mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-10-31 15:10:16 +01:00
323 lines
11 KiB
C++
323 lines
11 KiB
C++
|
#include "common.h"
|
||
|
#include "llama.h"
|
||
|
#include "ggml.h"
|
||
|
|
||
|
#ifdef GGML_USE_CUDA
|
||
|
#include "ggml-cuda.h"
|
||
|
#endif
|
||
|
|
||
|
#ifdef GGML_USE_METAL
|
||
|
#include "ggml-metal.h"
|
||
|
#endif
|
||
|
|
||
|
#include <cstdio>
|
||
|
#include <ctime>
|
||
|
#include <string>
|
||
|
#include <tuple>
|
||
|
#include <vector>
|
||
|
#include <algorithm>
|
||
|
#include <iostream>
|
||
|
#include <fstream>
|
||
|
|
||
|
#define DEBUG_POS 5
|
||
|
|
||
|
static void print_debug_tensor(struct ggml_tensor * t, bool with_data = true) {
|
||
|
printf("%s: %s (%s): [%d, %d]\n", __func__, t->name, ggml_type_name(t->type), (int) t->ne[0], (int) t->ne[1]);
|
||
|
if (!with_data) return;
|
||
|
printf("%s: %s[0] = [", __func__, t->name);
|
||
|
for (size_t i = 0; i <= DEBUG_POS; i++) {
|
||
|
printf(" %f,", ggml_get_f32_nd(t, i, 0, 0, 0));
|
||
|
}
|
||
|
printf(" ... ]\n");
|
||
|
}
|
||
|
|
||
|
namespace PCA {
|
||
|
|
||
|
// input params for PCA computations
|
||
|
struct pca_params {
|
||
|
int n_threads = 1;
|
||
|
int n_batch = 20; // number of iterations do to in one batch. larger the batch, more memory is used
|
||
|
int n_iterations = 1000;
|
||
|
float tolerance = 1e-7;
|
||
|
|
||
|
// for debugging
|
||
|
int i_layer = 0;
|
||
|
int n_layers = 0;
|
||
|
};
|
||
|
|
||
|
// result from each iteration
|
||
|
struct pca_result {
|
||
|
struct ggml_tensor * calculated_square = NULL;
|
||
|
std::vector<struct ggml_tensor *> eigenvectors;
|
||
|
std::vector<float> distances;
|
||
|
};
|
||
|
|
||
|
struct pca_model {
|
||
|
ggml_backend_t backend = NULL;
|
||
|
ggml_backend_buffer_t buffer;
|
||
|
struct ggml_context * ctx; // context to compute graph on target device
|
||
|
struct ggml_context * ctx_host; // host context to store results
|
||
|
|
||
|
// tensors on target device
|
||
|
struct ggml_tensor * dev_input;
|
||
|
struct ggml_tensor * dev_square;
|
||
|
struct ggml_tensor * dev_eigenvector;
|
||
|
|
||
|
pca_model(struct ggml_tensor * t_input) {
|
||
|
// TODO: enable GPU support when support for GGML_OP_SQRT is added
|
||
|
// #ifdef GGML_USE_CUDA
|
||
|
// fprintf(stderr, "%s: using CUDA backend\n", __func__);
|
||
|
// backend = ggml_backend_cuda_init(0); // init device 0
|
||
|
// if (!backend) {
|
||
|
// fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__);
|
||
|
// }
|
||
|
// #endif
|
||
|
|
||
|
// #ifdef GGML_USE_METAL
|
||
|
// fprintf(stderr, "%s: using Metal backend\n", __func__);
|
||
|
// backend = ggml_backend_metal_init();
|
||
|
// if (!backend) {
|
||
|
// fprintf(stderr, "%s: ggml_backend_metal_init() failed\n", __func__);
|
||
|
// }
|
||
|
// #endif
|
||
|
|
||
|
// if there aren't GPU Backends fallback to CPU backend
|
||
|
if (!backend) {
|
||
|
backend = ggml_backend_cpu_init();
|
||
|
}
|
||
|
|
||
|
const int num_tensors = 4;
|
||
|
struct ggml_init_params params {
|
||
|
/*.mem_size =*/ ggml_tensor_overhead() * num_tensors,
|
||
|
/*.mem_buffer =*/ NULL,
|
||
|
/*.no_alloc =*/ true,
|
||
|
};
|
||
|
ctx = ggml_init(params);
|
||
|
|
||
|
auto n_samples = t_input->ne[0];
|
||
|
auto n_embd = t_input->ne[1];
|
||
|
|
||
|
dev_input = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_samples, n_embd);
|
||
|
dev_square = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
||
|
dev_eigenvector = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||
|
|
||
|
ggml_set_name(dev_input, "dev_input");
|
||
|
ggml_set_name(dev_square, "dev_square");
|
||
|
ggml_set_name(dev_eigenvector, "dev_eigenvector");
|
||
|
buffer = ggml_backend_alloc_ctx_tensors(ctx, backend);
|
||
|
ggml_backend_tensor_set(dev_input, t_input->data, 0, ggml_nbytes(t_input));
|
||
|
|
||
|
// initialize eigenvector to random normalized vector
|
||
|
{
|
||
|
std::vector<float> random_vec(ggml_nelements(dev_eigenvector), 0.0);
|
||
|
std::default_random_engine generator(static_cast<unsigned int>(std::time(0)));
|
||
|
std::uniform_real_distribution<float> distribution(0.0, 1.0);
|
||
|
float sum_sqr = 0.0; // for normalizing random_vec
|
||
|
for (size_t i = 0; i < random_vec.size(); ++i) {
|
||
|
float f = distribution(generator);
|
||
|
sum_sqr += f * f;
|
||
|
random_vec[i] = f;
|
||
|
}
|
||
|
// normalize it
|
||
|
float random_vec_norm = std::sqrt(sum_sqr);
|
||
|
for (size_t i = 0; i < random_vec.size(); ++i) {
|
||
|
random_vec[i] /= random_vec_norm;
|
||
|
}
|
||
|
ggml_backend_tensor_set(dev_eigenvector, random_vec.data(), 0, ggml_nbytes(dev_eigenvector));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
~pca_model() {
|
||
|
ggml_free(ctx);
|
||
|
ggml_backend_buffer_free(buffer);
|
||
|
ggml_backend_free(backend);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
static struct ggml_cgraph * build_graph_piter(
|
||
|
const struct pca_params & params,
|
||
|
const pca_model & model,
|
||
|
bool calc_square = false) {
|
||
|
GGML_ASSERT(params.n_batch > 0);
|
||
|
// TODO: buf_size must be able to scale with params.n_batch
|
||
|
static size_t buf_size = ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead();
|
||
|
static std::vector<uint8_t> buf(buf_size);
|
||
|
|
||
|
struct ggml_init_params params0 = {
|
||
|
/*.mem_size =*/ buf_size,
|
||
|
/*.mem_buffer =*/ buf.data(),
|
||
|
/*.no_alloc =*/ true, // the tensors will be allocated later by ggml_allocr_alloc_graph()
|
||
|
};
|
||
|
// create a temporally context to build the graph
|
||
|
struct ggml_context * ctx0 = ggml_init(params0);
|
||
|
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
|
||
|
|
||
|
// turn v_diff_original into square matrix if needed
|
||
|
struct ggml_tensor * tmp_square;
|
||
|
if (calc_square) {
|
||
|
tmp_square = ggml_mul_mat(ctx0, model.dev_input, model.dev_input);
|
||
|
ggml_set_name(tmp_square, "tmp_square");
|
||
|
}
|
||
|
|
||
|
struct ggml_tensor * b_tensor;
|
||
|
struct ggml_tensor * distance;
|
||
|
struct ggml_tensor * old_eigen = model.dev_eigenvector;
|
||
|
struct ggml_tensor * input_square = calc_square ? tmp_square : model.dev_square;
|
||
|
|
||
|
for (int i = 0; i < params.n_batch; ++i) {
|
||
|
// b_tensor = square * eigenvector^T
|
||
|
b_tensor = ggml_mul_mat(ctx0, input_square, old_eigen);
|
||
|
ggml_set_name(b_tensor, "b_tensor");
|
||
|
|
||
|
// normalize
|
||
|
b_tensor = ggml_div_inplace(ctx0,
|
||
|
b_tensor,
|
||
|
ggml_sqrt_inplace(ctx0, ggml_sum_rows(ctx0, ggml_sqr(ctx0, b_tensor)))
|
||
|
);
|
||
|
ggml_format_name(b_tensor, "b_tensor_norm_%d", i);
|
||
|
|
||
|
// calculate distance(new eigenvector - old eigenvector)
|
||
|
// we don't use ggml_sub because it may not be implemented on GPU backend
|
||
|
struct ggml_tensor * new_sub_old = ggml_add(ctx0, old_eigen, ggml_scale(ctx0, b_tensor, -1));
|
||
|
distance = ggml_sqrt_inplace(ctx0,
|
||
|
ggml_sum_rows(ctx0, ggml_sqr_inplace(ctx0, new_sub_old)));
|
||
|
ggml_format_name(distance, "distance_%d", i);
|
||
|
|
||
|
old_eigen = b_tensor;
|
||
|
|
||
|
// build operations nodes
|
||
|
ggml_build_forward_expand(gf, distance);
|
||
|
}
|
||
|
|
||
|
// delete the temporally context used to build the graph
|
||
|
ggml_free(ctx0);
|
||
|
return gf;
|
||
|
}
|
||
|
|
||
|
static ggml_status compute_piter(
|
||
|
const struct pca_params & params,
|
||
|
const pca_model & model,
|
||
|
struct ggml_cgraph * gf,
|
||
|
ggml_gallocr_t allocr,
|
||
|
struct pca_result & result) {
|
||
|
// allocate tensors
|
||
|
ggml_gallocr_alloc_graph(allocr, gf);
|
||
|
|
||
|
if (ggml_backend_is_cpu(model.backend)) {
|
||
|
ggml_backend_cpu_set_n_threads(model.backend, params.n_threads);
|
||
|
}
|
||
|
|
||
|
// TODO: enable GPU support when support for GGML_OP_SQRT is added
|
||
|
//#ifdef GGML_USE_METAL
|
||
|
// if (ggml_backend_is_metal(model.backend)) {
|
||
|
// ggml_backend_metal_set_n_cb(model.backend, params.n_threads);
|
||
|
// }
|
||
|
//#endif
|
||
|
|
||
|
ggml_status res = ggml_backend_graph_compute(model.backend, gf);
|
||
|
if (res == GGML_STATUS_SUCCESS) {
|
||
|
auto extract_i = [](std::string prefix, std::string str) -> int {
|
||
|
int i = -1;
|
||
|
if (str.rfind(prefix, 0) == 0) {
|
||
|
sscanf(str.c_str(), (prefix + "%d").c_str(), &i);
|
||
|
}
|
||
|
return i;
|
||
|
};
|
||
|
result.calculated_square = NULL;
|
||
|
result.eigenvectors.clear();
|
||
|
result.distances.clear();
|
||
|
result.eigenvectors.resize(params.n_batch);
|
||
|
result.distances.resize(params.n_batch);
|
||
|
// get output nodes
|
||
|
for (int i = 0; i < gf->n_nodes; ++i) {
|
||
|
auto node = gf->nodes[i];
|
||
|
int iter = -1;
|
||
|
// find b_tensor (without copying data from device)
|
||
|
if ((iter = extract_i("b_tensor_norm_", node->name)) > -1) {
|
||
|
result.eigenvectors[iter] = node;
|
||
|
}
|
||
|
// find distances, then copy data from device
|
||
|
if ((iter = extract_i("distance_", node->name)) > -1) {
|
||
|
float d;
|
||
|
ggml_backend_tensor_get(node, &d, 0, sizeof(float));
|
||
|
result.distances[iter] = d;
|
||
|
// std::cout << node->name << " = " << d << "\n";
|
||
|
}
|
||
|
// find tmp_square if it exists (without copying data from device)
|
||
|
if (std::string(node->name) == "tmp_square") {
|
||
|
result.calculated_square = node;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
static void power_iteration(
|
||
|
const struct pca_params & params,
|
||
|
struct ggml_tensor * input, // shape of input: [n_samples, n_embd]
|
||
|
struct ggml_tensor * output) {
|
||
|
//printf("in power iteration\n");
|
||
|
struct pca_model model(input);
|
||
|
|
||
|
ggml_gallocr_t allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(model.backend));
|
||
|
struct pca_result result;
|
||
|
struct ggml_tensor * last_eigenvector = NULL;
|
||
|
|
||
|
int n_iters = params.n_iterations / params.n_batch; // more batch, fewer iterations
|
||
|
for (int iter = 0; iter < n_iters; ++iter) {
|
||
|
bool calc_square = (iter == 0); // only need to calculate square for first iteration
|
||
|
struct ggml_cgraph * gf = build_graph_piter(params, model, calc_square);
|
||
|
// ggml_graph_dump_dot(gf, nullptr, "/tmp/_cgraph.dot");
|
||
|
compute_piter(params, model, gf, allocr, result);
|
||
|
|
||
|
for (size_t k = 0; k < result.distances.size(); ++k) {
|
||
|
last_eigenvector = result.eigenvectors[k];
|
||
|
if (result.distances[k] < params.tolerance) {
|
||
|
break; // done
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (calc_square) {
|
||
|
// copy and store the square matrix if needed
|
||
|
GGML_ASSERT(result.calculated_square != NULL);
|
||
|
ggml_backend_tensor_copy(result.calculated_square, model.dev_square);
|
||
|
}
|
||
|
|
||
|
{
|
||
|
// copy last eigen vector and store as input for next iteration
|
||
|
GGML_ASSERT(last_eigenvector != NULL);
|
||
|
ggml_backend_tensor_copy(last_eigenvector, model.dev_eigenvector);
|
||
|
}
|
||
|
|
||
|
printf("%s: layer %d/%d, iteration: %d / total: %d (batch = %d) ...\n",
|
||
|
__func__, params.i_layer+1, params.n_layers, iter, n_iters, params.n_batch);
|
||
|
}
|
||
|
|
||
|
// get output tensor
|
||
|
GGML_ASSERT(last_eigenvector);
|
||
|
ggml_backend_tensor_get(last_eigenvector, output->data, 0, ggml_nbytes(last_eigenvector));
|
||
|
//print_debug_tensor(output);
|
||
|
ggml_gallocr_free(allocr);
|
||
|
}
|
||
|
|
||
|
static void run_pca(
|
||
|
struct pca_params & params,
|
||
|
const std::vector<struct ggml_tensor *> & v_input, // shape of v_input[0]: [n_samples, n_embd]
|
||
|
const std::vector<struct ggml_tensor *> & v_output) {
|
||
|
printf("%s: Running PCA...\n", __func__);
|
||
|
for (size_t il = 0; il < v_input.size(); ++il) {
|
||
|
|
||
|
// prepare output vector
|
||
|
struct ggml_tensor * ctrl_out = v_output[il];
|
||
|
ggml_format_name(ctrl_out, "direction.%ld", il+1);
|
||
|
|
||
|
// run power_iteration
|
||
|
params.i_layer = il;
|
||
|
params.n_layers = v_input.size();
|
||
|
power_iteration(params, v_input[il], ctrl_out);
|
||
|
printf("%s: Done layer %d / %d\n", __func__, (int) il+1, (int) v_input.size());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|