llama.cpp/ggml-backend.h

164 lines
8.9 KiB
C
Raw Normal View History

#pragma once
#include "ggml.h"
#ifdef __cplusplus
extern "C" {
#endif
struct ggml_backend;
// backend buffer
typedef void * ggml_buffer_context_t;
struct ggml_backend_buffer;
struct ggml_backend_buffer_interface {
// allocator functions
void (*free_buffer) (struct ggml_backend_buffer * alloc);
void (*alloc_tensor) (struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor);
void (*free_tensor) (struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor);
void (*reset) (struct ggml_backend_buffer * alloc);
// functions overriden by the backend
size_t (*get_alloc_size)(struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor); // pre-allocation callback
void (*init_tensor) (struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor); // post-allocation callback
void (*free_data) (struct ggml_backend_buffer * alloc); // free backend-specific data // TODO: better name
};
struct ggml_backend_buffer {
struct ggml_backend_buffer_interface interface;
ggml_buffer_context_t context;
struct ggml_backend * backend;
void * backend_data;
bool measure;
size_t max_size;
};
// backend buffer helper functions
GGML_API void ggml_backend_buffer_free(struct ggml_backend_buffer * alloc);
static inline void ggml_backend_buffer_tensor_alloc(struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor) { alloc->interface.alloc_tensor(alloc, tensor); }
2023-07-21 00:28:49 +02:00
static inline void ggml_backend_buffer_tensor_free(struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor) { alloc->interface.free_tensor(alloc, tensor); }
static inline void ggml_backend_buffer_reset(struct ggml_backend_buffer * alloc) { alloc->interface.reset(alloc); }
// default buffer allocator
GGML_API struct ggml_backend_buffer * ggml_allocator_default_init(void * data, size_t size, size_t alignment);
// buffer
// buffers have space for the tensor structs in host memory, and tensor data in backend-specific memory
struct ggml_buffer {
// host memory
size_t mem_size;
void * mem_buffer;
// tensor data
struct ggml_backend_buffer * backend_buffer;
};
GGML_API struct ggml_buffer * ggml_buffer_alloc (struct ggml_backend * backend, size_t size, size_t max_tensors);
GGML_API struct ggml_buffer * ggml_buffer_measure_alloc(struct ggml_backend * backend, size_t max_tensors);
// measure buffers only calculate the maximum size of the buffer without allocating it - useful for pre-allocation
GGML_API void ggml_buffer_free(struct ggml_buffer * buffer);
// backend
typedef void * ggml_backend_context_t;
typedef void * ggml_graph_plan_t;
struct ggml_backend_interface {
const char * (*get_name)(struct ggml_backend * backend);
void (*free)(struct ggml_backend * backend);
// buffer allocation
struct ggml_backend_buffer * (*alloc_buffer)(struct ggml_backend * backend, size_t size);
// tensor data access
// these functions can be asynchronous. helper functions are provided for synchronous access that automatically call synchronize
void (*set_tensor_async)(struct ggml_backend * backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
void (*get_tensor_async)(struct ggml_backend * backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
void (*synchronize) (struct ggml_backend * backend);
// (optional) copy tensor between different backends, allow for single-copy tranfers
void (*cpy_tensor_from)(struct ggml_backend * backend, struct ggml_tensor * src, struct ggml_tensor * dst);
void (*cpy_tensor_to) (struct ggml_backend * backend, struct ggml_tensor * src, struct ggml_tensor * dst);
// compute graph with a plan
ggml_graph_plan_t (*graph_plan_create) (struct ggml_backend * backend, struct ggml_cgraph * cgraph);
void (*graph_plan_free) (struct ggml_backend * backend, ggml_graph_plan_t plan);
void (*graph_plan_compute)(struct ggml_backend * backend, ggml_graph_plan_t plan);
// compute graph without a plan
void (*graph_compute) (struct ggml_backend * backend, struct ggml_cgraph * cgraph);
// check if a backend supports a given operation
// this could be used to fallback automatically to the CPU backend if a backend doesn't support an operation
// bool (*supports_op)(struct ggml_backend * backend, struct ggml_tensor * op);
};
struct ggml_backend {
struct ggml_backend_interface interface;
ggml_backend_context_t context;
};
// backend helper functions
static inline const char * ggml_backend_name(struct ggml_backend * backend) { return backend->interface.get_name(backend); }
static inline void ggml_backend_free(struct ggml_backend * backend) { backend->interface.free(backend); }
static inline void ggml_backend_tensor_set_async(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { tensor->backend->interface.set_tensor_async(tensor->backend, tensor, data, offset, size); }
static inline void ggml_backend_tensor_get_async(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { tensor->backend->interface.get_tensor_async(tensor->backend, tensor, data, offset, size); }
static inline void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { tensor->backend->interface.set_tensor_async(tensor->backend, tensor, data, offset, size); tensor->backend->interface.synchronize(tensor->backend); }
static inline void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { tensor->backend->interface.get_tensor_async(tensor->backend, tensor, data, offset, size); tensor->backend->interface.synchronize(tensor->backend); }
static inline void ggml_backend_synchronize(struct ggml_backend * backend) { backend->interface.synchronize(backend); }
static inline ggml_graph_plan_t ggml_backend_graph_plan_create(struct ggml_backend * backend, struct ggml_cgraph * cgraph) { return backend->interface.graph_plan_create(backend, cgraph); }
static inline void ggml_backend_graph_plan_free(struct ggml_backend * backend, ggml_graph_plan_t plan) { backend->interface.graph_plan_free(backend, plan); }
static inline void ggml_backend_graph_plan_compute(struct ggml_backend * backend, ggml_graph_plan_t plan) { backend->interface.graph_plan_compute(backend, plan); }
static inline void ggml_backend_graph_compute(struct ggml_backend * backend, struct ggml_cgraph * cgraph) { backend->interface.graph_compute(backend, cgraph); }
// tensor copy between different backends
GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst);
// CPU backend
GGML_API struct ggml_backend * ggml_backend_cpu_init(void);
GGML_API void ggml_backend_cpu_set_n_threads(struct ggml_backend * backend_cpu, int n_threads);
///////////////////////////
// graph splitting
#define GGML_MAX_SPLITS 200
#define GGML_MAX_SPLIT_INPUTS 4
struct ggml_graph_split {
char name[GGML_MAX_NAME];
struct ggml_context * ctx;
struct ggml_tensor * src_inputs[GGML_MAX_SPLIT_INPUTS + 1];
struct ggml_tensor * dst_inputs[GGML_MAX_SPLIT_INPUTS + 1];
struct ggml_cgraph * graph;
};
// TODO: this shouldn't be fixed size, allocate from ggml_context
struct ggml_graph_splits {
int n_splits;
struct ggml_graph_split splits[GGML_MAX_SPLITS];
};
// TODO: allocate in ggml_context
struct ggml_graph_splits ggml_graph_split_init(void);
// this won't be needed once we can allocate graphs from a ggml_context
GGML_API void ggml_graph_splits_free(struct ggml_graph_splits * splits);
// add a split to the graph - single and multiple inputs versions
GGML_API void ggml_graph_splits_add(struct ggml_graph_splits * splits, struct ggml_tensor ** input, struct ggml_context * ctx, const char * fmt, ...);
GGML_API void ggml_graph_splits_add_n(struct ggml_graph_splits * splits, struct ggml_tensor *** inputs, struct ggml_context * ctx, const char * fmt, ...);
// build graphs for all splits
GGML_API void ggml_graph_splits_build_forward(struct ggml_graph_splits * splits, struct ggml_tensor * output);
// compute
GGML_API void ggml_graph_splits_compute(struct ggml_graph_splits * splits);
// graph tensor allocator
GGML_API void ggml_graph_allocate_tensors(struct ggml_cgraph * graph, struct ggml_context * ctx);
GGML_API void ggml_graph_allocate_tensors_n(struct ggml_cgraph ** graphs, int n_graphs, struct ggml_context * ctx);
GGML_API void ggml_graph_splits_allocate_tensors(struct ggml_graph_splits * splits);
#ifdef __cplusplus
}
#endif