1
0
mirror of https://github.com/ggerganov/llama.cpp.git synced 2025-01-24 02:19:18 +01:00
llama.cpp/examples/quantize/quantize.cpp

202 lines
6.9 KiB
C++
Raw Normal View History

#include "common.h"
#include "llama.h"
2023-03-10 19:40:58 +01:00
#include <cstdio>
#include <cstring>
#include <vector>
2023-03-10 19:40:58 +01:00
#include <string>
struct quant_option {
std::string name;
llama_ftype ftype;
std::string desc;
};
static const std::vector<struct quant_option> QUANT_OPTIONS = {
{ "Q4_0", LLAMA_FTYPE_MOSTLY_Q4_0, " 3.56G, +0.2166 ppl @ LLaMA-v1-7B", },
{ "Q4_1", LLAMA_FTYPE_MOSTLY_Q4_1, " 3.90G, +0.1585 ppl @ LLaMA-v1-7B", },
{ "Q5_0", LLAMA_FTYPE_MOSTLY_Q5_0, " 4.33G, +0.0683 ppl @ LLaMA-v1-7B", },
{ "Q5_1", LLAMA_FTYPE_MOSTLY_Q5_1, " 4.70G, +0.0349 ppl @ LLaMA-v1-7B", },
{ "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.63G, +0.6717 ppl @ LLaMA-v1-7B", },
{ "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" },
{ "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 2.75G, +0.5551 ppl @ LLaMA-v1-7B", },
{ "Q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M, " 3.07G, +0.2496 ppl @ LLaMA-v1-7B", },
{ "Q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L, " 3.35G, +0.1764 ppl @ LLaMA-v1-7B", },
{ "Q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M, "alias for Q4_K_M", },
{ "Q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S, " 3.59G, +0.0992 ppl @ LLaMA-v1-7B", },
{ "Q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M, " 3.80G, +0.0532 ppl @ LLaMA-v1-7B", },
{ "Q5_K", LLAMA_FTYPE_MOSTLY_Q5_K_M, "alias for Q5_K_M", },
{ "Q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S, " 4.33G, +0.0400 ppl @ LLaMA-v1-7B", },
{ "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 4.45G, +0.0122 ppl @ LLaMA-v1-7B", },
{ "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 5.15G, -0.0008 ppl @ LLaMA-v1-7B", },
{ "Q8_0", LLAMA_FTYPE_MOSTLY_Q8_0, " 6.70G, +0.0004 ppl @ LLaMA-v1-7B", },
{ "F16", LLAMA_FTYPE_MOSTLY_F16, "13.00G @ 7B", },
{ "F32", LLAMA_FTYPE_ALL_F32, "26.00G @ 7B", },
// Note: Ensure COPY comes after F32 to avoid ftype 0 from matching.
{ "COPY", LLAMA_FTYPE_ALL_F32, "only copy tensors, no quantizing", },
};
static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std::string & ftype_str_out) {
std::string ftype_str;
for (auto ch : ftype_str_in) {
ftype_str.push_back(std::toupper(ch));
}
for (auto & it : QUANT_OPTIONS) {
if (it.name == ftype_str) {
ftype = it.ftype;
ftype_str_out = it.name;
return true;
}
}
try {
int ftype_int = std::stoi(ftype_str);
for (auto & it : QUANT_OPTIONS) {
if (it.ftype == ftype_int) {
ftype = it.ftype;
ftype_str_out = it.name;
return true;
}
}
}
catch (...) {
// stoi failed
}
return false;
}
2023-03-10 19:40:58 +01:00
// usage:
// ./quantize [--allow-requantize] [--leave-output-tensor] [--pure] models/llama/ggml-model.gguf [models/llama/ggml-model-quant.gguf] type [nthreads]
2023-03-10 19:40:58 +01:00
//
[[noreturn]]
static void usage(const char * executable) {
printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
printf(" --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
printf(" --pure: Disable k-quant mixtures and quantize all tensors to the same type\n");
printf("\nAllowed quantization types:\n");
for (auto & it : QUANT_OPTIONS) {
if (it.name != "COPY") {
printf(" %2d or ", it.ftype);
} else {
printf(" ");
}
printf("%-6s : %s\n", it.name.c_str(), it.desc.c_str());
}
exit(1);
}
2023-03-10 19:40:58 +01:00
int main(int argc, char ** argv) {
if (argc < 3) {
usage(argv[0]);
}
llama_model_quantize_params params = llama_model_quantize_default_params();
int arg_idx = 1;
for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) {
if (strcmp(argv[arg_idx], "--leave-output-tensor") == 0) {
params.quantize_output_tensor = false;
} else if (strcmp(argv[arg_idx], "--allow-requantize") == 0) {
params.allow_requantize = true;
} else if (strcmp(argv[arg_idx], "--pure") == 0) {
params.pure = true;
} else {
usage(argv[0]);
}
}
if (argc - arg_idx < 2) {
usage(argv[0]);
2023-03-10 19:40:58 +01:00
}
llama_backend_init(false);
// parse command line arguments
const std::string fname_inp = argv[arg_idx];
arg_idx++;
std::string fname_out;
std::string ftype_str;
if (try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
std::string fpath;
const size_t pos = fname_inp.find_last_of("/\\");
if (pos != std::string::npos) {
fpath = fname_inp.substr(0, pos + 1);
}
gguf : new file format with flexible meta data (beta) (#2398) * gguf : first API pass * gguf : read header + meta data * gguf : read tensor info * gguf : initial model loading - not tested * gguf : add gguf_get_tensor_name() * gguf : do not support passing existing ggml_context to gguf_init * gguf : simplify gguf_get_val * gguf : gguf.c is now part of ggml.c * gguf : read / write sample models * gguf : add comments * refactor : reduce code duplication and better API (#2415) * gguf : expose the gguf_type enum through the API for now * gguf : add array support * gguf.py : some code style changes * convert.py : start a new simplified implementation by removing old stuff * convert.py : remove GGML vocab + other obsolete stuff * GGUF : write tensor (#2426) * WIP: Write tensor * GGUF : Support writing tensors in Python * refactor : rm unused import and upd todos * fix : fix errors upd writing example * rm example.gguf * gitignore *.gguf * undo formatting * gguf : add gguf_find_key (#2438) * gguf.cpp : find key example * ggml.h : add gguf_find_key * ggml.c : add gguf_find_key * gguf : fix writing tensors * gguf : do not hardcode tensor names to read * gguf : write sample tensors to read * gguf : add tokenization constants * quick and dirty conversion example * gguf : fix writing gguf arrays * gguf : write tensors one by one and code reuse * gguf : fix writing gguf arrays * gguf : write tensors one by one * gguf : write tensors one by one * gguf : write tokenizer data * gguf : upd gguf conversion script * Update convert-llama-h5-to-gguf.py * gguf : handle already encoded string * ggml.h : get array str and f32 * ggml.c : get arr str and f32 * gguf.py : support any type * Update convert-llama-h5-to-gguf.py * gguf : fix set is not subscriptable * gguf : update convert-llama-h5-to-gguf.py * constants.py : add layer norm eps * gguf.py : add layer norm eps and merges * ggml.h : increase GGML_MAX_NAME to 64 * ggml.c : add gguf_get_arr_n * Update convert-llama-h5-to-gguf.py * add gptneox gguf example * Makefile : add gptneox gguf example * Update convert-llama-h5-to-gguf.py * add gptneox gguf example * Update convert-llama-h5-to-gguf.py * Update convert-gptneox-h5-to-gguf.py * Update convert-gptneox-h5-to-gguf.py * Update convert-llama-h5-to-gguf.py * gguf : support custom alignment value * gguf : fix typo in function call * gguf : mmap tensor data example * fix : update convert-llama-h5-to-gguf.py * Update convert-llama-h5-to-gguf.py * convert-gptneox-h5-to-gguf.py : Special tokens * gptneox-main.cpp : special tokens * Update gptneox-main.cpp * constants.py : special tokens * gguf.py : accumulate kv and tensor info data + special tokens * convert-gptneox-h5-to-gguf.py : accumulate kv and ti + special tokens * gguf : gguf counterpart of llama-util.h * gguf-util.h : update note * convert-llama-h5-to-gguf.py : accumulate kv / ti + special tokens * convert-llama-h5-to-gguf.py : special tokens * Delete gptneox-common.cpp * Delete gptneox-common.h * convert-gptneox-h5-to-gguf.py : gpt2bpe tokenizer * gptneox-main.cpp : gpt2 bpe tokenizer * gpt2 bpe tokenizer (handles merges and unicode) * Makefile : remove gptneox-common * gguf.py : bytesarray for gpt2bpe tokenizer * cmpnct_gpt2bpe.hpp : comments * gguf.py : use custom alignment if present * gguf : minor stuff * Update gptneox-main.cpp * map tensor names * convert-gptneox-h5-to-gguf.py : map tensor names * convert-llama-h5-to-gguf.py : map tensor names * gptneox-main.cpp : map tensor names * gguf : start implementing libllama in GGUF (WIP) * gguf : start implementing libllama in GGUF (WIP) * rm binary commited by mistake * upd .gitignore * gguf : calculate n_mult * gguf : inference with 7B model working (WIP) * gguf : rm deprecated function * gguf : start implementing gguf_file_saver (WIP) * gguf : start implementing gguf_file_saver (WIP) * gguf : start implementing gguf_file_saver (WIP) * gguf : add gguf_get_kv_type * gguf : add gguf_get_kv_type * gguf : write metadata in gguf_file_saver (WIP) * gguf : write metadata in gguf_file_saver (WIP) * gguf : write metadata in gguf_file_saver * gguf : rm references to old file formats * gguf : shorter name for member variable * gguf : rm redundant method * gguf : get rid of n_mult, read n_ff from file * Update gguf_tensor_map.py * Update gptneox-main.cpp * gguf : rm references to old file magics * gguf : start implementing quantization (WIP) * gguf : start implementing quantization (WIP) * gguf : start implementing quantization (WIP) * gguf : start implementing quantization (WIP) * gguf : start implementing quantization (WIP) * gguf : start implementing quantization (WIP) * gguf : quantization is working * gguf : roper closing of file * gguf.py : no need to convert tensors twice * convert-gptneox-h5-to-gguf.py : no need to convert tensors twice * convert-llama-h5-to-gguf.py : no need to convert tensors twice * convert-gptneox-h5-to-gguf.py : simplify nbytes * convert-llama-h5-to-gguf.py : simplify nbytes * gptneox-main.cpp : n_layer --> n_block * constants.py : n_layer --> n_block * gguf.py : n_layer --> n_block * convert-gptneox-h5-to-gguf.py : n_layer --> n_block * convert-llama-h5-to-gguf.py : n_layer --> n_block * gptneox-main.cpp : n_layer --> n_block * Update gguf_tensor_map.py * convert-gptneox-h5-to-gguf.py : load model in parts to save memory * convert-llama-h5-to-gguf.py : load model in parts to save memory * convert : write more metadata for LLaMA * convert : rm quantization version * convert-gptneox-h5-to-gguf.py : add file_type key * gptneox-main.cpp : add file_type key * fix conflicts * gguf : add todos and comments * convert-gptneox-h5-to-gguf.py : tensor name map changes * Create gguf_namemap.py : tensor name map changes * Delete gguf_tensor_map.py * gptneox-main.cpp : tensor name map changes * convert-llama-h5-to-gguf.py : fixes * gguf.py : dont add empty strings * simple : minor style changes * gguf : use UNIX line ending * Create convert-llama-7b-pth-to-gguf.py * llama : sync gguf-llama.cpp with latest llama.cpp (#2608) * llama : sync gguf-llama.cpp with latest llama.cpp * minor : indentation + assert * llama : refactor gguf_buffer and gguf_ctx_buffer * llama : minor * gitignore : add gptneox-main * llama : tokenizer fixes (#2549) * Merge tokenizer fixes into the gguf branch. * Add test vocabularies * convert : update convert-new.py with tokenizer fixes (#2614) * Merge tokenizer fixes into the gguf branch. * Add test vocabularies * Adapt convert-new.py (and fix a clang-cl compiler error on windows) * llama : sync gguf-llama with llama (#2613) * llama : sync gguf-llama with llama * tests : fix build + warnings (test-tokenizer-1 still fails) * tests : fix wstring_convert * convert : fix layer names * llama : sync gguf-llama.cpp * convert : update HF converter to new tokenizer voodoo magics * llama : update tokenizer style * convert-llama-h5-to-gguf.py : add token types * constants.py : add token types * gguf.py : add token types * convert-llama-7b-pth-to-gguf.py : add token types * gguf-llama.cpp : fix n_head_kv * convert-llama-h5-to-gguf.py : add 70b gqa support * gguf.py : add tensor data layout * convert-llama-h5-to-gguf.py : add tensor data layout * convert-llama-7b-pth-to-gguf.py : add tensor data layout * gptneox-main.cpp : add tensor data layout * convert-llama-h5-to-gguf.py : clarify the reverse permute * llama : refactor model loading code (#2620) * llama : style formatting + remove helper methods * llama : fix quantization using gguf tool * llama : simplify gguf_file_saver * llama : fix method names * llama : simplify write_header() * llama : no need to pass full file loader to the file saver just gguf_ctx * llama : gguf_file_saver write I32 * llama : refactor tensor names (#2622) * gguf: update tensor names searched in quantization * gguf : define tensor names as constants * gguf : initial write API (not tested yet) * gguf : write to file API (not tested) * gguf : initial write API ready + example * gguf : fix header write * gguf : fixes + simplify example + add ggml_nbytes_pad() * gguf : minor * llama : replace gguf_file_saver with new gguf write API * gguf : streaming support when writing files * gguf : remove oboslete write methods * gguf : remove obosolete gguf_get_arr_xxx API * llama : simplify gguf_file_loader * llama : move hparams and vocab from gguf_file_loader to llama_model_loader * llama : merge gguf-util.h in llama.cpp * llama : reorder definitions in .cpp to match .h * llama : minor simplifications * llama : refactor llama_model_loader (WIP) wip : remove ggml_ctx from llama_model_loader wip : merge gguf_file_loader in llama_model_loader * llama : fix shape prints * llama : fix Windows build + fix norm_rms_eps key * llama : throw error on missing KV paris in model meta data * llama : improve printing + log meta data * llama : switch print order of meta data --------- Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com> * gguf : deduplicate (#2629) * gguf : better type names * dedup : CPU + Metal is working * ggml : fix warnings about unused results * llama.cpp : fix line feed and compiler warning * llama : fix strncpy warning + note token_to_str does not write null * llama : restore the original load/save session implementation Will migrate this to GGUF in the future * convert-llama-h5-to-gguf.py : support alt ctx param name * ggml : assert when using ggml_mul with non-F32 src1 * examples : dedup simple --------- Co-authored-by: klosax <131523366+klosax@users.noreply.github.com> * gguf.py : merge all files in gguf.py * convert-new.py : pick #2427 for HF 70B support * examples/gguf : no need to keep q option for quantization any more * llama.cpp : print actual model size * llama.cpp : use ggml_elements() * convert-new.py : output gguf (#2635) * convert-new.py : output gguf (WIP) * convert-new.py : add gguf key-value pairs * llama : add hparams.ctx_train + no longer print ftype * convert-new.py : minor fixes * convert-new.py : vocab-only option should work now * llama : fix tokenizer to use llama_char_to_byte * tests : add new ggml-vocab-llama.gguf * convert-new.py : tensor name mapping * convert-new.py : add map for skipping tensor serialization * convert-new.py : convert script now works * gguf.py : pick some of the refactoring from #2644 * convert-new.py : minor fixes * convert.py : update to support GGUF output * Revert "ci : disable CI temporary to not waste energy" This reverts commit 7e82d25f40386540c2c15226300ad998ecd871ea. * convert.py : n_head_kv optional and .gguf file extension * convert.py : better always have n_head_kv and default it to n_head * llama : sync with recent PRs on master * editorconfig : ignore models folder ggml-ci * ci : update ".bin" to ".gguf" extension ggml-ci * llama : fix llama_model_loader memory leak * gptneox : move as a WIP example * llama : fix lambda capture ggml-ci * ggml : fix bug in gguf_set_kv ggml-ci * common.h : .bin --> .gguf * quantize-stats.cpp : .bin --> .gguf * convert.py : fix HF tensor permuting / unpacking ggml-ci * llama.cpp : typo * llama : throw error if gguf fails to init from file ggml-ci * llama : fix tensor name grepping during quantization ggml-ci * gguf.py : write tensors in a single pass (#2644) * gguf : single pass for writing tensors + refactoring writer * gguf : single pass for writing tensors + refactoring writer * gguf : single pass for writing tensors + refactoring writer * gguf : style fixes in simple conversion script * gguf : refactor gptneox conversion script * gguf : rename h5 to hf (for HuggingFace) * gguf : refactor pth to gguf conversion script * gguf : rm file_type key and method * gguf.py : fix vertical alignment * gguf.py : indentation --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * convert-gptneox-hf-to-gguf.py : fixes * gguf.py : gptneox mapping * convert-llama-hf-to-gguf.py : fixes * convert-llama-7b-pth-to-gguf.py : fixes * ggml.h : reverse GGUF_MAGIC * gguf.py : reverse GGUF_MAGIC * test-tokenizer-0.cpp : fix warning * llama.cpp : print kv general.name * llama.cpp : get special token kv and linefeed token id * llama : print number of tensors per type + print arch + style * tests : update vocab file with new magic * editorconfig : fix whitespaces * llama : re-order functions * llama : remove C++ API + reorganize common source in /common dir * llama : minor API updates * llama : avoid hardcoded special tokens * llama : fix MPI build ggml-ci * llama : introduce enum llama_vocab_type + remove hardcoded string constants * convert-falcon-hf-to-gguf.py : falcon HF --> gguf conversion, not tested * falcon-main.cpp : falcon inference example * convert-falcon-hf-to-gguf.py : remove extra kv * convert-gptneox-hf-to-gguf.py : remove extra kv * convert-llama-7b-pth-to-gguf.py : remove extra kv * convert-llama-hf-to-gguf.py : remove extra kv * gguf.py : fix for falcon 40b * falcon-main.cpp : fix for falcon 40b * convert-falcon-hf-to-gguf.py : update ref * convert-falcon-hf-to-gguf.py : add tensor data layout * cmpnct_gpt2bpe.hpp : fixes * falcon-main.cpp : fixes * gptneox-main.cpp : fixes * cmpnct_gpt2bpe.hpp : remove non-general stuff * Update examples/server/README.md Co-authored-by: slaren <slarengh@gmail.com> * cmpnct_gpt2bpe.hpp : cleanup * convert-llama-hf-to-gguf.py : special tokens * convert-llama-7b-pth-to-gguf.py : special tokens * convert-permute-debug.py : permute debug print * convert-permute-debug-master.py : permute debug for master * convert-permute-debug.py : change permute type of attn_q * convert.py : 70b model working (change attn_q permute) * Delete convert-permute-debug-master.py * Delete convert-permute-debug.py * convert-llama-hf-to-gguf.py : fix attn_q permute * gguf.py : fix rope scale kv * convert-llama-hf-to-gguf.py : rope scale and added tokens * convert-llama-7b-pth-to-gguf.py : rope scale and added tokens * llama.cpp : use rope scale kv * convert-llama-7b-pth-to-gguf.py : rope scale fix * convert-llama-hf-to-gguf.py : rope scale fix * py : fix whitespace * gguf : add Python script to convert GGMLv3 LLaMA models to GGUF (#2682) * First pass at converting GGMLv3 LLaMA models to GGUF * Cleanups, better output during conversion * Fix vocab space conversion logic * More vocab conversion fixes * Add description to converted GGUF files * Improve help text, expand warning * Allow specifying name and description for output GGUF * Allow overriding vocab and hyperparams from original model metadata * Use correct params override var name * Fix wrong type size for Q8_K Better handling of original style metadata * Set default value for gguf add_tensor raw_shape KW arg * llama : improve token type support (#2668) * Merge tokenizer fixes into the gguf branch. * Add test vocabularies * Adapt convert-new.py (and fix a clang-cl compiler error on windows) * Improved tokenizer test But does it work on MacOS? * Improve token type support - Added @klosax code to convert.py - Improved token type support in vocabulary * Exclude platform dependent tests * More sentencepiece compatibility by eliminating magic numbers * Restored accidentally removed comment * llama : add API for token type ggml-ci * tests : use new tokenizer type API (#2692) * Merge tokenizer fixes into the gguf branch. * Add test vocabularies * Adapt convert-new.py (and fix a clang-cl compiler error on windows) * Improved tokenizer test But does it work on MacOS? * Improve token type support - Added @klosax code to convert.py - Improved token type support in vocabulary * Exclude platform dependent tests * More sentencepiece compatibility by eliminating magic numbers * Restored accidentally removed comment * Improve commentary * Use token type API in test-tokenizer-1.cpp * py : cosmetics * readme : add notice about new file format ggml-ci --------- Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com> Co-authored-by: klosax <131523366+klosax@users.noreply.github.com> Co-authored-by: goerch <jhr.walter@t-online.de> Co-authored-by: slaren <slarengh@gmail.com> Co-authored-by: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
2023-08-21 22:07:43 +02:00
// export as [inp path]/ggml-model-[ftype].gguf
fname_out = fpath + "ggml-model-" + ftype_str + ".gguf";
arg_idx++;
if (ftype_str == "COPY") {
params.only_copy = true;
}
}
else {
fname_out = argv[arg_idx];
arg_idx++;
2023-03-10 19:40:58 +01:00
if (argc <= arg_idx) {
fprintf(stderr, "%s: missing ftype\n", __func__);
return 1;
}
if (!try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
fprintf(stderr, "%s: invalid ftype '%s'\n", __func__, argv[3]);
return 1;
}
if (ftype_str == "COPY") {
params.only_copy = true;
}
arg_idx++;
}
// parse nthreads
if (argc > arg_idx) {
try {
params.nthread = std::stoi(argv[arg_idx]);
}
catch (const std::exception & e) {
fprintf(stderr, "%s: invalid nthread '%s' (%s)\n", __func__, argv[arg_idx], e.what());
return 1;
}
}
print_build_info();
fprintf(stderr, "%s: quantizing '%s' to '%s' as %s", __func__, fname_inp.c_str(), fname_out.c_str(), ftype_str.c_str());
if (params.nthread > 0) {
fprintf(stderr, " using %d threads", params.nthread);
}
fprintf(stderr, "\n");
2023-03-10 19:40:58 +01:00
const int64_t t_main_start_us = llama_time_us();
2023-03-10 19:40:58 +01:00
int64_t t_quantize_us = 0;
// load the model
{
const int64_t t_start_us = llama_time_us();
2023-03-10 19:40:58 +01:00
if (llama_model_quantize(fname_inp.c_str(), fname_out.c_str(), &params)) {
2023-03-10 19:40:58 +01:00
fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str());
return 1;
}
t_quantize_us = llama_time_us() - t_start_us;
2023-03-10 19:40:58 +01:00
}
// report timing
{
const int64_t t_main_end_us = llama_time_us();
2023-03-10 19:40:58 +01:00
printf("\n");
printf("%s: quantize time = %8.2f ms\n", __func__, t_quantize_us/1000.0);
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0);
2023-03-10 19:40:58 +01:00
}
llama_backend_free();
2023-03-10 19:40:58 +01:00
return 0;
}