llama.cpp/src/llama-sampling.cpp

1582 lines
49 KiB
C++
Raw Normal View History

#include "llama-sampling.h"
#include "llama-vocab.h"
#include "llama-grammar.h"
#include <cassert>
#include <algorithm>
#include <cstring>
#include <ctime>
#include <cfloat>
#include <numeric>
#include <random>
#include <unordered_map>
static int llama_sample_dist(llama_token_data_array * cur_p, std::mt19937 & rng, std::vector<float> & probs) {
#if 1
probs.resize(cur_p->size);
for (size_t i = 0; i < cur_p->size; ++i) {
probs[i] = cur_p->data[i].p;
}
std::discrete_distribution<size_t> dist(probs.begin(), probs.end());
#else
// avoid the copy with a custom iterator
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-local-typedefs"
struct probs_iterator {
typedef std::input_iterator_tag iterator_category;
typedef float value_type;
typedef float * pointer;
typedef float & reference;
typedef size_t difference_type;
const llama_token_data_array * data;
size_t i;
bool operator==(const probs_iterator & other) const { return data + i == other.data + other.i; }
bool operator!=(const probs_iterator & other) const { return data + i != other.data + other.i; }
float operator*() const { return data->data[i].p; }
probs_iterator & operator++() { ++i; return *this; }
probs_iterator operator++(int) { probs_iterator tmp = *this; ++i; return tmp; }
};
#pragma GCC diagnostic pop
std::discrete_distribution<size_t> dist(probs_iterator{cur_p, 0}, probs_iterator{cur_p, cur_p->size});
GGML_UNUSED(probs);
#endif
return dist(rng);
}
static void llama_log_softmax(float * array, size_t size) {
float max_l = *std::max_element(array, array + size);
float sum = 0.f;
for (size_t i = 0; i < size; ++i) {
float p = expf(array[i] - max_l);
sum += p;
array[i] = p;
}
for (size_t i = 0; i < size; ++i) {
array[i] = logf(array[i] / sum);
}
}
static void llama_sampler_softmax_impl(llama_token_data_array * cur_p) {
GGML_ASSERT(cur_p->size > 0);
// Sort the logits in descending order
if (!cur_p->sorted) {
std::sort(cur_p->data, cur_p->data + cur_p->size, [](const llama_token_data & a, const llama_token_data & b) {
return a.logit > b.logit;
});
cur_p->sorted = true;
}
float max_l = cur_p->data[0].logit;
float cum_sum = 0.0f;
for (size_t i = 0; i < cur_p->size; ++i) {
float p = expf(cur_p->data[i].logit - max_l);
cur_p->data[i].p = p;
cum_sum += p;
}
for (size_t i = 0; i < cur_p->size; ++i) {
cur_p->data[i].p /= cum_sum;
}
}
static void llama_sampler_top_k_impl(llama_token_data_array * cur_p, int32_t k) {
// TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
// if (k >= (int32_t)cur_p->size) {
// return;
// }
if (k <= 0) {
k = cur_p->size;
}
k = std::min(k, (int) cur_p->size);
// Sort scores in descending order
if (!cur_p->sorted) {
auto comp = [](const llama_token_data & a, const llama_token_data & b) {
return a.logit > b.logit;
};
if (k <= 128) {
std::partial_sort(cur_p->data, cur_p->data + k, cur_p->data + cur_p->size, comp);
} else {
constexpr int nbuckets = 128;
constexpr float bucket_low = -10.0f;
constexpr float bucket_high = 10.0f;
constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
2024-08-12 11:46:03 +02:00
constexpr float bucket_inter = -bucket_low * bucket_scale;
std::vector<int> bucket_idx(cur_p->size);
std::vector<int> histo(nbuckets, 0);
for (int i = 0; i < (int)cur_p->size; ++i) {
const float val = cur_p->data[i].logit;
2024-08-12 11:46:03 +02:00
int ib = int(bucket_scale * val + bucket_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
ib = std::max(0, std::min(nbuckets-1, ib));
bucket_idx[i] = ib;
++histo[ib];
}
int nhave = 0;
int ib = nbuckets - 1;
for ( ; ib >= 0; --ib) {
nhave += histo[ib];
if (nhave >= k) {
break;
}
}
std::vector<llama_token_data> tmp_tokens(nhave);
auto * ptr = tmp_tokens.data();
std::vector<llama_token_data*> bucket_ptrs;
bucket_ptrs.reserve(nbuckets - ib);
for (int j = nbuckets - 1; j >= ib; --j) {
bucket_ptrs.push_back(ptr);
ptr += histo[j];
}
for (int i = 0; i < (int)cur_p->size; ++i) {
int j = bucket_idx[i];
if (j >= ib) {
*bucket_ptrs[nbuckets-1-j]++ = cur_p->data[i];
}
}
ptr = tmp_tokens.data();
int ndone = 0;
for (int j = nbuckets-1; j > ib; --j) {
std::sort(ptr, ptr + histo[j], comp);
ptr += histo[j];
ndone += histo[j];
}
std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
std::memcpy(cur_p->data, tmp_tokens.data(), k*sizeof(llama_token_data));
}
cur_p->sorted = true;
}
cur_p->size = k;
}
// llama_sampler API
const char * llama_sampler_name(const struct llama_sampler * smpl) {
if (!smpl->iface) {
return "(null)";
}
return smpl->iface->name(smpl);
}
void llama_sampler_accept(struct llama_sampler * smpl, llama_token token) {
if (smpl->iface->accept) {
smpl->iface->accept(smpl, token);
}
}
void llama_sampler_apply(struct llama_sampler * smpl, struct llama_token_data_array * cur_p) {
GGML_ASSERT(smpl->iface->apply);
smpl->iface->apply(smpl, cur_p);
}
void llama_sampler_reset(struct llama_sampler * smpl) {
if (smpl->iface->reset) {
smpl->iface->reset(smpl);
}
}
struct llama_sampler * llama_sampler_clone(const struct llama_sampler * smpl) {
if (smpl->iface->clone) {
return smpl->iface->clone(smpl);
}
if (smpl->ctx == nullptr) {
return new llama_sampler {
/* .iface = */ smpl->iface,
/* .ctx = */ nullptr,
};
}
GGML_ABORT("the sampler does not support cloning");
}
void llama_sampler_free(struct llama_sampler * smpl) {
if (smpl == nullptr) {
return;
}
if (smpl->iface->free) {
smpl->iface->free(smpl);
}
delete smpl;
}
llama_token llama_sampler_sample(struct llama_sampler * smpl, struct llama_context * ctx, int32_t idx) {
const auto * logits = llama_get_logits_ith(ctx, idx);
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
// TODO: do not allocate each time
std::vector<llama_token_data> cur(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
}
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
llama_sampler_apply(smpl, &cur_p);
return cur_p.data[cur_p.selected].id;
}
// sampler chain
static struct llama_sampler_i llama_sampler_chain_i = {
/* .name = */ [](const struct llama_sampler * /*smpl*/) { return "chain"; },
/* .accept = */ [](struct llama_sampler * smpl, llama_token token) {
auto * chain = (llama_sampler_chain *) smpl->ctx;
time_meas tm(chain->t_sample_us, chain->params.no_perf);
for (auto * smpl : chain->samplers) {
llama_sampler_accept(smpl, token);
}
chain->n_sample++;
},
/* .apply = */ [](struct llama_sampler * smpl, llama_token_data_array * cur_p) {
auto * chain = (llama_sampler_chain *) smpl->ctx;
time_meas tm(chain->t_sample_us, chain->params.no_perf);
for (auto * smpl : chain->samplers) {
llama_sampler_apply(smpl, cur_p);
}
},
/* .reset = */ [](struct llama_sampler * smpl) {
auto * chain = (llama_sampler_chain *) smpl->ctx;
for (auto * smpl : chain->samplers) {
llama_sampler_reset(smpl);
}
chain->t_sample_us = 0;
chain->n_sample = 0;
},
/* .clone = */ [](const struct llama_sampler * smpl) {
const auto * chain_src = (const llama_sampler_chain *) smpl->ctx;
auto * result = llama_sampler_chain_init(chain_src->params);
for (auto * smpl : chain_src->samplers) {
llama_sampler_chain_add(result, llama_sampler_clone(smpl));
}
return result;
},
/* .free = */ [](struct llama_sampler * smpl) {
auto * chain = (llama_sampler_chain *) smpl->ctx;
for (auto * smpl : chain->samplers) {
llama_sampler_free(smpl);
}
delete chain;
},
};
struct llama_sampler * llama_sampler_chain_init(struct llama_sampler_chain_params params) {
return new llama_sampler {
/* .iface = */ &llama_sampler_chain_i,
/* .ctx = */ new llama_sampler_chain {
/* .params = */ params,
/* .samplers = */ {},
/* .t_sample_us = */ 0,
/* .n_sample = */ 0,
},
};
}
void llama_sampler_chain_add(struct llama_sampler * chain, struct llama_sampler * smpl) {
auto * p = (llama_sampler_chain *) chain->ctx;
p->samplers.push_back(smpl);
}
struct llama_sampler * llama_sampler_chain_get(const struct llama_sampler * chain, int32_t i) {
const auto * p = (const llama_sampler_chain *) chain->ctx;
if (i < 0 || i >= (int32_t) p->samplers.size()) {
return nullptr;
}
return p->samplers[i];
}
int llama_sampler_chain_n(const struct llama_sampler * chain) {
const auto * p = (const llama_sampler_chain *) chain->ctx;
return p->samplers.size();
}
//
// samplers
//
// greedy
static const char * llama_sampler_greedy_name(const struct llama_sampler * /*smpl*/) {
return "greedy";
}
static void llama_sampler_greedy_apply(struct llama_sampler * /*smpl*/, llama_token_data_array * cur_p) {
cur_p->selected = 0;
for (size_t i = 1; i < cur_p->size; ++i) {
if (cur_p->data[i].logit > cur_p->data[cur_p->selected].logit) {
cur_p->selected = i;
}
}
}
static struct llama_sampler_i llama_sampler_greedy_i = {
/* .name = */ llama_sampler_greedy_name,
/* .accept = */ nullptr,
/* .apply = */ llama_sampler_greedy_apply,
/* .reset = */ nullptr,
/* .clone = */ nullptr,
/* .free = */ nullptr,
};
struct llama_sampler * llama_sampler_init_greedy() {
return new llama_sampler {
/* .iface = */ &llama_sampler_greedy_i,
/* .ctx = */ nullptr,
};
}
// dist
struct llama_sampler_dist {
const uint32_t seed;
std::mt19937 rng;
std::vector<float> probs; // work array
};
static const char * llama_sampler_dist_name(const struct llama_sampler * /*smpl*/) {
return "dist";
}
static void llama_sampler_dist_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
auto * ctx = (llama_sampler_dist *) smpl->ctx;
cur_p->selected = llama_sample_dist(cur_p, ctx->rng, ctx->probs);
}
static struct llama_sampler * llama_sampler_dist_clone(const struct llama_sampler * smpl) {
const auto * ctx = (const llama_sampler_dist *) smpl->ctx;
auto * result = llama_sampler_init_dist(ctx->seed);
// copy the state
{
auto * result_ctx = (llama_sampler_dist *) result->ctx;
result_ctx->rng = ctx->rng;
}
return result;
}
static void llama_sampler_dist_reset(struct llama_sampler * smpl) {
auto * ctx = (llama_sampler_dist *) smpl->ctx;
ctx->rng = std::mt19937(ctx->seed);
}
static void llama_sampler_dist_free(struct llama_sampler * smpl) {
delete (llama_sampler_dist *) smpl->ctx;
}
static struct llama_sampler_i llama_sampler_dist_i = {
/* .name = */ llama_sampler_dist_name,
/* .accept = */ nullptr,
/* .apply = */ llama_sampler_dist_apply,
/* .reset = */ llama_sampler_dist_reset,
/* .clone = */ llama_sampler_dist_clone,
/* .free = */ llama_sampler_dist_free,
};
struct llama_sampler * llama_sampler_init_dist(uint32_t seed) {
return new llama_sampler {
/* .iface = */ &llama_sampler_dist_i,
/* .ctx = */ new llama_sampler_dist {
/* .seed = */ seed,
/* .rng = */ std::mt19937(seed),
/* .probs = */ {},
},
};
}
// softmax
static const char * llama_sampler_softmax_name(const struct llama_sampler * /*smpl*/) {
return "softmax";
}
static void llama_sampler_softmax_apply(struct llama_sampler * /*smpl*/, llama_token_data_array * cur_p) {
llama_sampler_softmax_impl(cur_p);
}
static struct llama_sampler_i llama_sampler_softmax_i = {
/* .name = */ llama_sampler_softmax_name,
/* .accept = */ nullptr,
/* .apply = */ llama_sampler_softmax_apply,
/* .reset = */ nullptr,
/* .clone = */ nullptr,
/* .free = */ nullptr,
};
struct llama_sampler * llama_sampler_init_softmax() {
return new llama_sampler {
/* .iface = */ &llama_sampler_softmax_i,
/* .ctx = */ nullptr,
};
}
// top-k
struct llama_sampler_top_k {
const int32_t k;
};
static const char * llama_sampler_top_k_name(const struct llama_sampler * /*smpl*/) {
return "top-k";
}
static void llama_sampler_top_k_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
const auto * ctx = (llama_sampler_top_k *) smpl->ctx;
llama_sampler_top_k_impl(cur_p, ctx->k);
}
static struct llama_sampler * llama_sampler_top_k_clone(const struct llama_sampler * smpl) {
const auto * ctx = (const llama_sampler_top_k *) smpl->ctx;
return llama_sampler_init_top_k(ctx->k);
}
static void llama_sampler_top_k_free(struct llama_sampler * smpl) {
delete (llama_sampler_top_k *) smpl->ctx;
}
static struct llama_sampler_i llama_sampler_top_k_i = {
/* .name = */ llama_sampler_top_k_name,
/* .accept = */ nullptr,
/* .apply = */ llama_sampler_top_k_apply,
/* .reset = */ nullptr,
/* .clone = */ llama_sampler_top_k_clone,
/* .free = */ llama_sampler_top_k_free,
};
struct llama_sampler * llama_sampler_init_top_k(int32_t k) {
return new llama_sampler {
/* .iface = */ &llama_sampler_top_k_i,
/* .ctx = */ new llama_sampler_top_k {
/* .k = */ k,
},
};
}
// top-p
struct llama_sampler_top_p {
const float p;
const size_t min_keep;
};
static const char * llama_sampler_top_p_name(const struct llama_sampler * /*smpl*/) {
return "top-p";
}
static void llama_sampler_top_p_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
const auto * ctx = (llama_sampler_top_p *) smpl->ctx;
if (ctx->p >= 1.0f) {
return;
}
llama_sampler_softmax_impl(cur_p);
// Compute the cumulative probabilities
float cum_sum = 0.0f;
size_t last_idx = cur_p->size;
for (size_t i = 0; i < cur_p->size; ++i) {
cum_sum += cur_p->data[i].p;
// Check if the running sum is at least p or if we have kept at least min_keep tokens
// we set the last index to i+1 to indicate that the current iterate should be included in the set
if (cum_sum >= ctx->p && i + 1 >= ctx->min_keep) {
last_idx = i + 1;
break;
}
}
// Resize the output vector to keep only the top-p tokens
cur_p->size = last_idx;
}
static struct llama_sampler * llama_sampler_top_p_clone(const struct llama_sampler * smpl) {
const auto * ctx = (const llama_sampler_top_p *) smpl->ctx;
return llama_sampler_init_top_p(ctx->p, ctx->min_keep);
}
static void llama_sampler_top_p_free(struct llama_sampler * smpl) {
delete (llama_sampler_top_p *) smpl->ctx;
}
static struct llama_sampler_i llama_sampler_top_p_i = {
/* .name = */ llama_sampler_top_p_name,
/* .accept = */ nullptr,
/* .apply = */ llama_sampler_top_p_apply,
/* .reset = */ nullptr,
/* .clone = */ llama_sampler_top_p_clone,
/* .free = */ llama_sampler_top_p_free,
};
struct llama_sampler * llama_sampler_init_top_p(float p, size_t min_keep) {
return new llama_sampler {
/* .iface = */ &llama_sampler_top_p_i,
/* .ctx = */ new llama_sampler_top_p {
/* .p = */ p,
/* .min_keep = */ min_keep,
},
};
}
// min-p
struct llama_sampler_min_p {
const float p;
const size_t min_keep;
};
static const char * llama_sampler_min_p_name(const struct llama_sampler * /*smpl*/) {
return "min-p";
}
static void llama_sampler_min_p_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
const auto * ctx = (llama_sampler_min_p *) smpl->ctx;
if (ctx->p <= 0.0f || !cur_p->size) {
return;
}
bool min_p_applied = false;
// if the cur_p aren't sorted, try the unsorted implementation first
if (!cur_p->sorted) {
std::vector<llama_token_data> filtered_tokens;
float max_logit = -FLT_MAX;
for (size_t i = 0; i < cur_p->size; ++i) {
max_logit = std::max(max_logit, cur_p->data[i].logit);
}
const float min_logit = max_logit + logf(ctx->p); // min logit for p_i >= p * p_max
for (size_t i = 0; i < cur_p->size; ++i) {
if (cur_p->data[i].logit >= min_logit) {
filtered_tokens.push_back(cur_p->data[i]);
}
}
// if we have enough values the operation was a success
if (filtered_tokens.size() >= ctx->min_keep) {
memcpy(cur_p->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
cur_p->size = filtered_tokens.size();
min_p_applied = true;
}
}
// if the cur_p are sorted or the unsorted implementation failed, use this implementation
if (!min_p_applied) {
// Sort the logits in descending order
if (!cur_p->sorted) {
std::sort(cur_p->data, cur_p->data + cur_p->size, [](const llama_token_data & a, const llama_token_data & b) {
return a.logit > b.logit;
});
cur_p->sorted = true;
}
const float min_logit = cur_p->data[0].logit + logf(ctx->p); // min logit for p_i >= p * p_max
size_t i = 1; // first token always matches
for (; i < cur_p->size; ++i) {
if (cur_p->data[i].logit < min_logit && i >= ctx->min_keep) {
break; // prob too small
}
}
// Resize the output vector to keep only the matching tokens
cur_p->size = i;
}
}
static struct llama_sampler * llama_sampler_min_p_clone(const struct llama_sampler * smpl) {
const auto * ctx = (const llama_sampler_min_p *) smpl->ctx;
return llama_sampler_init_min_p(ctx->p, ctx->min_keep);
}
static void llama_sampler_min_p_free(struct llama_sampler * smpl) {
delete (llama_sampler_min_p *) smpl->ctx;
}
static struct llama_sampler_i llama_sampler_min_p_i = {
/* .name = */ llama_sampler_min_p_name,
/* .accept = */ nullptr,
/* .apply = */ llama_sampler_min_p_apply,
/* .reset = */ nullptr,
/* .clone = */ llama_sampler_min_p_clone,
/* .free = */ llama_sampler_min_p_free,
};
struct llama_sampler * llama_sampler_init_min_p(float p, size_t min_keep) {
return new llama_sampler {
/* .iface = */ &llama_sampler_min_p_i,
/* .ctx = */ new llama_sampler_min_p {
/* .p = */ p,
/* .min_keep = */ min_keep,
},
};
}
// tail-free
struct llama_sampler_tail_free {
const float z;
const size_t min_keep;
};
static const char * llama_sampler_tail_free_name(const struct llama_sampler * /*smpl*/) {
return "tail-free";
}
static void llama_sampler_tail_free_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
const auto * ctx = (llama_sampler_tail_free *) smpl->ctx;
if (ctx->z >= 1.0f || cur_p->size <= 2) {
return;
}
llama_sampler_softmax_impl(cur_p);
// Compute the first and second derivatives
std::vector<float> first_derivatives(cur_p->size - 1);
std::vector<float> second_derivatives(cur_p->size - 2);
for (size_t i = 0; i < first_derivatives.size(); ++i) {
first_derivatives[i] = cur_p->data[i].p - cur_p->data[i + 1].p;
}
for (size_t i = 0; i < second_derivatives.size(); ++i) {
second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
}
// Calculate absolute value of second derivatives
for (size_t i = 0; i < second_derivatives.size(); ++i) {
second_derivatives[i] = std::abs(second_derivatives[i]);
}
// Normalize the second derivatives
{
const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
if (second_derivatives_sum > 1e-6f) {
for (float & value : second_derivatives) {
value /= second_derivatives_sum;
}
} else {
for (float & value : second_derivatives) {
value = 1.0f / second_derivatives.size();
}
}
}
float cum_sum = 0.0f;
size_t last_idx = cur_p->size;
for (size_t i = 0; i < second_derivatives.size(); ++i) {
cum_sum += second_derivatives[i];
// Check if the running sum is greater than z or if we have kept at least min_keep tokens
if (cum_sum > ctx->z && i >= ctx->min_keep) {
last_idx = i;
break;
}
}
// Resize the output vector to keep only the tokens above the tail location
cur_p->size = last_idx;
}
static struct llama_sampler * llama_sampler_tail_free_clone(const struct llama_sampler * smpl) {
const auto * ctx = (const llama_sampler_tail_free *) smpl->ctx;
return llama_sampler_init_tail_free(ctx->z, ctx->min_keep);
}
static void llama_sampler_tail_free_free(struct llama_sampler * smpl) {
delete (llama_sampler_tail_free *) smpl->ctx;
}
static struct llama_sampler_i llama_sampler_tail_free_i = {
/* .name = */ llama_sampler_tail_free_name,
/* .accept = */ nullptr,
/* .apply = */ llama_sampler_tail_free_apply,
/* .reset = */ nullptr,
/* .clone = */ llama_sampler_tail_free_clone,
/* .free = */ llama_sampler_tail_free_free,
};
struct llama_sampler * llama_sampler_init_tail_free(float z, size_t min_keep) {
return new llama_sampler {
/* .iface = */ &llama_sampler_tail_free_i,
/* .ctx = */ new llama_sampler_tail_free {
/* .z = */ z,
/*. min_keep = */ min_keep,
},
};
}
// typical
struct llama_sampler_typical {
const float p;
const size_t min_keep;
};
static const char * llama_sampler_typical_name(const struct llama_sampler * /*smpl*/) {
return "typical";
}
static void llama_sampler_typical_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
const auto * ctx = (llama_sampler_typical *) smpl->ctx;
// Reference implementation:
// https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
if (ctx->p >= 1.0f) {
return;
}
// Compute the softmax of logits and calculate entropy
llama_sampler_softmax_impl(cur_p);
float entropy = 0.0f;
for (size_t i = 0; i < cur_p->size; ++i) {
entropy += -cur_p->data[i].p * logf(cur_p->data[i].p);
}
// Compute the absolute difference between negative log probability and entropy for each candidate
std::vector<float> shifted_scores;
for (size_t i = 0; i < cur_p->size; ++i) {
float shifted_score = fabsf(-logf(cur_p->data[i].p) - entropy);
shifted_scores.push_back(shifted_score);
}
// Sort tokens based on the shifted_scores and their corresponding indices
std::vector<size_t> indices(cur_p->size);
std::iota(indices.begin(), indices.end(), 0);
std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
return shifted_scores[a] < shifted_scores[b];
});
// Compute the cumulative probabilities
float cum_sum = 0.0f;
size_t last_idx = indices.size();
for (size_t i = 0; i < indices.size(); ++i) {
size_t idx = indices[i];
cum_sum += cur_p->data[idx].p;
// Check if the running sum is greater than typical or if we have kept at least min_keep tokens
if (cum_sum > ctx->p && i >= ctx->min_keep - 1) {
last_idx = i + 1;
break;
}
}
// Resize the output vector to keep only the locally typical tokens
std::vector<llama_token_data> cur_p_new;
for (size_t i = 0; i < last_idx; ++i) {
size_t idx = indices[i];
cur_p_new.push_back(cur_p->data[idx]);
}
// Replace the data in cur_p with the cur_p_new data
std::copy(cur_p_new.begin(), cur_p_new.end(), cur_p->data);
cur_p->size = cur_p_new.size();
cur_p->sorted = false;
}
static struct llama_sampler * llama_sampler_typical_clone(const struct llama_sampler * smpl) {
const auto * ctx = (const llama_sampler_typical *) smpl->ctx;
return llama_sampler_init_typical(ctx->p, ctx->min_keep);
}
static void llama_sampler_typical_free(struct llama_sampler * smpl) {
delete (llama_sampler_typical *) smpl->ctx;
}
static struct llama_sampler_i llama_sampler_typical_i = {
/* .name = */ llama_sampler_typical_name,
/* .accept = */ nullptr,
/* .apply = */ llama_sampler_typical_apply,
/* .reset = */ nullptr,
/* .clone = */ llama_sampler_typical_clone,
/* .free = */ llama_sampler_typical_free,
};
struct llama_sampler * llama_sampler_init_typical(float p, size_t min_keep) {
return new llama_sampler {
/* .iface = */ &llama_sampler_typical_i,
/* .ctx = */ new llama_sampler_typical {
/* .p = */ p,
/* .min_keep = */ min_keep,
},
};
}
// temp
struct llama_sampler_temp {
const float temp;
};
static const char * llama_sampler_temp_name(const struct llama_sampler * /*smpl*/) {
return "temp";
}
static void llama_sampler_temp_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
const auto * ctx = (llama_sampler_temp *) smpl->ctx;
for (size_t i = 0; i < cur_p->size; ++i) {
cur_p->data[i].logit /= ctx->temp;
}
}
static struct llama_sampler * llama_sampler_temp_clone(const struct llama_sampler * smpl) {
const auto * ctx = (const llama_sampler_temp *) smpl->ctx;
return llama_sampler_init_temp(ctx->temp);
}
static void llama_sampler_temp_free(struct llama_sampler * smpl) {
delete (llama_sampler_temp *) smpl->ctx;
}
static struct llama_sampler_i llama_sampler_temp_i = {
/* .name = */ llama_sampler_temp_name,
/* .accept = */ nullptr,
/* .apply = */ llama_sampler_temp_apply,
/* .reset = */ nullptr,
/* .clone = */ llama_sampler_temp_clone,
/* .free = */ llama_sampler_temp_free,
};
struct llama_sampler * llama_sampler_init_temp(float temp) {
return new llama_sampler {
/* .iface = */ &llama_sampler_temp_i,
/* .ctx = */ new llama_sampler_temp {
/*.temp = */ temp,
},
};
}
// temp-ext
struct llama_sampler_temp_ext {
const float temp;
const float delta;
const float exponent;
};
static const char * llama_sampler_temp_ext_name(const struct llama_sampler * /*smpl*/) {
return "temp-ext";
}
static void llama_sampler_temp_ext_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
const auto * ctx = (llama_sampler_temp_ext *) smpl->ctx;
if (ctx->delta > 0) {
const float min_temp = std::max(0.0f, ctx->temp - ctx->delta);
const float max_temp = ctx->temp + ctx->delta;
float exponent_val = ctx->exponent;
// no need to do anything if there is only one (or zero) candidates
if (cur_p->size <= 1) {
return;
}
// Calculate maximum possible entropy
float max_entropy = -logf(1.0f / cur_p->size);
llama_sampler_softmax_impl(cur_p);
// Calculate entropy of the softmax probabilities
float entropy = 0.0f;
for (size_t i = 0; i < cur_p->size; ++i) {
float prob = cur_p->data[i].p;
if (prob > 0.0f) { // Ensure no log(0)
entropy -= prob * logf(prob);
}
}
// Normalize the entropy (max_entropy cannot be 0 here because we checked cur_p->size != 1 above)
float normalized_entropy = entropy / max_entropy;
// Map the normalized entropy to the desired temperature range using the power function
float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
#ifdef DEBUG
LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
LLAMA_LOG_INFO("Entropy: %f\n", entropy);
LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
#endif
// Apply the dynamically calculated temperature scaling
for (size_t i = 0; i < cur_p->size; ++i) {
cur_p->data[i].logit /= dyn_temp;
}
// Re-compute softmax probabilities after scaling logits with dynamic temperature
const double max_l_double = cur_p->data[0].logit;
double cum_sum_double = 0.0;
for (size_t i = 0; i < cur_p->size; ++i) {
double p = exp(cur_p->data[i].logit - max_l_double);
cur_p->data[i].p = p; // Store the scaled probability
cum_sum_double += p;
}
for (size_t i = 0; i < cur_p->size; ++i) {
cur_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
}
#ifdef DEBUG
// Print the updated top 25 probabilities after temperature scaling
LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
for (size_t i = 0; i < 25 && i < cur_p->size; ++i) {
LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, cur_p->data[i].p * 100.0f);
}
#endif
} else {
for (size_t i = 0; i < cur_p->size; ++i) {
cur_p->data[i].logit /= ctx->temp;
}
}
}
static struct llama_sampler * llama_sampler_temp_ext_clone(const struct llama_sampler * smpl) {
const auto * ctx = (const llama_sampler_temp_ext *) smpl->ctx;
return llama_sampler_init_temp_ext(ctx->temp, ctx->delta, ctx->exponent);
}
static void llama_sampler_temp_ext_free(struct llama_sampler * smpl) {
delete (llama_sampler_temp_ext *) smpl->ctx;
}
static struct llama_sampler_i llama_sampler_temp_ext_i = {
/* .name = */ llama_sampler_temp_ext_name,
/* .accept = */ nullptr,
/* .apply = */ llama_sampler_temp_ext_apply,
/* .reset = */ nullptr,
/* .clone = */ llama_sampler_temp_ext_clone,
/* .free = */ llama_sampler_temp_ext_free,
};
struct llama_sampler * llama_sampler_init_temp_ext(float temp, float delta, float exponent) {
return new llama_sampler {
/* .iface = */ &llama_sampler_temp_ext_i,
/* .ctx = */ new llama_sampler_temp_ext {
/* .temp = */ temp,
/* .delta = */ delta,
/* .exponent = */ exponent,
},
};
}
// mirostat
struct llama_sampler_mirostat {
const int32_t n_vocab;
const uint32_t seed;
const float tau;
const float eta;
const int32_t m;
float mu;
std::mt19937 rng;
std::vector<float> probs;
};
static const char * llama_sampler_mirostat_name(const struct llama_sampler * /*smpl*/) {
return "mirostat";
}
static void llama_sampler_mirostat_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
auto * ctx = (llama_sampler_mirostat *) smpl->ctx;
llama_sampler_softmax_impl(cur_p);
// Estimate s_hat using the most probable m tokens
float s_hat = 0.0;
float sum_ti_bi = 0.0;
float sum_ti_sq = 0.0;
for (size_t i = 0; i < size_t(ctx->m - 1) && i < cur_p->size - 1; ++i) {
float t_i = logf(float(i + 2) / float(i + 1));
float b_i = logf(cur_p->data[i].p / cur_p->data[i + 1].p);
sum_ti_bi += t_i * b_i;
sum_ti_sq += t_i * t_i;
}
s_hat = sum_ti_bi / sum_ti_sq;
// Compute k from the estimated s_hat and target surprise value
float epsilon_hat = s_hat - 1;
float k = powf((epsilon_hat * powf(2, ctx->mu)) / (1 - powf(ctx->n_vocab, -epsilon_hat)), 1 / s_hat);
llama_sampler_top_k_impl(cur_p, std::max(int(k), 1));
llama_sampler_softmax_impl(cur_p);
const int idx = llama_sample_dist(cur_p, ctx->rng, ctx->probs);
cur_p->selected = idx;
float observed_surprise = -log2f(cur_p->data[idx].p);
float e = observed_surprise - ctx->tau;
// Update mu using the learning rate and error
ctx->mu = ctx->mu - ctx->eta * e;
}
static struct llama_sampler * llama_sampler_mirostat_clone(const struct llama_sampler * smpl) {
const auto * ctx = (const llama_sampler_mirostat *) smpl->ctx;
auto * result = llama_sampler_init_mirostat(ctx->n_vocab, ctx->seed, ctx->tau, ctx->eta, ctx->m);
// copy the state
{
auto * result_ctx = (llama_sampler_mirostat *) smpl->ctx;
result_ctx->mu = ctx->mu;
result_ctx->rng = ctx->rng;
}
return result;
}
static void llama_sampler_mirostat_reset(struct llama_sampler * smpl) {
auto * ctx = (llama_sampler_mirostat *) smpl->ctx;
ctx->mu = 2.0f*ctx->tau;
ctx->rng = std::mt19937(ctx->seed);
}
static void llama_sampler_mirostat_free(struct llama_sampler * smpl) {
delete (llama_sampler_mirostat *) smpl->ctx;
}
static struct llama_sampler_i llama_sampler_mirostat_i = {
/* .name = */ llama_sampler_mirostat_name,
/* .accept = */ nullptr,
/* .apply = */ llama_sampler_mirostat_apply,
/* .reset = */ llama_sampler_mirostat_reset,
/* .clone = */ llama_sampler_mirostat_clone,
/* .free = */ llama_sampler_mirostat_free,
};
struct llama_sampler * llama_sampler_init_mirostat(int32_t n_vocab, uint32_t seed, float tau, float eta, int32_t m) {
return new llama_sampler {
/* .iface = */ &llama_sampler_mirostat_i,
/* .ctx = */ new llama_sampler_mirostat {
/* .n_vocab = */ n_vocab,
/* .seed = */ seed,
/* .tau = */ tau,
/* .eta = */ eta,
/* .m = */ m,
/* .mu = */ 2.0f*tau,
/* .rng = */ std::mt19937(seed),
/* .probs = */ {},
},
};
}
// mirostat v2
struct llama_sampler_mirostat_v2 {
const uint32_t seed;
const float tau;
const float eta;
float mu;
std::mt19937 rng;
std::vector<float> probs;
};
static const char * llama_sampler_mirostat_v2_name(const struct llama_sampler * /*smpl*/) {
return "mirostat-v2";
}
static void llama_sampler_mirostat_v2_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
auto * ctx = (llama_sampler_mirostat_v2 *) smpl->ctx;
llama_sampler_softmax_impl(cur_p);
// Truncate the words with surprise values greater than mu
cur_p->size = std::distance(cur_p->data, std::find_if(cur_p->data, cur_p->data + cur_p->size, [&](const llama_token_data & candidate) {
return -log2f(candidate.p) > ctx->mu;
}));
if (cur_p->size == 0) {
cur_p->size = 1;
}
// Normalize the probabilities of the remaining words
llama_sampler_softmax_impl(cur_p);
const int idx = llama_sample_dist(cur_p, ctx->rng, ctx->probs);
cur_p->selected = idx;
float observed_surprise = -log2f(cur_p->data[idx].p);
float e = observed_surprise - ctx->tau;
// Update mu using the learning rate and error
ctx->mu = ctx->mu - ctx->eta * e;
}
static void llama_sampler_mirostat_v2_reset(struct llama_sampler * smpl) {
auto * ctx = (llama_sampler_mirostat_v2 *) smpl->ctx;
ctx->mu = 2.0f*ctx->tau;
ctx->rng = std::mt19937(ctx->seed);
}
static struct llama_sampler * llama_sampler_mirostat_v2_clone(const struct llama_sampler * smpl) {
const auto * ctx = (const llama_sampler_mirostat_v2 *) smpl->ctx;
auto * result = llama_sampler_init_mirostat_v2(ctx->seed, ctx->tau, ctx->eta);
// copy the state
{
auto * result_ctx = (llama_sampler_mirostat_v2 *) result->ctx;
result_ctx->mu = ctx->mu;
result_ctx->rng = ctx->rng;
}
return result;
}
static void llama_sampler_mirostat_v2_free(struct llama_sampler * smpl) {
delete (llama_sampler_mirostat_v2 *) smpl->ctx;
}
static struct llama_sampler_i llama_sampler_mirostat_v2_i = {
/* .name = */ llama_sampler_mirostat_v2_name,
/* .accept = */ nullptr,
/* .apply = */ llama_sampler_mirostat_v2_apply,
/* .reset = */ llama_sampler_mirostat_v2_reset,
/* .clone = */ llama_sampler_mirostat_v2_clone,
/* .free = */ llama_sampler_mirostat_v2_free,
};
struct llama_sampler * llama_sampler_init_mirostat_v2(uint32_t seed, float tau, float eta) {
return new llama_sampler {
/* .iface = */ &llama_sampler_mirostat_v2_i,
/* .ctx = */ new llama_sampler_mirostat_v2 {
/* .seed = */ seed,
/* .tau = */ tau,
/* .eta = */ eta,
/* .mu = */ 2.0f*tau,
/* .rng = */ std::mt19937(seed),
/* .probs = */ {},
},
};
}
// grammar
struct llama_sampler_grammar {
const struct llama_vocab * vocab;
std::string grammar_str;
std::string grammar_root;
struct llama_grammar * grammar;
};
static const char * llama_sampler_grammar_name(const struct llama_sampler * /*smpl*/) {
return "grammar";
}
static void llama_sampler_grammar_accept_impl(struct llama_sampler * smpl, llama_token token) {
auto * ctx = (llama_sampler_grammar *) smpl->ctx;
if (ctx->grammar) {
llama_grammar_accept_impl(*ctx->grammar, token);
}
}
static void llama_sampler_grammar_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
auto * ctx = (llama_sampler_grammar *) smpl->ctx;
if (ctx->grammar) {
llama_grammar_apply_impl(*ctx->grammar, cur_p);
}
}
static void llama_sampler_grammar_reset(struct llama_sampler * smpl) {
auto * ctx = (llama_sampler_grammar *) smpl->ctx;
if (!ctx->grammar) {
return;
}
auto * grammar_new = llama_grammar_init_impl(ctx->grammar->vocab, ctx->grammar_str.c_str(), ctx->grammar_root.c_str());
llama_grammar_free_impl(ctx->grammar);
ctx->grammar = grammar_new;
}
static struct llama_sampler * llama_sampler_grammar_clone(const struct llama_sampler * smpl) {
const auto * ctx = (const llama_sampler_grammar *) smpl->ctx;
auto * result = llama_sampler_init_grammar_impl(*ctx->vocab, nullptr, nullptr);
// copy the state
{
auto * result_ctx = (llama_sampler_grammar *) result->ctx;
if (ctx->grammar) {
result_ctx->grammar_str = ctx->grammar_str;
result_ctx->grammar_root = ctx->grammar_root;
result_ctx->grammar = llama_grammar_clone_impl(*ctx->grammar);
}
}
return result;
}
static void llama_sampler_grammar_free(struct llama_sampler * smpl) {
const auto * ctx = (llama_sampler_grammar *) smpl->ctx;
if (ctx->grammar) {
llama_grammar_free_impl(ctx->grammar);
}
delete ctx;
}
static struct llama_sampler_i llama_sampler_grammar_i = {
/* .name = */ llama_sampler_grammar_name,
/* .accept = */ llama_sampler_grammar_accept_impl,
/* .apply = */ llama_sampler_grammar_apply,
/* .reset = */ llama_sampler_grammar_reset,
/* .clone = */ llama_sampler_grammar_clone,
/* .free = */ llama_sampler_grammar_free,
};
struct llama_sampler * llama_sampler_init_grammar_impl(const struct llama_vocab & vocab, const char * grammar_str, const char * grammar_root) {
auto * ctx = new llama_sampler_grammar;
if (grammar_str != nullptr && grammar_str[0] != '\0') {
*ctx = {
/* .vocab = */ &vocab,
/* .grammar_str = */ grammar_str,
/* .grammar_root = */ grammar_root,
/* .grammar = */ llama_grammar_init_impl(&vocab, grammar_str, grammar_root),
};
} else {
*ctx = {
/* .vocab = */ &vocab,
/* .grammar_str = */ {},
/* .grammar_root = */ {},
/* .grammar = */ nullptr,
};
}
return new llama_sampler {
/* .iface = */ &llama_sampler_grammar_i,
/* .ctx = */ ctx,
};
}
// penalties
struct llama_sampler_penalties {
const int32_t n_vocab;
const llama_token special_eos_id;
const llama_token linefeed_id;
const int32_t penalty_last_n;
const float penalty_repeat;
const float penalty_freq;
const float penalty_present;
const bool penalize_nl;
const bool ignore_eos;
ring_buffer<llama_token> prev;
};
static const char * llama_sampler_penalties_name(const struct llama_sampler * /*smpl*/) {
return "penalties";
}
static void llama_sampler_penalties_accept(struct llama_sampler * smpl, llama_token token) {
auto * ctx = (llama_sampler_penalties *) smpl->ctx;
if (ctx->penalty_last_n == 0) {
return;
}
ctx->prev.push_back(token);
}
static void llama_sampler_penalties_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
auto * ctx = (llama_sampler_penalties *) smpl->ctx;
if (ctx->ignore_eos) {
assert(ctx->special_eos_id >= 0);
// optimistically check if the candidates are not yet sorted/shuffled/truncated
if (cur_p->size > (size_t) ctx->special_eos_id && cur_p->data[ctx->special_eos_id].id == ctx->special_eos_id) {
cur_p->data[ctx->special_eos_id].logit = -INFINITY;
} else {
// else, search for the special EOS token
for (size_t i = 0; i < cur_p->size; ++i) {
if (cur_p->data[i].id == ctx->special_eos_id) {
cur_p->data[i].logit = -INFINITY;
break;
}
}
}
}
if ((ctx->penalty_last_n == 0) ||
(ctx->penalty_repeat == 1.0f && ctx->penalty_freq == 0.0f && ctx->penalty_present == 0.0f)) {
return;
}
bool nl_found = false;
size_t nl_idx = 0;
float nl_logit = -INFINITY;
if (!ctx->penalize_nl) {
assert(ctx->linefeed_id >= 0);
// optimistically check if the candidates are not yet sorted/shuffled/truncated
if (cur_p->size > (size_t) ctx->linefeed_id && cur_p->data[ctx->linefeed_id].id == ctx->linefeed_id) {
nl_found = true;
nl_idx = ctx->linefeed_id;
nl_logit = cur_p->data[ctx->linefeed_id].logit;
} else {
// else, search for the linefeed token
for (size_t i = 0; i < cur_p->size; ++i) {
if (cur_p->data[i].id == ctx->linefeed_id) {
nl_found = true;
nl_idx = i;
nl_logit = cur_p->data[i].logit;
break;
}
}
}
}
// Create a frequency map to count occurrences of each token in last_tokens
// TODO: optimize this by maintaining the token count in the sampler context
using llama_token_cnt = std::unordered_map<llama_token, int>;
llama_token_cnt token_count;
for (int i = 0; i < std::min<int>(ctx->penalty_last_n, ctx->prev.size()); ++i) {
token_count[ctx->prev.rat(i)]++;
}
// Apply frequency and presence penalties to the cur_p
for (size_t i = 0; i < cur_p->size; ++i) {
const auto token_iter = token_count.find(cur_p->data[i].id);
if (token_iter == token_count.end()) {
continue;
}
const int count = token_iter->second;
// The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
// This is common fix for this problem, which is to multiply by the penalty instead of dividing.
if (cur_p->data[i].logit <= 0) {
cur_p->data[i].logit *= ctx->penalty_repeat;
} else {
cur_p->data[i].logit /= ctx->penalty_repeat;
}
cur_p->data[i].logit -= float(count) * ctx->penalty_freq + float(count > 0) * ctx->penalty_present;
}
cur_p->sorted = false;
if (!ctx->penalize_nl && nl_found) {
// restore the logit of the newline token if it was penalized
cur_p->data[nl_idx].logit = nl_logit;
}
}
static void llama_sampler_penalties_reset(struct llama_sampler * smpl) {
auto * ctx = (llama_sampler_penalties *) smpl->ctx;
ctx->prev.clear();
}
static struct llama_sampler * llama_sampler_penalties_clone(const struct llama_sampler * smpl) {
const auto * ctx = (const llama_sampler_penalties *) smpl->ctx;
auto * result = llama_sampler_init_penalties(
ctx->n_vocab,
ctx->special_eos_id,
ctx->linefeed_id,
ctx->penalty_last_n,
ctx->penalty_repeat,
ctx->penalty_freq,
ctx->penalty_present,
ctx->penalize_nl,
ctx->ignore_eos);
// copy the state
{
auto * result_ctx = (llama_sampler_penalties *) result->ctx;
result_ctx->prev = ctx->prev;
}
return result;
}
static void llama_sampler_penalties_free(struct llama_sampler * smpl) {
delete (llama_sampler_penalties *) smpl->ctx;
}
static struct llama_sampler_i llama_sampler_penalties_i = {
/* .name = */ llama_sampler_penalties_name,
/* .accept = */ llama_sampler_penalties_accept,
/* .apply = */ llama_sampler_penalties_apply,
/* .reset = */ llama_sampler_penalties_reset,
/* .clone = */ llama_sampler_penalties_clone,
/* .free = */ llama_sampler_penalties_free,
};
struct llama_sampler * llama_sampler_init_penalties(
int32_t n_vocab,
llama_token special_eos_id,
llama_token linefeed_id,
int32_t penalty_last_n,
float penalty_repeat,
float penalty_freq,
float penalty_present,
bool penalize_nl,
bool ignore_eos) {
if (linefeed_id == LLAMA_TOKEN_NULL) {
penalize_nl = true;
}
if (special_eos_id == LLAMA_TOKEN_NULL) {
ignore_eos = false;
}
return new llama_sampler {
/* .iface = */ &llama_sampler_penalties_i,
/* .ctx = */ new llama_sampler_penalties {
/* .n_vocab = */ n_vocab,
/* .special_eos_id = */ special_eos_id,
/* .linefeed_id = */ linefeed_id,
/* .penalty_last_n = */ penalty_last_n,
/* .penalty_repeat = */ penalty_repeat,
/* .penalty_freq = */ penalty_freq,
/* .penalty_present = */ penalty_present,
/* .penalize_nl = */ penalize_nl,
/* .ignore_eos = */ ignore_eos,
/* .prev = */ ring_buffer<llama_token>(penalty_last_n),
},
};
}
// logit-bias
struct llama_sampler_logit_bias {
const int32_t n_vocab;
const std::vector<llama_logit_bias> logit_bias;
std::vector<llama_logit_bias> to_search;
};
static const char * llama_sampler_logit_bias_name(const struct llama_sampler * /*smpl*/) {
return "logit-bias";
}
static void llama_sampler_logit_bias_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
auto * ctx = (llama_sampler_logit_bias *) smpl->ctx;
ctx->to_search.clear();
// update the candidates that have not been shuffled in the vocabulary (i.e. idx == id)
for (const auto & lb : ctx->logit_bias) {
if (lb.token >= 0 && cur_p->size > (size_t) lb.token && cur_p->data[lb.token].id == lb.token) {
cur_p->data[lb.token].logit += lb.bias;
} else {
ctx->to_search.push_back(lb);
}
}
// search for the remaining candidates that were not found in the previous step
for (size_t i = 0; i < cur_p->size; ++i) {
for (const auto & lb : ctx->to_search) {
if (cur_p->data[i].id == lb.token) {
cur_p->data[i].logit += lb.bias;
break;
}
}
}
}
static struct llama_sampler * llama_sampler_logit_bias_clone(const struct llama_sampler * smpl) {
const auto * ctx = (const llama_sampler_logit_bias *) smpl->ctx;
return llama_sampler_init_logit_bias(ctx->n_vocab, ctx->logit_bias.size(), ctx->logit_bias.data());
}
static void llama_sampler_logit_bias_free(struct llama_sampler * smpl) {
delete (llama_sampler_logit_bias *) smpl->ctx;
}
static struct llama_sampler_i llama_sampler_logit_bias_i = {
/* .name = */ llama_sampler_logit_bias_name,
/* .accept = */ nullptr,
/* .apply = */ llama_sampler_logit_bias_apply,
/* .reset = */ nullptr,
/* .clone = */ llama_sampler_logit_bias_clone,
/* .free = */ llama_sampler_logit_bias_free,
};
struct llama_sampler * llama_sampler_init_logit_bias(
int32_t n_vocab,
int32_t n_logit_bias,
const llama_logit_bias * logit_bias) {
return new llama_sampler {
/* .iface = */ &llama_sampler_logit_bias_i,
/* .ctx = */ new llama_sampler_logit_bias {
/* .n_vocab = */ n_vocab,
/* .logit_bias = */ std::vector<llama_logit_bias>(logit_bias, logit_bias + n_logit_bias),
/* .to_search = */ {},
},
};
}