwise the adapter
// will be applied on top of the previous one
// Returns 0 on success
LLAMA_API int llama_apply_lora_from_file(
struct llama_context * ctx,
const char * path_lora,
const char * path_base_model,
int n_threads);
// Returns the number of tokens in the KV cache
LLAMA_API int llama_get_kv_cache_token_count(const struct llama_context * ctx);
// Sets the current rng seed.
LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, int seed);
// Returns the maximum size in bytes of the state (rng, logits, embedding
// and kv_cache) - will often be smaller after compacting tokens
LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx);
// Copies the state to the specified destination address.
// Destination needs to have allocated enough memory.
// Returns the number of bytes copied
LLAMA_API size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst);
// Set the state reading from the specified address
// Returns the number of bytes read
LLAMA_API size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src);
// Save/load session file
LLAMA_API bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out);
LLAMA_API bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count);
// Run the llama inference to obtain the logits and probabilities for the next token.
// tokens + n_tokens is the provided batch of new tokens to process
// n_past is the number of tokens to use from previous eval calls
// Returns 0 on success
LLAMA_API int llama_eval(
struct llama_context * ctx,
const llama_token * tokens,
int n_tokens,
int n_past,
int n_threads);
llama : Metal inference (#1642) * mtl : export the LLaMA computation graph * ci : disable temporary * mtl : adapt the MNIST example as starter * mtl : no need for mtl-export tool, add cli arg for main instead * mtl : export just a small part of the graph for now to make it easier * mtl : move MSL code into separate file for easy editing * mtl : initial get_rows_q4_0 kernel * mtl : confirmed get_rows_q4_0 is working correctly * mtl : add rms_norm kernel + confirm working * mtl : add mul kernel + confirm working * mtl : initial mul_mat Q4 kernel (wrong results) * mtl : mul_mat fixes (still wrong) * mtl : another mul_mat Q4 (still does not work) * mtl : working mul_mat q4 * ggml : fix handling of "view" ops in ggml_graph_import() * mtl : add rope kernel * mtl : add reshape and transpose handling * ggml : store offset as opt arg for ggml_view_xd() operators * mtl : add cpy kernel + handle view ops * mtl : confirm f16 x f32 attention mul mat * mtl : add scale kernel * mtl : add diag_mask_inf kernel * mtl : fix soft_max kernel * ggml : update ggml_nbytes() to handle non-contiguous tensors * mtl : verify V tensor contents * mtl : add f32 -> f32 cpy kernel * mtl : add silu kernel * mtl : add non-broadcast mul kernel * mtl : full GPU inference of the computation graph * mtl : optimize rms_norm and soft_max kernels * mtl : add f16 mat x f32 vec multiplication kernel * mtl : fix bug in f16 x f32 mul mat + speed-up computation * mtl : faster mul_mat_q4_0_f32 kernel * mtl : fix kernel signature + roll inner loop * mtl : more threads for rms_norm + better timing * mtl : remove printfs from inner loop * mtl : simplify implementation * mtl : add save/load vocab to ggml file * mtl : plug Metal inference into llama.cpp (very quick-n-dirty) * mtl : make it work with main example Lots of hacks but at least now it generates text * mtl : preparing for merge * mtl : clean-up ggml mtl interface + suport scratch / inplace * mtl : remove temp / debug code * metal : final refactoring and simplification * Revert "ci : disable temporary" This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63. * metal : add comments * metal : clean-up stuff, fix typos * readme : add Metal instructions * readme : add example for main
2023-06-04 22:34:30 +02:00
// Export a static computation graph for context of 511 and batch size of 1
// NOTE: since this functionality is mostly for debugging and demonstration purposes, we hardcode these
// parameters here to keep things simple
// IMPORTANT: do not use for anything else other than debugging and testing!
LLAMA_API int llama_eval_export(struct llama_context * ctx, const char * fname);
// Convert the provided text into tokens.
// The tokens pointer must be large enough to hold the resulting tokens.
// Returns the number of tokens on success, no more than n_max_tokens
// Returns a negative number on failure - the number of tokens that would have been returned
// TODO: not sure if correct
LLAMA_API int llama_tokenize(
struct llama_context * ctx,
const char * text,
llama_token * tokens,
int n_max_tokens,
bool add_bos);
LLAMA_API int llama_n_vocab(const struct llama_context * ctx);
LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
LLAMA_API int llama_n_embd (const struct llama_context * ctx);
// Token logits obtained from the last call to llama_eval()
// The logits for the last token are stored in the last row
// Can be mutated in order to change the probabilities of the next token
// Rows: n_tokens
// Cols: n_vocab
LLAMA_API float * llama_get_logits(struct llama_context * ctx);
// Get the embeddings for the input
// shape: [n_embd] (1-dimensional)
LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
// Token Id -> String. Uses the vocabulary in the provided context
LLAMA_API const char * llama_token_to_str(const struct llama_context * ctx, llama_token token);
// Special tokens
LLAMA_API llama_token llama_token_bos();
LLAMA_API llama_token llama_token_eos();
LLAMA_API llama_token llama_token_nl();
// Sampling functions
/// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
2023-05-02 22:09:08 +02:00
LLAMA_API void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty);
/// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
2023-05-02 22:09:08 +02:00
LLAMA_API void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence);
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates);
/// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
LLAMA_API void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep);
/// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
LLAMA_API void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
/// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
LLAMA_API void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep);
/// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
LLAMA_API void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
LLAMA_API void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates, float temp);
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
/// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
LLAMA_API llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu);
/// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
LLAMA_API llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu);
/// @details Selects the token with the highest probability.
LLAMA_API llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates);
/// @details Randomly selects a token from the candidates based on their probabilities.
LLAMA_API llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates);
// Performance information
LLAMA_API void llama_print_timings(struct llama_context * ctx);
LLAMA_API void llama_reset_timings(struct llama_context * ctx);
// Print system information
LLAMA_API const char * llama_print_system_info(void);
#ifdef __cplusplus
}
#endif
// Internal API to be implemented by llama.cpp and used by tests/benchmarks only
#ifdef LLAMA_API_INTERNAL
#include <vector>
#include <string>
struct ggml_tensor;
std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx);
#endif
Rewrite loading code to try to satisfy everyone: - Support all three formats (ggml, ggmf, ggjt). (However, I didn't include the hack needed to support GPT4All files without conversion. Those can still be used after converting them with convert.py from my other PR.) - Support both mmap and read (mmap is used by default, but can be disabled with `--no-mmap`, and is automatically disabled for pre-ggjt files or on platforms where mmap is not supported). - Support multi-file models like before, but automatically determine the number of parts rather than requiring `--n_parts`. - Improve validation and error checking. - Stop using the per-file type field (f16) entirely in favor of just relying on the per-tensor type/size fields. This has no immediate benefit, but makes it easier to experiment with different formats, and should make it easier to support the new GPTQ-for-LLaMa models in the future (I have some work in progress on that front). - Support VirtualLock on Windows (using the same `--mlock` option as on Unix). - Indicate loading progress when using mmap + mlock. (Which led me to the interesting observation that on my Linux machine, with a warm file cache, mlock actually takes some time, whereas mmap without mlock starts almost instantly...) - To help implement this, move mlock support from ggml to the loading code. - madvise/PrefetchVirtualMemory support (based on #740) - Switch from ifstream to the `fopen` family of functions to avoid unnecessary copying and, when mmap is enabled, allow reusing the same file descriptor for both metadata reads and mmap (whereas the existing implementation opens the file a second time to mmap). - Quantization now produces a single-file output even with multi-file inputs (not really a feature as much as 'it was easier this way'). Implementation notes: I tried to factor the code into more discrete pieces than before. Regarding code style: I tried to follow the code style, but I'm naughty and used a few advanced C++ features repeatedly: - Destructors to make it easier to ensure everything gets cleaned up. - Exceptions. I don't even usually use exceptions when writing C++, and I can remove them if desired... but here they make the loading code much more succinct while still properly handling a variety of errors, ranging from API calls failing to integer overflow and allocation failure. The exceptions are converted to error codes at the API boundary.) Co-authored-by: Pavol Rusnak <pavol@rusnak.io> (for the bit I copied from #740)
2023-04-08 21:24:37 +02:00
#endif // LLAMA_H