llama.cpp/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_base.comp

85 lines
1.9 KiB
Plaintext
Raw Normal View History

#extension GL_EXT_control_flow_attributes : enable
#extension GL_EXT_shader_16bit_storage : require
#extension GL_EXT_shader_8bit_storage : require
#define K_QUANTS_PER_ITERATION 2
#ifdef MUL_MAT_ID
#define EXPERT_COUNT 8
#endif
#include "types.comp"
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
layout (binding = 1) readonly buffer B {B_TYPE data_b[];};
vulkan: further optimize mul_mat_vec using larger loads (#10387) * vulkan: Use pipeline_robustness to disable robustness in mul_mat_vec. Add some early returns for nonexistent rows in mul_mat_vec shaders. These can only be hit when dispatching a 2D grid of workgroups. Fix the logic for the 2D grid of workgroups to round up. Enable the pipeline robustness extension if it's available, and use it to disable robustness for these pipelines. The instructions to do the bounds checking contend for the same ALU resources as the bit twiddling dequant instructions. * vulkan: Add GLSL structure aliases for quant types to allow larger loads In Vulkan it's not possible to cast pointer types, so instead you have to declare an aliased binding for the memory with a different type. This commit adds aliases for the quant formats using 16b ints, and in a few places where the struct size is a multiple of 4 also using 32b ints. Currently only q4_k's aliases are used, but others will be used in subsequent commits. * vulkan: use larger loads in q5_k and q6_k shaders. Similar to the optimization I did in q4_k recently, this vectorizes some loads and reduces the number of bit twiddling instructions. * vulkan: use larger K step per iteration in mul_mat_vec. Add vec4 dequantization functions, and use them to do K=8 per iteration in mul_mat_vec. This uses 16b loads for the quant values and 128b loads for B which helps reduce the load on the memory system. The K_PER_ITER==2 logic is still there, just for F16/F32, and really only because they support unaligned sizes. Tweak the num_iters/unrolling logic to be simpler and catch a couple missed unrolling opportunities.
2024-11-20 08:11:00 +01:00
layout (binding = 1) readonly buffer BV2 {B_TYPE_VEC2 data_b_v2[];};
layout (binding = 1) readonly buffer BV4 {B_TYPE_VEC4 data_b_v4[];};
layout (binding = 2) writeonly buffer D {D_TYPE data_d[];};
#ifdef MUL_MAT_ID
layout (binding = 3) readonly buffer IDS {int data_ids[];};
#endif
#include "dequant_funcs.comp"
layout (push_constant) uniform parameter
{
uint ncols;
uint stride_a;
uint stride_b;
uint stride_d;
uint batch_stride_a;
uint batch_stride_b;
uint batch_stride_d;
#ifdef MUL_MAT_ID
uint nei0;
uint ne11;
#else
uint ne02;
uint ne12;
uint broadcast2;
uint broadcast3;
#endif
} p;
void get_offsets(out uint a_offset, out uint b_offset, out uint d_offset) {
#ifdef MUL_MAT_ID
const uint expert_idx = gl_GlobalInvocationID.y;
#else
const uint batch_idx = gl_GlobalInvocationID.y;
#endif
#ifndef MUL_MAT_ID
const uint i13 = batch_idx / p.ne12;
const uint i12 = batch_idx % p.ne12;
const uint i03 = i13 / p.broadcast3;
const uint i02 = i12 / p.broadcast2;
const uint batch_idx_a = i03 * p.ne02 + i02;
#else
const uint expert_id = data_ids[expert_idx];
#endif
a_offset =
#ifdef MUL_MAT_ID
expert_id * p.batch_stride_a;
#else
batch_idx_a * p.batch_stride_a;
#endif
b_offset =
#ifdef MUL_MAT_ID
(expert_idx % p.ne11) * p.stride_b;
#else
batch_idx * p.batch_stride_b;
#endif
d_offset =
#ifdef MUL_MAT_ID
expert_idx * p.stride_d;
#else
batch_idx * p.batch_stride_d;
#endif
}