llama.cpp/ggml/src/ggml-cann/acl_tensor.cpp

176 lines
6.9 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2023-2024 The ggml authors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "acl_tensor.h"
#include <algorithm>
#include <cstring>
aclDataType ggml_cann_type_mapping(ggml_type type) {
switch (type) {
case GGML_TYPE_F32:
return ACL_FLOAT;
case GGML_TYPE_F16:
return ACL_FLOAT16;
case GGML_TYPE_I8:
return ACL_INT8;
case GGML_TYPE_I16:
return ACL_INT16;
case GGML_TYPE_I32:
return ACL_INT32;
2024-08-05 06:22:30 +02:00
case GGML_TYPE_Q4_0:
return ACL_INT4;
case GGML_TYPE_Q8_0:
return ACL_INT8;
default:
return ACL_DT_UNDEFINED;
}
return ACL_DT_UNDEFINED;
}
aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne,
size_t* nb, int64_t dims, aclFormat format,
size_t offset) {
// If tensor is bcasted, Up to GGML_MAX_DIMS additional dimensions will be
// added.
int64_t acl_ne[GGML_MAX_DIMS * 2], acl_stride[GGML_MAX_DIMS * 2];
int64_t acl_storage_len = 0;
if (ne == nullptr) {
acl_storage_len = ggml_nbytes(tensor);
for (int i = 0; i < GGML_MAX_DIMS; i++) {
acl_ne[i] = tensor->ne[i];
// The step size of acl is in elements.
acl_stride[i] = tensor->nb[i] / ggml_element_size(tensor);
}
} else {
// With bcast
for (int i = 0; i < dims; i++) {
acl_storage_len += (ne[i] - 1) * nb[i];
acl_ne[i] = ne[i];
acl_stride[i] = nb[i] / ggml_element_size(tensor);
}
}
// Reverse ne and stride.
int64_t final_dims = (dims == 0 ? GGML_MAX_DIMS : dims);
std::reverse(acl_ne, acl_ne + final_dims);
std::reverse(acl_stride, acl_stride + final_dims);
aclTensor* acl_tensor = aclCreateTensor(
acl_ne, final_dims, ggml_cann_type_mapping(tensor->type), acl_stride,
offset / ggml_element_size(tensor), format, &acl_storage_len, 1,
tensor->data);
return acl_tensor;
}
bool ggml_cann_need_bcast(const ggml_tensor* t0, const ggml_tensor* t1) {
for (int i = 0; i < GGML_MAX_DIMS; i++) {
if (t1->ne[i] != t0->ne[i] && t1->ne[i] != 1) {
return true;
}
}
return false;
}
int64_t ggml_cann_get_bcast_shape(const ggml_tensor* src0,
const ggml_tensor* src1,
int64_t* bcast_src0_ne,
int64_t* bcast_src1_ne, size_t* bcast_src0_nb,
size_t* bcast_src1_nb) {
GGML_ASSERT(ggml_can_repeat(src1, src0));
int bcast_dim_cnt = 0;
for (int i = 0; i < GGML_MAX_DIMS; i++) {
int64_t nr = src0->ne[i] / src1->ne[i];
bcast_src0_ne[bcast_dim_cnt] = src0->ne[i] / nr;
bcast_src1_ne[bcast_dim_cnt] = src1->ne[i];
bcast_src0_nb[bcast_dim_cnt] = src0->nb[i];
bcast_src1_nb[bcast_dim_cnt] = src1->nb[i];
bcast_dim_cnt++;
if (nr != 1) {
// Need to add an extra dim.
bcast_src0_ne[bcast_dim_cnt] = nr;
bcast_src1_ne[bcast_dim_cnt] = 1;
bcast_src0_nb[bcast_dim_cnt] = bcast_src0_nb[bcast_dim_cnt - 1] *
bcast_src0_ne[bcast_dim_cnt - 1];
bcast_src1_nb[bcast_dim_cnt] = bcast_src1_nb[bcast_dim_cnt - 1] *
bcast_src1_ne[bcast_dim_cnt - 1];
bcast_dim_cnt++;
}
}
return bcast_dim_cnt;
}
int64_t ggml_cann_get_mulmat_bcast_shape(
const int64_t* input_ne, const int64_t* weight_ne, const int64_t* dst_ne,
const size_t* input_nb, const size_t* weight_nb, const size_t* dst_nb,
int64_t* bcast_input_ne, int64_t* bcast_weight_ne, int64_t* bcast_dst_ne,
size_t* bcast_input_nb, size_t* bcast_weight_nb, size_t* bcast_dst_nb) {
// input and dst shoule in same shape, except first two dims.
GGML_ASSERT(input_ne[2] == dst_ne[2]);
GGML_ASSERT(input_ne[3] == dst_ne[3]);
int bcast_dim_cnt = 0;
// For mul_mat, a dimension needs to be added before the dimension that
// weight needs to be expanded to satisfy the bcast rule of matrix
// multiplication.
for (int i = 0; i < GGML_MAX_DIMS; i++) {
int64_t nr = input_ne[i] / weight_ne[i];
// Do not use bcast in the first two dimensions because we only support
// the bcast batch dimension. Just copy them.
if (i < 2 || nr == 1) {
bcast_input_ne[bcast_dim_cnt] = input_ne[i];
bcast_weight_ne[bcast_dim_cnt] = weight_ne[i];
bcast_dst_ne[bcast_dim_cnt] = dst_ne[i];
bcast_input_nb[bcast_dim_cnt] = input_nb[i];
bcast_weight_nb[bcast_dim_cnt] = weight_nb[i];
bcast_dst_nb[bcast_dim_cnt] = dst_nb[i];
bcast_dim_cnt++;
} else {
// Need to add an extra dim.
bcast_input_ne[bcast_dim_cnt] = nr;
bcast_dst_ne[bcast_dim_cnt] = nr;
bcast_weight_ne[bcast_dim_cnt] = 1;
bcast_input_nb[bcast_dim_cnt] = input_nb[i];
bcast_dst_nb[bcast_dim_cnt] = dst_nb[i];
bcast_weight_nb[bcast_dim_cnt] = weight_nb[i];
bcast_dim_cnt++;
bcast_input_ne[bcast_dim_cnt] = input_ne[i] / nr;
bcast_dst_ne[bcast_dim_cnt] = dst_ne[i] / nr;
bcast_weight_ne[bcast_dim_cnt] = weight_ne[i];
bcast_input_nb[bcast_dim_cnt] = bcast_input_nb[bcast_dim_cnt - 1] *
bcast_input_ne[bcast_dim_cnt - 1];
bcast_dst_nb[bcast_dim_cnt] = bcast_dst_nb[bcast_dim_cnt - 1] *
bcast_dst_ne[bcast_dim_cnt - 1];
bcast_weight_nb[bcast_dim_cnt] =
bcast_weight_nb[bcast_dim_cnt - 1] *
bcast_weight_ne[bcast_dim_cnt - 1];
bcast_dim_cnt++;
}
}
return bcast_dim_cnt;
}