llama.cpp/examples/server/bench/bench.py

312 lines
13 KiB
Python
Raw Normal View History

from __future__ import annotations
import argparse
import json
import os
import re
import signal
import socket
import subprocess
import sys
import threading
import time
import traceback
from contextlib import closing
from datetime import datetime
import matplotlib
import matplotlib.dates
import matplotlib.pyplot as plt
import requests
from statistics import mean
def main(args_in: list[str] | None = None) -> None:
parser = argparse.ArgumentParser(description="Start server benchmark scenario")
parser.add_argument("--name", type=str, help="Bench name", required=True)
parser.add_argument("--runner-label", type=str, help="Runner label", required=True)
parser.add_argument("--branch", type=str, help="Branch name", default="detached")
parser.add_argument("--commit", type=str, help="Commit name", default="dirty")
parser.add_argument("--host", type=str, help="Server listen host", default="0.0.0.0")
parser.add_argument("--port", type=int, help="Server listen host", default="8080")
parser.add_argument("--model-path-prefix", type=str, help="Prefix where to store the model files", default="models")
parser.add_argument("--n-prompts", type=int,
help="SERVER_BENCH_N_PROMPTS: total prompts to randomly select in the benchmark", required=True)
parser.add_argument("--max-prompt-tokens", type=int,
help="SERVER_BENCH_MAX_PROMPT_TOKENS: maximum prompt tokens to filter out in the dataset",
required=True)
parser.add_argument("--max-tokens", type=int,
help="SERVER_BENCH_MAX_CONTEXT: maximum context size of the completions request to filter out in the dataset: prompt + predicted tokens",
required=True)
parser.add_argument("--hf-repo", type=str, help="Hugging Face model repository", required=True)
parser.add_argument("--hf-file", type=str, help="Hugging Face model file", required=True)
parser.add_argument("-ngl", "--n-gpu-layers", type=int, help="layers to the GPU for computation", required=True)
parser.add_argument("--ctx-size", type=int, help="Set the size of the prompt context", required=True)
parser.add_argument("--parallel", type=int, help="Set the number of slots for process requests", required=True)
parser.add_argument("--batch-size", type=int, help="Set the batch size for prompt processing", required=True)
parser.add_argument("--ubatch-size", type=int, help="physical maximum batch size", required=True)
parser.add_argument("--scenario", type=str, help="Scenario to run", required=True)
parser.add_argument("--duration", type=str, help="Bench scenario", required=True)
args = parser.parse_args(args_in)
start_time = time.time()
# Start the server and performance scenario
try:
server_process = start_server(args)
except Exception:
print("bench: server start error :")
traceback.print_exc(file=sys.stdout)
sys.exit(1)
# start the benchmark
iterations = 0
data = {}
try:
start_benchmark(args)
with open("results.github.env", 'w') as github_env:
# parse output
with open('k6-results.json', 'r') as bench_results:
# Load JSON data from file
data = json.load(bench_results)
for metric_name in data['metrics']:
for metric_metric in data['metrics'][metric_name]:
value = data['metrics'][metric_name][metric_metric]
if isinstance(value, float) or isinstance(value, int):
value = round(value, 2)
data['metrics'][metric_name][metric_metric]=value
github_env.write(
f"{escape_metric_name(metric_name)}_{escape_metric_name(metric_metric)}={value}\n")
iterations = data['root_group']['checks']['success completion']['passes']
except Exception:
print("bench: error :")
traceback.print_exc(file=sys.stdout)
# Stop the server
if server_process:
try:
print(f"bench: shutting down server pid={server_process.pid} ...")
if os.name == 'nt':
interrupt = signal.CTRL_C_EVENT
else:
interrupt = signal.SIGINT
server_process.send_signal(interrupt)
server_process.wait(0.5)
except subprocess.TimeoutExpired:
print(f"server still alive after 500ms, force-killing pid={server_process.pid} ...")
server_process.kill() # SIGKILL
server_process.wait()
while is_server_listening(args.host, args.port):
time.sleep(0.1)
title = (f"llama.cpp {args.name} on {args.runner_label}\n "
f"duration={args.duration} {iterations} iterations")
xlabel = (f"{args.hf_repo}/{args.hf_file}\n"
f"parallel={args.parallel} ctx-size={args.ctx_size} ngl={args.n_gpu_layers} batch-size={args.batch_size} ubatch-size={args.ubatch_size} pp={args.max_prompt_tokens} pp+tg={args.max_tokens}\n"
f"branch={args.branch} commit={args.commit}")
# Prometheus
end_time = time.time()
prometheus_metrics = {}
if is_server_listening("0.0.0.0", 9090):
metrics = ['prompt_tokens_seconds', 'predicted_tokens_seconds',
'kv_cache_usage_ratio', 'requests_processing', 'requests_deferred']
for metric in metrics:
resp = requests.get(f"http://localhost:9090/api/v1/query_range",
params={'query': 'llamacpp:' + metric, 'start': start_time, 'end': end_time, 'step': 2})
with open(f"{metric}.json", 'w') as metric_json:
metric_json.write(resp.text)
if resp.status_code != 200:
print(f"bench: unable to extract prometheus metric {metric}: {resp.text}")
else:
metric_data = resp.json()
values = metric_data['data']['result'][0]['values']
timestamps, metric_values = zip(*values)
metric_values = [float(value) for value in metric_values]
prometheus_metrics[metric] = metric_values
timestamps_dt = [str(datetime.fromtimestamp(int(ts))) for ts in timestamps]
plt.figure(figsize=(16, 10), dpi=80)
plt.plot(timestamps_dt, metric_values, label=metric)
plt.xticks(rotation=0, fontsize=14, horizontalalignment='center', alpha=.7)
plt.yticks(fontsize=12, alpha=.7)
ylabel = f"llamacpp:{metric}"
plt.title(title,
fontsize=14, wrap=True)
plt.grid(axis='both', alpha=.3)
plt.ylabel(ylabel, fontsize=22)
plt.xlabel(xlabel, fontsize=14, wrap=True)
plt.gca().xaxis.set_major_locator(matplotlib.dates.MinuteLocator())
plt.gca().xaxis.set_major_formatter(matplotlib.dates.DateFormatter("%Y-%m-%d %H:%M:%S"))
plt.gcf().autofmt_xdate()
# Remove borders
plt.gca().spines["top"].set_alpha(0.0)
plt.gca().spines["bottom"].set_alpha(0.3)
plt.gca().spines["right"].set_alpha(0.0)
plt.gca().spines["left"].set_alpha(0.3)
# Save the plot as a jpg image
plt.savefig(f'{metric}.jpg', dpi=60)
plt.close()
# Mermaid format in case images upload failed
with open(f"{metric}.mermaid", 'w') as mermaid_f:
mermaid = (
f"""---
config:
xyChart:
titleFontSize: 12
width: 900
height: 600
themeVariables:
xyChart:
titleColor: "#000000"
---
xychart-beta
title "{title}"
y-axis "llamacpp:{metric}"
x-axis "llamacpp:{metric}" {int(min(timestamps))} --> {int(max(timestamps))}
line [{', '.join([str(round(float(value), 2)) for value in metric_values])}]
""")
mermaid_f.write(mermaid)
# 140 chars max for commit status description
bench_results = {
"i": iterations,
"req": {
"p95": round(data['metrics']["http_req_duration"]["p(95)"], 2),
"avg": round(data['metrics']["http_req_duration"]["avg"], 2),
},
"pp": {
"p95": round(data['metrics']["llamacpp_prompt_processing_second"]["p(95)"], 2),
"avg": round(data['metrics']["llamacpp_prompt_processing_second"]["avg"], 2),
"0": round(mean(prometheus_metrics['prompt_tokens_seconds']), 2),
},
"tg": {
"p95": round(data['metrics']["llamacpp_tokens_second"]["p(95)"], 2),
"avg": round(data['metrics']["llamacpp_tokens_second"]["avg"], 2),
"0": round(mean(prometheus_metrics['predicted_tokens_seconds']), 2),
},
}
with open("results.github.env", 'a') as github_env:
github_env.write(f"BENCH_RESULTS={json.dumps(bench_results, indent=None, separators=(',', ':') )}\n")
github_env.write(f"BENCH_ITERATIONS={iterations}\n")
title = title.replace('\n', ' ')
xlabel = xlabel.replace('\n', ' ')
github_env.write(f"BENCH_GRAPH_TITLE={title}\n")
github_env.write(f"BENCH_GRAPH_XLABEL={xlabel}\n")
def start_benchmark(args):
k6_path = './k6'
if 'BENCH_K6_BIN_PATH' in os.environ:
k6_path = os.environ['BENCH_K6_BIN_PATH']
k6_args = [
'run', args.scenario,
'--no-color',
]
k6_args.extend(['--duration', args.duration])
k6_args.extend(['--iterations', args.n_prompts])
k6_args.extend(['--vus', args.parallel])
k6_args.extend(['--summary-export', 'k6-results.json'])
args = f"SERVER_BENCH_N_PROMPTS={args.n_prompts} SERVER_BENCH_MAX_PROMPT_TOKENS={args.max_prompt_tokens} SERVER_BENCH_MAX_CONTEXT={args.max_tokens} "
args = args + ' '.join([str(arg) for arg in [k6_path, *k6_args]])
print(f"bench: starting k6 with: {args}")
k6_completed = subprocess.run(args, shell=True, stdout=sys.stdout, stderr=sys.stderr)
if k6_completed.returncode != 0:
raise Exception("bench: unable to run k6")
def start_server(args):
server_process = start_server_background(args)
attempts = 0
max_attempts = 20
if 'GITHUB_ACTIONS' in os.environ:
max_attempts *= 2
while not is_server_listening(args.host, args.port):
attempts += 1
if attempts > max_attempts:
assert False, "server not started"
print(f"bench: waiting for server to start ...")
time.sleep(0.5)
print("bench: server started.")
return server_process
def start_server_background(args):
# Start the server
`build`: rename main → llama-cli, server → llama-server, llava-cli → llama-llava-cli, etc... (#7809) * `main`/`server`: rename to `llama` / `llama-server` for consistency w/ homebrew * server: update refs -> llama-server gitignore llama-server * server: simplify nix package * main: update refs -> llama fix examples/main ref * main/server: fix targets * update more names * Update build.yml * rm accidentally checked in bins * update straggling refs * Update .gitignore * Update server-llm.sh * main: target name -> llama-cli * Prefix all example bins w/ llama- * fix main refs * rename {main->llama}-cmake-pkg binary * prefix more cmake targets w/ llama- * add/fix gbnf-validator subfolder to cmake * sort cmake example subdirs * rm bin files * fix llama-lookup-* Makefile rules * gitignore /llama-* * rename Dockerfiles * rename llama|main -> llama-cli; consistent RPM bin prefixes * fix some missing -cli suffixes * rename dockerfile w/ llama-cli * rename(make): llama-baby-llama * update dockerfile refs * more llama-cli(.exe) * fix test-eval-callback * rename: llama-cli-cmake-pkg(.exe) * address gbnf-validator unused fread warning (switched to C++ / ifstream) * add two missing llama- prefixes * Updating docs for eval-callback binary to use new `llama-` prefix. * Updating a few lingering doc references for rename of main to llama-cli * Updating `run-with-preset.py` to use new binary names. Updating docs around `perplexity` binary rename. * Updating documentation references for lookup-merge and export-lora * Updating two small `main` references missed earlier in the finetune docs. * Update apps.nix * update grammar/README.md w/ new llama-* names * update llama-rpc-server bin name + doc * Revert "update llama-rpc-server bin name + doc" This reverts commit e474ef1df481fd8936cd7d098e3065d7de378930. * add hot topic notice to README.md * Update README.md * Update README.md * rename gguf-split & quantize bins refs in **/tests.sh --------- Co-authored-by: HanClinto <hanclinto@gmail.com>
2024-06-13 01:41:52 +02:00
server_path = '../../../build/bin/llama-server'
if 'LLAMA_SERVER_BIN_PATH' in os.environ:
server_path = os.environ['LLAMA_SERVER_BIN_PATH']
server_args = [
'--host', args.host,
'--port', args.port,
]
model_file = args.model_path_prefix + os.path.sep + args.hf_file
model_dir = os.path.dirname(model_file)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
server_args.extend(['--model', model_file])
server_args.extend(['--hf-repo', args.hf_repo])
server_args.extend(['--hf-file', args.hf_file])
server_args.extend(['--n-gpu-layers', args.n_gpu_layers])
server_args.extend(['--ctx-size', args.ctx_size])
server_args.extend(['--parallel', args.parallel])
server_args.extend(['--batch-size', args.batch_size])
server_args.extend(['--ubatch-size', args.ubatch_size])
server_args.extend(['--n-predict', args.max_tokens * 2])
server_args.extend(['--defrag-thold', "0.1"])
server_args.append('--cont-batching')
server_args.append('--metrics')
ggml : add Flash Attention (#5021) * ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (#6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (#6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
server_args.append('--flash-attn')
args = [str(arg) for arg in [server_path, *server_args]]
print(f"bench: starting server with: {' '.join(args)}")
pkwargs = {
'stdout': subprocess.PIPE,
'stderr': subprocess.PIPE
}
server_process = subprocess.Popen(
args,
**pkwargs) # pyright: ignore[reportArgumentType, reportCallIssue]
def server_log(in_stream, out_stream):
for line in iter(in_stream.readline, b''):
print(line.decode('utf-8'), end='', file=out_stream)
thread_stdout = threading.Thread(target=server_log, args=(server_process.stdout, sys.stdout))
thread_stdout.start()
thread_stderr = threading.Thread(target=server_log, args=(server_process.stderr, sys.stderr))
thread_stderr.start()
return server_process
def is_server_listening(server_fqdn, server_port):
with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
result = sock.connect_ex((server_fqdn, server_port))
_is_server_listening = result == 0
if _is_server_listening:
print(f"server is listening on {server_fqdn}:{server_port}...")
return _is_server_listening
def escape_metric_name(metric_name):
return re.sub('[^A-Z0-9]', '_', metric_name.upper())
if __name__ == '__main__':
main()