llama.cpp/convert-llama-h5-to-gguf.py

248 lines
7.6 KiB
Python
Raw Normal View History

2023-07-29 11:20:05 +02:00
# Quick and dirty HF llama --> gguf conversion, GQA/70b wont work
import gguf
import sys
import struct
import json
import numpy as np
from typing import List
from pathlib import Path
from transformers import AutoModelForCausalLM
from sentencepiece import SentencePieceProcessor
NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
2023-07-29 12:31:07 +02:00
2023-07-29 11:20:05 +02:00
def permute(weights: NDArray, n_head: int) -> NDArray:
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
.swapaxes(1, 2)
.reshape(weights.shape))
2023-07-29 12:31:07 +02:00
2023-07-29 11:20:05 +02:00
if len(sys.argv) < 3:
print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
print(" ftype == 0 -> float32")
print(" ftype == 1 -> float16")
sys.exit(1)
# output in the same directory as the model
dir_model = sys.argv[1]
fname_out = sys.argv[1] + "/ggml-model.bin"
# possible tensor data types
# ftype == 0 -> float32
# ftype == 1 -> float16
#
# map from ftype to string
ftype_str = ["f32", "f16"]
ftype = 1
if len(sys.argv) > 2:
ftype = int(sys.argv[2])
if ftype < 0 or ftype > 1:
print("Invalid ftype: " + str(ftype))
sys.exit(1)
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
2023-07-29 12:31:07 +02:00
model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True, trust_remote_code=True)
2023-07-29 11:20:05 +02:00
list_vars = model.state_dict()
# count tensors to be converted
tensor_count = 0
for name in list_vars.keys():
# we don't need these
if name.endswith(".rotary_emb.inv_freq"):
continue
tensor_count += 1
gguf_writer = gguf.GGUFWriter.open(fname_out)
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
# This mmust be changed when adding/deleting kv
kv_count = 13
2023-07-29 12:31:07 +02:00
print("tensors " + str(tensor_count) + " kv " + str(kv_count))
2023-07-29 11:20:05 +02:00
print("write gguf header")
gguf_writer.write_header(tensor_count, kv_count)
print("write gguf hparams")
llm_arch = "llama"
gguf_writer.write_name("llama2-7b")
gguf_writer.write_description("gguf test model")
gguf_writer.write_architecture(llm_arch)
gguf_writer.write_context_length(llm_arch, hparams["max_position_embeddings"])
gguf_writer.write_embedding_length(llm_arch, hparams["hidden_size"])
gguf_writer.write_layer_count(llm_arch, hparams["num_hidden_layers"])
gguf_writer.write_feed_forward_length(llm_arch, hparams["intermediate_size"])
gguf_writer.write_rope_dimension_count(llm_arch, hparams["hidden_size"] // hparams["num_attention_heads"])
gguf_writer.write_head_count(llm_arch, hparams["num_attention_heads"])
gguf_writer.write_float32(llm_arch + ".attention.layer_norm_rms_epsilon", hparams["rms_norm_eps"])
# TOKENIZATION
2023-07-29 21:38:01 +02:00
print("write gguf tokenizer")
2023-07-29 11:20:05 +02:00
tokens: List[str] = []
scores: List[float] = []
2023-07-29 12:31:07 +02:00
if Path(dir_model + "/tokenizer.model").is_file():
2023-07-29 21:38:01 +02:00
# vocab type sentencepiece
2023-07-29 12:31:07 +02:00
print("Adding sentencepiece tokenizer vocab.")
tokenizer = SentencePieceProcessor(dir_model + "/tokenizer.model")
2023-07-29 11:20:05 +02:00
# output vocab_size followed by all piece/score pairs
outbytes: bytes
outbytes = b""
outbytes += struct.pack("I", tokenizer.vocab_size())
for i in range(tokenizer.vocab_size()):
text: bytes
if tokenizer.is_unknown(i):
text = " \u2047 ".encode("utf-8")
elif tokenizer.is_control(i):
text = b""
if tokenizer.is_byte(i):
piece = tokenizer.id_to_piece(i)
if len(piece) != 6:
raise Exception(f"Invalid token: {piece}")
byte_value = int(piece[3:-1], 16)
text = struct.pack("B", byte_value)
else:
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
score: float = tokenizer.get_score(i)
2023-07-29 16:47:00 +02:00
tokens.append(text)
2023-07-29 12:31:07 +02:00
scores.append(score)
2023-07-29 11:20:05 +02:00
2023-07-29 12:31:07 +02:00
gguf_writer.write_tokenizer_model("llama")
gguf_writer.write_token_list(tokens)
gguf_writer.write_token_scores(scores)
2023-07-29 11:20:05 +02:00
# TENSORS
# tensor info
print("write gguf tensor info")
for name in list_vars.keys():
data = list_vars[name].squeeze().numpy()
# we don't need these
if name.endswith(".rotary_emb.inv_freq"):
continue
# permute these
if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"):
2023-07-29 12:31:07 +02:00
data = permute(data, hparams["num_attention_heads"])
2023-07-29 11:20:05 +02:00
# chnage tensor name
if name == "model.embed_tokens.weight":
name = "tok_embeddings.weight"
elif name == "model.norm.weight":
name = "norm.weight"
elif name == "lm_head.weight":
name = "output.weight"
else:
for i in range(80): # maximum number of layers
if name == "model.layers." + str(i) + ".input_layernorm.weight":
name = "layers." + str(i) + ".attention_norm.weight"
break
if name == "model.layers." + str(i) + ".self_attn.q_proj.weight":
name = "layers." + str(i) + ".attention.wq.weight"
break
if name == "model.layers." + str(i) + ".self_attn.k_proj.weight":
name = "layers." + str(i) + ".attention.wk.weight"
break
if name == "model.layers." + str(i) + ".self_attn.v_proj.weight":
name = "layers." + str(i) + ".attention.wv.weight"
break
if name == "model.layers." + str(i) + ".self_attn.o_proj.weight":
name = "layers." + str(i) + ".attention.wo.weight"
break
if name == "model.layers." + str(i) + ".post_attention_layernorm.weight":
name = "layers." + str(i) + ".ffn_norm.weight"
break
if name == "model.layers." + str(i) + ".mlp.gate_proj.weight":
name = "layers." + str(i) + ".feed_forward.w1.weight"
break
if name == "model.layers." + str(i) + ".mlp.down_proj.weight":
name = "layers." + str(i) + ".feed_forward.w2.weight"
break
if name == "model.layers." + str(i) + ".mlp.up_proj.weight":
name = "layers." + str(i) + ".feed_forward.w3.weight"
break
2023-07-29 16:47:00 +02:00
n_dims = len(data.shape)
# ftype == 0 -> float32, ftype == 1 -> float16
ftype_cur = 0
if ftype != 0:
if name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
ftype_cur = 1
else:
data = data.astype(np.float32)
ftype_cur = 0
else:
if data.dtype != np.float32:
data = data.astype(np.float32)
ftype_cur = 0
2023-07-29 11:20:05 +02:00
gguf_writer.write_tensor_info(name, data)
# tensor data
print("write gguf tensor data")
for name in list_vars.keys():
data = list_vars[name].squeeze().numpy()
print("Process tensor: " + name + " with shape: ", data.shape)
# we don't need these
if name.endswith(".rotary_emb.inv_freq"):
print(" Skip tensor: " + name)
continue
2023-07-29 12:31:07 +02:00
# permute these
2023-07-29 11:20:05 +02:00
if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"):
print(" Permute tensor: " + name)
2023-07-29 12:31:07 +02:00
data = permute(data, hparams["num_attention_heads"])
2023-07-29 11:20:05 +02:00
n_dims = len(data.shape)
# ftype == 0 -> float32, ftype == 1 -> float16
ftype_cur = 0
if ftype != 0:
if name.endswith(".weight") and n_dims == 2:
print(" Converting to float16")
data = data.astype(np.float16)
ftype_cur = 1
else:
print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
else:
if data.dtype != np.float32:
print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
gguf_writer.write_tensor(data)
gguf_writer.close()
print("Done. Output file: " + fname_out)
print("")