llama.cpp/ggml/src/ggml-sycl/conv.cpp

100 lines
3.2 KiB
C++
Raw Normal View History

2024-07-29 04:50:27 +02:00
//
// MIT license
// Copyright (C) 2024 Intel Corporation
// SPDX-License-Identifier: MIT
//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
#include "conv.hpp"
static void conv_transpose_1d_kernel(
const int s0, const int output_size,
const int src0_ne0, const int src0_ne1, const int src0_ne2,
const int src1_ne0, const int dst_ne0,
const float * src0, const float * src1, float * dst,
const sycl::nd_item<3> &item_ct1) {
int global_index = item_ct1.get_local_id(2) +
item_ct1.get_group(2) * item_ct1.get_local_range(2);
if (global_index >= output_size) {
return;
}
int out_index = global_index / dst_ne0;
float accumulator = 0;
for (int c = 0; c < src0_ne2; c++) {
int idx = global_index % dst_ne0;
int kernel_offset = (src0_ne0 * src0_ne1 * c) + (out_index * src0_ne0);
int input_offset = src1_ne0 * c;
for (int i = 0; i < src1_ne0; i++) {
if (!(idx >= i*s0 && idx < i*s0 + src0_ne0)) {
continue;
}
int weight_idx = idx - i*s0;
float kernel_weight = src0[kernel_offset + weight_idx];
float input_value = src1[input_offset+i];
accumulator += kernel_weight * input_value;
}
}
dst[global_index] = accumulator;
}
static void conv_transpose_1d_f32_f32_sycl(
const int s0, const int output_size,
const int src0_ne0, const int src0_ne1, const int src0_ne2,
const int src1_ne0, const int dst_ne0,
const float *src0, const float *src1, float *dst,
const queue_ptr& stream) {
const int num_blocks = (output_size + SYCL_CONV_TRANPOSE_1D_BLOCK_SIZE - 1) / SYCL_CONV_TRANPOSE_1D_BLOCK_SIZE;
const sycl::range<3> block_dims(1, 1, SYCL_CONV_TRANPOSE_1D_BLOCK_SIZE);
const sycl::range<3> block_nums(1, 1, num_blocks);
stream->parallel_for(
sycl::nd_range<3>(
block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
conv_transpose_1d_kernel(
s0, output_size,
src0_ne0, src0_ne1, src0_ne2,
src1_ne0, dst_ne0,
src0, src1, dst, item_ct1);
});
}
void ggml_sycl_op_conv_transpose_1d(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst) {
const float * src0_d = (const float *)src0->data;
const float * src1_d = (const float *)src1->data;
float * dst_d = (float *)dst->data;
dpct::queue_ptr stream = ctx.stream();
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(src1));
const int32_t * opts = (const int32_t *)dst->op_params;
const int s0 = opts[0];
const int64_t output_size = ggml_nelements(dst);
conv_transpose_1d_f32_f32_sycl(s0, output_size,
src0->ne[0], src0->ne[1], src0->ne[2],
src1->ne[0], dst->ne[0],
src0_d, src1_d, dst_d, stream);
}