llama.cpp/gguf-util.h

542 lines
16 KiB
C
Raw Normal View History

// GGUF counterpart of llama-util.h.
// we may consider making it a part of ggml.c once GGUF work is complete.
2023-08-02 10:16:23 +02:00
// this will require extra work to migrate this to pure C.
// Contains wrappers around OS interfaces.
#ifndef GGUF_UTIL_H
#define GGUF_UTIL_H
#include "ggml.h"
#include <cstdio>
#include <cstdint>
#include <cerrno>
#include <cstring>
#include <cstdarg>
#include <cstdlib>
#include <climits>
#include <string>
#include <sstream>
#include <vector>
#include <stdexcept>
#ifdef __has_include
#if __has_include(<unistd.h>)
#include <unistd.h>
#if defined(_POSIX_MAPPED_FILES)
#include <sys/mman.h>
#endif
#if defined(_POSIX_MEMLOCK_RANGE)
#include <sys/resource.h>
#endif
#endif
#endif
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#include <io.h>
#include <stdio.h> // for _fseeki64
#endif
#ifdef __GNUC__
#ifdef __MINGW32__
__attribute__((format(gnu_printf, 1, 2)))
#else
__attribute__((format(printf, 1, 2)))
#endif
#endif
static std::string format(const char * fmt, ...) {
va_list ap, ap2;
va_start(ap, fmt);
va_copy(ap2, ap);
int size = vsnprintf(NULL, 0, fmt, ap);
GGML_ASSERT(size >= 0 && size < INT_MAX);
std::vector<char> buf(size + 1);
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
GGML_ASSERT(size2 == size);
va_end(ap2);
va_end(ap);
return std::string(buf.data(), size);
}
template<typename T>
static std::string to_string(const T & val) {
std::stringstream ss;
ss << val;
return ss.str();
}
// TODO: can we merge this one and gguf_context?
struct gguf_file {
// use FILE * so we don't have to re-open the file to mmap
FILE * fp;
size_t size;
gguf_file(const char * fname, const char * mode) {
fp = std::fopen(fname, mode);
if (fp == NULL) {
throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
}
seek(0, SEEK_END);
size = tell();
seek(0, SEEK_SET);
}
size_t tell() const {
#ifdef _WIN32
__int64 ret = _ftelli64(fp);
#else
long ret = std::ftell(fp);
#endif
GGML_ASSERT(ret != -1); // this really shouldn't fail
return (size_t) ret;
}
void seek(size_t offset, int whence) {
#ifdef _WIN32
int ret = _fseeki64(fp, (__int64) offset, whence);
#else
int ret = std::fseek(fp, (long) offset, whence);
#endif
GGML_ASSERT(ret == 0); // same
}
size_t write_str(const std::string & val) {
size_t total_written = 0;
const int32_t n = val.size();
fwrite((const char *) &n, sizeof(n), 1, fp);
total_written += sizeof(n);
fwrite(val.c_str(), n, 1, fp);
total_written += n;
return total_written;
}
size_t write_i32(int32_t val) {
fwrite((const char *) &val, sizeof(val), 1, fp);
return sizeof(val);
}
size_t write_u64(size_t val) {
fwrite((const char *) &val, sizeof(val), 1, fp);
return sizeof(val);
}
void write_raw(const void * data, size_t size) {
fwrite(data, size, 1, fp);
}
template<typename T>
void write_val(const std::string & key, enum gguf_type type, const T & val) {
write_str(key);
fwrite((const char *) &type, sizeof(type), 1, fp);
fwrite((const char *) &val, sizeof(val), 1, fp);
}
template<typename T>
void write_arr(const std::string & key, enum gguf_type type, const std::vector<T> & val) {
write_str(key);
{
const enum gguf_type tarr = GGUF_TYPE_ARRAY;
fwrite((const char *) &tarr, sizeof(tarr), 1, fp);
}
const int32_t n = val.size();
fwrite((const char *) &type, sizeof(type), 1, fp);
fwrite((const char *) &n, sizeof(n), 1, fp);
fwrite(val.data(), sizeof(T), n, fp);
}
template<>
void write_val<std::string>(const std::string & key, enum gguf_type type, const std::string & val) {
write_str(key);
fwrite((const char *) &type, sizeof(type), 1, fp);
const int32_t n = val.size();
fwrite((const char *) &n, sizeof(n), 1, fp);
fwrite(val.c_str(), n, 1, fp);
}
template<>
void write_arr<std::string>(const std::string & key, enum gguf_type type, const std::vector<std::string> & val) {
write_str(key);
{
const enum gguf_type tarr = GGUF_TYPE_ARRAY;
fwrite((const char *) &tarr, sizeof(tarr), 1, fp);
}
const int32_t n = val.size();
fwrite((const char *) &type, sizeof(type), 1, fp);
fwrite((const char *) &n, sizeof(n), 1, fp);
for (int i = 0; i < n; ++i) {
const int32_t nstr = val[i].size();
fwrite((const char *) &nstr, sizeof(nstr), 1, fp);
fwrite(val[i].c_str(), nstr, 1, fp);
}
}
void write_zeros(size_t count) {
for (size_t i = 0; i < count; ++i) {
fputc(0, fp);
}
}
};
#if defined(_WIN32)
static std::string gguf_format_win_err(DWORD err) {
LPSTR buf;
size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
if (!size) {
return "FormatMessageA failed";
}
std::string ret(buf, size);
LocalFree(buf);
return ret;
}
#endif
struct gguf_mmap {
void * addr;
size_t size;
gguf_mmap(const gguf_mmap &) = delete;
#ifdef _POSIX_MAPPED_FILES
static constexpr bool SUPPORTED = true;
gguf_mmap(struct gguf_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
size = file->size;
int fd = fileno(file->fp);
int flags = MAP_SHARED;
// prefetch/readahead impairs performance on NUMA systems
if (numa) { prefetch = 0; }
#ifdef __linux__
if (prefetch) { flags |= MAP_POPULATE; }
#endif
addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
if (addr == MAP_FAILED) {
throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
}
if (prefetch > 0) {
// Advise the kernel to preload the mapped memory
if (madvise(addr, std::min(file->size, prefetch), MADV_WILLNEED)) {
fprintf(stderr, "warning: madvise(.., MADV_WILLNEED) failed: %s\n",
strerror(errno));
}
}
if (numa) {
// advise the kernel not to use readahead
// (because the next page might not belong on the same node)
if (madvise(addr, file->size, MADV_RANDOM)) {
fprintf(stderr, "warning: madvise(.., MADV_RANDOM) failed: %s\n",
strerror(errno));
}
}
}
~gguf_mmap() {
munmap(addr, size);
}
#elif defined(_WIN32)
static constexpr bool SUPPORTED = true;
gguf_mmap(struct llama_file * file, bool prefetch = true, bool numa = false) {
(void) numa;
size = file->size;
HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
DWORD error = GetLastError();
if (hMapping == NULL) {
throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
}
addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
error = GetLastError();
CloseHandle(hMapping);
if (addr == NULL) {
throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
}
#if _WIN32_WINNT >= _WIN32_WINNT_WIN8
if (prefetch) {
// Advise the kernel to preload the mapped memory
WIN32_MEMORY_RANGE_ENTRY range;
range.VirtualAddress = addr;
range.NumberOfBytes = (SIZE_T)size;
if (!PrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
fprintf(stderr, "warning: PrefetchVirtualMemory failed: %s\n",
gguf_format_win_err(GetLastError()).c_str());
}
}
#else
#pragma message("warning: You are building for pre-Windows 8; prefetch not supported")
#endif // _WIN32_WINNT >= _WIN32_WINNT_WIN8
}
~gguf_mmap() {
if (!UnmapViewOfFile(addr)) {
fprintf(stderr, "warning: UnmapViewOfFile failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
#else
static constexpr bool SUPPORTED = false;
gguf_mmap(struct llama_file *, bool prefetch = true, bool numa = false) {
(void) prefetch;
(void) numa;
throw std::runtime_error(std::string("mmap not supported"));
}
#endif
};
// Represents some region of memory being locked using mlock or VirtualLock;
// will automatically unlock on destruction.
struct gguf_mlock {
void * addr = NULL;
size_t size = 0;
bool failed_already = false;
gguf_mlock() {}
gguf_mlock(const gguf_mlock &) = delete;
~gguf_mlock() {
if (size) {
raw_unlock(addr, size);
}
}
void init(void * ptr) {
GGML_ASSERT(addr == NULL && size == 0);
addr = ptr;
}
void grow_to(size_t target_size) {
GGML_ASSERT(addr);
if (failed_already) {
return;
}
size_t granularity = lock_granularity();
target_size = (target_size + granularity - 1) & ~(granularity - 1);
if (target_size > size) {
if (raw_lock((uint8_t *) addr + size, target_size - size)) {
size = target_size;
} else {
failed_already = true;
}
}
}
#ifdef _POSIX_MEMLOCK_RANGE
static constexpr bool SUPPORTED = true;
size_t lock_granularity() {
return (size_t) sysconf(_SC_PAGESIZE);
}
#ifdef __APPLE__
#define MLOCK_SUGGESTION \
"Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
"decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l).\n"
#else
#define MLOCK_SUGGESTION \
"Try increasing RLIMIT_MLOCK ('ulimit -l' as root).\n"
#endif
bool raw_lock(const void * addr, size_t size) {
if (!mlock(addr, size)) {
return true;
} else {
char* errmsg = std::strerror(errno);
bool suggest = (errno == ENOMEM);
// Check if the resource limit is fine after all
struct rlimit lock_limit;
if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit))
suggest = false;
if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size))
suggest = false;
fprintf(stderr, "warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
return false;
}
}
#undef MLOCK_SUGGESTION
void raw_unlock(void * addr, size_t size) {
if (munlock(addr, size)) {
fprintf(stderr, "warning: failed to munlock buffer: %s\n", std::strerror(errno));
}
}
#elif defined(_WIN32)
static constexpr bool SUPPORTED = true;
size_t lock_granularity() {
SYSTEM_INFO si;
GetSystemInfo(&si);
return (size_t) si.dwPageSize;
}
bool raw_lock(void * ptr, size_t len) {
for (int tries = 1; ; tries++) {
if (VirtualLock(ptr, len)) {
return true;
}
if (tries == 2) {
fprintf(stderr, "warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
len, size, llama_format_win_err(GetLastError()).c_str());
return false;
}
// It failed but this was only the first try; increase the working
// set size and try again.
SIZE_T min_ws_size, max_ws_size;
if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
fprintf(stderr, "warning: GetProcessWorkingSetSize failed: %s\n",
gguf_format_win_err(GetLastError()).c_str());
return false;
}
// Per MSDN: "The maximum number of pages that a process can lock
// is equal to the number of pages in its minimum working set minus
// a small overhead."
// Hopefully a megabyte is enough overhead:
size_t increment = len + 1048576;
// The minimum must be <= the maximum, so we need to increase both:
min_ws_size += increment;
max_ws_size += increment;
if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
fprintf(stderr, "warning: SetProcessWorkingSetSize failed: %s\n",
gguf_format_win_err(GetLastError()).c_str());
return false;
}
}
}
void raw_unlock(void * ptr, size_t len) {
if (!VirtualUnlock(ptr, len)) {
fprintf(stderr, "warning: failed to VirtualUnlock buffer: %s\n",
gguf_format_win_err(GetLastError()).c_str());
}
}
#else
static constexpr bool SUPPORTED = false;
size_t lock_granularity() {
return (size_t) 65536;
}
bool raw_lock(const void * addr, size_t len) {
fprintf(stderr, "warning: mlock not supported on this system\n");
return false;
}
void raw_unlock(const void * addr, size_t len) {}
#endif
};
// Replacement for std::vector<uint8_t> that doesn't require zero-initialization.
struct gguf_buffer {
uint8_t * addr = NULL;
size_t size = 0;
gguf_buffer() = default;
void resize(size_t len) {
#ifdef GGML_USE_METAL
free(addr);
int result = posix_memalign((void **) &addr, getpagesize(), len);
if (result == 0) {
memset(addr, 0, len);
}
else {
addr = NULL;
}
#else
delete[] addr;
addr = new uint8_t[len];
#endif
size = len;
}
~gguf_buffer() {
#ifdef GGML_USE_METAL
free(addr);
#else
delete[] addr;
#endif
addr = NULL;
}
// disable copy and move
gguf_buffer(const gguf_buffer&) = delete;
gguf_buffer(gguf_buffer&&) = delete;
gguf_buffer& operator=(const gguf_buffer&) = delete;
gguf_buffer& operator=(gguf_buffer&&) = delete;
};
#ifdef GGML_USE_CUBLAS
#include "ggml-cuda.h"
struct gguf_ctx_buffer {
uint8_t * addr = NULL;
bool is_cuda;
size_t size = 0;
gguf_ctx_buffer() = default;
void resize(size_t size) {
free();
addr = (uint8_t *) ggml_cuda_host_malloc(size);
if (addr) {
is_cuda = true;
}
else {
// fall back to pageable memory
addr = new uint8_t[size];
is_cuda = false;
}
this->size = size;
}
void free() {
if (addr) {
if (is_cuda) {
ggml_cuda_host_free(addr);
}
else {
delete[] addr;
}
}
addr = NULL;
}
~gguf_ctx_buffer() {
free();
}
// disable copy and move
gguf_ctx_buffer(const gguf_ctx_buffer&) = delete;
gguf_ctx_buffer(gguf_ctx_buffer&&) = delete;
gguf_ctx_buffer& operator=(const gguf_ctx_buffer&) = delete;
gguf_ctx_buffer& operator=(gguf_ctx_buffer&&) = delete;
};
#else
typedef gguf_buffer gguf_ctx_buffer;
#endif
#endif