llama.cpp/src/llama-model-loader.cpp

1011 lines
40 KiB
C++
Raw Normal View History

#include "llama-model-loader.h"
#include "ggml.h"
#include <array>
#include <cinttypes>
#include <cstring>
#include <future>
const char * llama_file_version_name(llama_fver version) {
switch (version) {
case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
case GGUF_FILE_VERSION_V2: return "GGUF V2";
case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)";
}
return "unknown";
}
namespace GGUFMeta {
template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
struct GKV_Base_Type {
static constexpr gguf_type gt = gt_;
static T getter(const gguf_context * ctx, const int kid) {
return gfun(ctx, kid);
}
};
template<typename T> struct GKV_Base;
template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {};
template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {};
template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {};
template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {};
template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {};
template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {};
template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {};
template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {};
template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {};
template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {};
template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {};
template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {};
template<> struct GKV_Base<std::string> {
static constexpr gguf_type gt = GGUF_TYPE_STRING;
static std::string getter(const gguf_context * ctx, const int kid) {
return gguf_get_val_str(ctx, kid);
}
};
struct ArrayInfo {
const gguf_type gt;
const size_t length;
const void * data;
};
template<> struct GKV_Base<ArrayInfo> {
public:
static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
static ArrayInfo getter(const gguf_context *ctx, const int k) {
return ArrayInfo {
gguf_get_arr_type(ctx, k),
size_t(gguf_get_arr_n(ctx, k)),
gguf_get_arr_data(ctx, k),
};
}
};
template<typename T>
class GKV : public GKV_Base<T> {
GKV() = delete;
public:
static T get_kv(const gguf_context * ctx, const int k) {
const enum gguf_type kt = gguf_get_kv_type(ctx, k);
if (kt != GKV::gt) {
throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt)));
}
return GKV::getter(ctx, k);
}
static const char * override_type_to_str(const llama_model_kv_override_type ty) {
switch (ty) {
case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool";
case LLAMA_KV_OVERRIDE_TYPE_INT: return "int";
case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float";
case LLAMA_KV_OVERRIDE_TYPE_STR: return "str";
}
return "unknown";
}
static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) {
if (!ovrd) { return false; }
if (ovrd->tag == expected_type) {
LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
__func__, override_type_to_str(ovrd->tag), ovrd->key);
switch (ovrd->tag) {
case LLAMA_KV_OVERRIDE_TYPE_BOOL: {
LLAMA_LOG_INFO("%s\n", ovrd->val_bool ? "true" : "false");
} break;
case LLAMA_KV_OVERRIDE_TYPE_INT: {
LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->val_i64);
} break;
case LLAMA_KV_OVERRIDE_TYPE_FLOAT: {
LLAMA_LOG_INFO("%.6f\n", ovrd->val_f64);
} break;
case LLAMA_KV_OVERRIDE_TYPE_STR: {
LLAMA_LOG_INFO("%s\n", ovrd->val_str);
} break;
default:
// Shouldn't be possible to end up here, but just in case...
throw std::runtime_error(
format("Unsupported attempt to override %s type for metadata key %s\n",
override_type_to_str(ovrd->tag), ovrd->key));
}
return true;
}
LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n",
__func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag));
return false;
}
template<typename OT>
static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
try_override(OT & target, const struct llama_model_kv_override * ovrd) {
if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) {
target = ovrd->val_bool;
return true;
}
return false;
}
template<typename OT>
static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
try_override(OT & target, const struct llama_model_kv_override * ovrd) {
if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) {
target = ovrd->val_i64;
return true;
}
return false;
}
template<typename OT>
static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
try_override(T & target, const struct llama_model_kv_override * ovrd) {
if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) {
target = ovrd->val_f64;
return true;
}
return false;
}
template<typename OT>
static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
try_override(T & target, const struct llama_model_kv_override * ovrd) {
if (validate_override(LLAMA_KV_OVERRIDE_TYPE_STR, ovrd)) {
target = ovrd->val_str;
return true;
}
return false;
}
static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
if (try_override<T>(target, ovrd)) {
return true;
}
if (k < 0) { return false; }
target = get_kv(ctx, k);
return true;
}
static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
return set(ctx, gguf_find_key(ctx, key), target, ovrd);
}
static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
return set(ctx, key.c_str(), target, ovrd);
}
};
}
template<typename T>
typename std::enable_if<std::is_integral<T>::value, bool>::type
llama_model_loader::get_arr_n(const std::string & key, T & result, bool required) {
const int kid = gguf_find_key(meta.get(), key.c_str());
if (kid < 0) {
if (required) {
throw std::runtime_error(format("key not found in model: %s", key.c_str()));
}
return false;
}
struct GGUFMeta::ArrayInfo arr_info =
GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta.get(), kid);
result = arr_info.length;
return true;
}
template<typename T>
typename std::enable_if<std::is_integral<T>::value, bool>::type
llama_model_loader::get_arr_n(enum llm_kv kid, T & result, bool required) {
return get_arr_n(llm_kv(kid), result, required);
}
template bool llama_model_loader::get_arr_n(enum llm_kv kid, uint32_t & result, bool required);
template<typename T>
bool llama_model_loader::get_arr(const std::string & key, std::vector<T> & result, bool required) {
const int kid = gguf_find_key(meta.get(), key.c_str());
if (kid < 0 || gguf_get_kv_type(meta.get(), kid) != GGUF_TYPE_ARRAY) {
if (required) {
throw std::runtime_error(format("array key not found in model: %s", key.c_str()));
}
return false;
}
struct GGUFMeta::ArrayInfo arr_info =
GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta.get(), kid);
switch (arr_info.gt) {
case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same<T, float>::value)); break;
case GGUF_TYPE_INT32: GGML_ASSERT(
(std::is_same<T, int32_t>::value) ||
(std::is_same<T, uint32_t>::value)); break;
default:
throw std::runtime_error(format("%s is not a float32, int32 array", key.c_str()));
}
result.resize(arr_info.length);
result.assign((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length);
return true;
}
template<typename T, size_t N_MAX>
bool llama_model_loader::get_arr(const std::string & key, std::array<T, N_MAX> & result, bool required) {
const int kid = gguf_find_key(meta.get(), key.c_str());
if (kid < 0 || gguf_get_kv_type(meta.get(), kid) != GGUF_TYPE_ARRAY) {
if (required) {
throw std::runtime_error(format("array key not found in model: %s", key.c_str()));
}
return false;
}
struct GGUFMeta::ArrayInfo arr_info =
GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta.get(), kid);
switch (arr_info.gt) {
case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same<T, float>::value)); break;
case GGUF_TYPE_INT32: GGML_ASSERT(
(std::is_same<T, int32_t>::value) ||
(std::is_same<T, uint32_t>::value)); break;
default:
throw std::runtime_error(format("%s is not a float32, int32 array", key.c_str()));
}
if (arr_info.length > N_MAX) {
throw std::runtime_error(format("array length %u for key %s exceeds max %u", (uint32_t) arr_info.length, key.c_str(), (uint32_t) N_MAX));
}
std::copy((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length, result.begin());
return true;
}
template<typename T>
bool llama_model_loader::get_arr(enum llm_kv kid, T & result, bool required) {
return get_arr(llm_kv(kid), result, required);
}
template<typename T>
bool llama_model_loader::get_key(const std::string & key, T & result, bool required) {
auto it = kv_overrides.find(key);
const struct llama_model_kv_override * override =
it != kv_overrides.end() ? &it->second : nullptr;
const bool found = GGUFMeta::GKV<T>::set(meta.get(), key, result, override);
if (required && !found) {
throw std::runtime_error(format("key not found in model: %s", key.c_str()));
}
return found;
}
template<typename T>
bool llama_model_loader::get_key(enum llm_kv kid, T & result, bool required) {
return get_key(llm_kv(kid), result, required);
}
template bool llama_model_loader::get_key<bool> (enum llm_kv kid, bool & result, bool required);
template bool llama_model_loader::get_key<float> (enum llm_kv kid, float & result, bool required);
template bool llama_model_loader::get_key<uint32_t> (enum llm_kv kid, uint32_t & result, bool required);
template bool llama_model_loader::get_key<std::string>(enum llm_kv kid, std::string & result, bool required);
template<>
bool llama_model_loader::get_key(enum llm_kv kid, enum llama_pooling_type & result, bool required) {
uint32_t tmp;
const bool found = get_key(kid, tmp, required);
if (found) {
result = (enum llama_pooling_type) tmp;
} else {
result = LLAMA_POOLING_TYPE_UNSPECIFIED;
}
return found;
}
// get array of n <= N_MAX elements, or a single element repeated n times
template<typename T, size_t N_MAX>
bool llama_model_loader::get_key_or_arr(const std::string & key, std::array<T, N_MAX> & result, uint32_t n, bool required) {
const int kid = gguf_find_key(meta.get(), key.c_str());
if (kid < 0) {
if (required) {
throw std::runtime_error(format("key not found in model: %s", key.c_str()));
}
return false;
}
if (n > N_MAX) {
throw std::runtime_error(format("n > N_MAX: %u > %u for key %s", (uint32_t) n, (uint32_t) N_MAX, key.c_str()));
}
if (gguf_get_kv_type(meta.get(), kid) == GGUF_TYPE_ARRAY) {
struct GGUFMeta::ArrayInfo arr_info =
GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta.get(), kid);
if (n != arr_info.length) {
throw std::runtime_error(format("key %s has wrong array length; expected %u, got %u", key.c_str(), n, (uint32_t) arr_info.length));
}
return get_arr(key, result, required);
}
T value;
bool ok = get_key(key, value, required);
if (!ok) {
return false;
}
for (uint32_t i = 0; i < n; i++) {
result[i] = value;
}
return true;
}
template<typename T>
bool llama_model_loader::get_key_or_arr(enum llm_kv kid, T & result, uint32_t n, bool required) {
return get_key_or_arr(llm_kv(kid), result, n, required);
}
// TODO: this is not very clever - figure out something better
template bool llama_model_loader::get_key_or_arr<std::array<int, 4>>(enum llm_kv kid, std::array<int, 4> & result, uint32_t n, bool required);
template bool llama_model_loader::get_key_or_arr<std::array<uint32_t, 512>>(enum llm_kv kid, std::array<uint32_t, 512> & result, uint32_t n, bool required);
llama_model_loader::llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) {
int trace = 0;
if (getenv("LLAMA_TRACE")) {
trace = atoi(getenv("LLAMA_TRACE"));
}
if (param_overrides_p != nullptr) {
for (const struct llama_model_kv_override * p = param_overrides_p; p->key[0] != 0; p++) {
kv_overrides.insert({std::string(p->key), *p});
}
}
struct ggml_context * ctx = NULL;
struct gguf_init_params params = {
/*.no_alloc = */ true,
/*.ctx = */ &ctx,
};
meta.reset(gguf_init_from_file(fname.c_str(), params));
if (!meta) {
throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
}
get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
llm_kv = LLM_KV(llm_arch_from_string(arch_name));
files.emplace_back(new llama_file(fname.c_str(), "rb"));
contexts.emplace_back(ctx);
// Save tensors data offset of the main file.
// For subsidiary files, `meta` tensor data offset must not be used,
// so we build a unified tensors index for weights.
for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
std::string tensor_name = std::string(cur->name);
// make sure there is no duplicated tensor names
if (weights_map.find(tensor_name) != weights_map.end()) {
throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", ggml_get_name(cur)));
}
n_elements += ggml_nelements(cur);
n_bytes += ggml_nbytes(cur);
weights_map.emplace(tensor_name, llama_tensor_weight(files.back().get(), 0, meta.get(), cur));
}
uint16_t n_split = 0;
get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false);
// Load additional GGML contexts
if (n_split > 1) {
uint16_t idx = 0;
get_key(llm_kv(LLM_KV_SPLIT_NO), idx);
if (idx != 0) {
throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx));
}
std::vector<char> split_prefix(llama_path_max(), 0);
if (!llama_split_prefix(split_prefix.data(), split_prefix.size(), fname.c_str(), idx, n_split)) {
throw std::runtime_error(format("invalid split file: %s", fname.c_str()));
}
if (trace > 0) {
LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split);
}
std::vector<char> split_path(llama_path_max(), 0);
for (idx = 1; idx < n_split; idx++) {
llama_split_path(split_path.data(), split_path.size(), split_prefix.data(), idx, n_split);
struct gguf_init_params split_params = {
/*.no_alloc = */ true,
/*.ctx = */ &ctx,
};
gguf_context_ptr ctx_gguf { gguf_init_from_file(split_path.data(), split_params) };
if (!ctx_gguf) {
throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path.data()));
}
files.emplace_back(new llama_file(split_path.data(), "rb"));
contexts.emplace_back(ctx);
// Save tensors data offset info of the shard.
for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
std::string tensor_name = std::string(cur->name);
// make sure there is no duplicated tensor names
if (weights_map.find(tensor_name) != weights_map.end()) {
throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", ggml_get_name(cur)));
}
n_elements += ggml_nelements(cur);
n_bytes += ggml_nbytes(cur);
weights_map.emplace(tensor_name, llama_tensor_weight(files.back().get(), idx, ctx_gguf.get(), cur));
}
}
get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors);
// sanity check
{
const int n_tensors_loaded = (int) weights_map.size();
if (n_tensors != n_tensors_loaded) {
throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded));
}
}
LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1);
}
n_kv = gguf_get_n_kv(meta.get());
n_tensors = weights_map.size();
fver = (enum llama_fver) gguf_get_version(meta.get());
LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
__func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
// determine file type based on the number of tensors for each quantization and print meta data
// TODO: make optional
{
std::map<enum ggml_type, uint32_t> n_type;
uint32_t n_type_max = 0;
enum ggml_type type_max = GGML_TYPE_F32;
for (const auto & it : weights_map) {
const llama_tensor_weight & w = it.second;
const ggml_tensor * tensor = w.tensor;
enum ggml_type type = tensor->type;
n_type[type]++;
if (n_type_max < n_type[type]) {
n_type_max = n_type[type];
type_max = type;
}
if (trace > 0) {
const uint16_t sid = w.idx;
LLAMA_LOG_INFO("%s: - tensor split %2d: %32s %-8s [ %s ]\n", __func__, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str());
}
}
switch (type_max) {
case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
case GGML_TYPE_BF16: ftype = LLAMA_FTYPE_MOSTLY_BF16; break;
case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
case GGML_TYPE_TQ1_0: ftype = LLAMA_FTYPE_MOSTLY_TQ1_0; break;
case GGML_TYPE_TQ2_0: ftype = LLAMA_FTYPE_MOSTLY_TQ2_0; break;
case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break;
case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break;
case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break;
case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break;
case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break;
default:
{
LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
ftype = LLAMA_FTYPE_ALL_F32;
} break;
}
// this is a way to mark that we have "guessed" the file type
ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
{
const int kid = gguf_find_key(meta.get(), "general.file_type"); // TODO: use LLM_KV
if (kid >= 0) {
ftype = (llama_ftype) gguf_get_val_u32(meta.get(), kid);
}
}
LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
for (int i = 0; i < n_kv; i++) {
const char * name = gguf_get_key(meta.get(), i);
const enum gguf_type type = gguf_get_kv_type(meta.get(), i);
const std::string type_name =
type == GGUF_TYPE_ARRAY
? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta.get(), i)), gguf_get_arr_n(meta.get(), i))
: gguf_type_name(type);
std::string value = gguf_kv_to_str(meta.get(), i);
const size_t MAX_VALUE_LEN = 40;
if (value.size() > MAX_VALUE_LEN) {
value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
}
replace_all(value, "\n", "\\n");
LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
}
// print type counts
for (auto & kv : n_type) {
if (kv.second == 0) {
continue;
}
LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
}
}
if (!llama_mmap::SUPPORTED) {
LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
use_mmap = false;
}
this->use_mmap = use_mmap;
this->check_tensors = check_tensors;
}
std::string llama_model_loader::get_arch_name() const {
return arch_name;
}
enum llm_arch llama_model_loader::get_arch() const {
return llm_kv.arch;
}
const llama_model_loader::llama_tensor_weight * llama_model_loader::get_weight(const char * name) const {
auto pos = weights_map.find(name);
if (pos != weights_map.end()) {
return &pos->second;
}
return nullptr;
}
const llama_model_loader::llama_tensor_weight & llama_model_loader::require_weight(const char * name) const {
const llama_tensor_weight * weight = get_weight(name);
if (!weight) {
throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
}
return *weight;
}
struct ggml_tensor * llama_model_loader::get_tensor_meta(const char * name) const {
const auto * weight = get_weight(name);
if (!weight) {
return nullptr;
}
return weight->tensor;
}
struct ggml_tensor * llama_model_loader::require_tensor_meta(const std::string & name) const {
struct ggml_tensor * tensor = get_tensor_meta(name.c_str());
if (!tensor) {
throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
}
return tensor;
}
const struct ggml_tensor * llama_model_loader::check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const {
const struct ggml_tensor * cur = get_tensor_meta(name.c_str());
if (cur == NULL) {
if (!required) {
return NULL;
}
throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
}
{
bool is_ok = true;
for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) {
is_ok = false;
break;
}
}
if (!is_ok) {
throw std::runtime_error(
format("%s: tensor '%s' has wrong shape; expected %s, got %s",
__func__, name.c_str(),
llama_format_tensor_shape(ne).c_str(),
llama_format_tensor_shape(cur).c_str()));
}
}
return cur;
}
struct ggml_tensor * llama_model_loader::create_tensor(struct ggml_context * ctx, const std::string & name, const std::initializer_list<int64_t> & ne, int flags) {
const struct ggml_tensor * cur = check_tensor_dims(name, ne, !(flags & TENSOR_NOT_REQUIRED));
if (cur == NULL) {
return NULL;
}
bool duplicated = flags & TENSOR_DUPLICATED;
struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur);
ggml_set_name(tensor, ggml_get_name(cur));
if (duplicated) {
size_data += ggml_nbytes(cur);
} else {
n_created++;
}
return tensor;
}
struct ggml_tensor * llama_model_loader::create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::initializer_list<int64_t> & ne, size_t offset, bool required) {
const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
if (cur == NULL) {
return NULL;
}
if (cur->type != base->type) {
throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type)));
}
std::array<int64_t, GGML_MAX_DIMS> dims;
for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
dims[i] = i < ne.size() ? ne.begin()[i] : 1;
}
struct ggml_tensor * tensor = ggml_view_4d(ctx, base,
dims[0], dims[1], dims[2], dims[3],
cur->nb[1], cur->nb[2], cur->nb[3],
offset);
ggml_set_name(tensor, name.c_str());
n_created++;
return tensor;
}
void llama_model_loader::done_getting_tensors() const {
if (n_created != n_tensors) {
throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
}
}
void llama_model_loader::init_mappings(bool prefetch, llama_mlocks * mlock_mmaps) {
if (use_mmap) {
mappings.reserve(files.size());
mmaps_used.reserve(files.size());
for (const auto & file : files) {
auto * reg = ggml_backend_dev_backend_reg(ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU));
auto * is_numa_fn = (decltype(ggml_is_numa) *) ggml_backend_reg_get_proc_address(reg, "ggml_backend_cpu_is_numa");
std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, is_numa_fn()));
mmaps_used.emplace_back(mapping->size(), 0);
if (mlock_mmaps) {
std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
mlock_mmap->init(mapping->addr());
mlock_mmaps->emplace_back(std::move(mlock_mmap));
}
mappings.emplace_back(std::move(mapping));
}
}
// compute the total size of all tensors for progress reporting
for (const auto & it : weights_map) {
size_data += ggml_nbytes(it.second.tensor);
}
}
void llama_model_loader::get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const {
GGML_ASSERT(!mappings.empty());
const auto & mapping = mappings.at(idx);
*first = mapping->size();
*last = 0;
*addr = mapping->addr();
for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
const auto * weight = get_weight(ggml_get_name(tensor));
if (!weight || weight->idx != idx) {
continue;
}
*first = std::min(*first, weight->offs);
*last = std::max(*last, weight->offs + ggml_nbytes(tensor));
}
}
void llama_model_loader::load_data_for(struct ggml_tensor * cur) const {
const auto & w = require_weight(ggml_get_name(cur));
if (use_mmap) {
const auto & mapping = mappings.at(w.idx);
if (cur->data == nullptr) {
cur->data = (uint8_t *)mapping->addr() + w.offs;
} else {
memcpy(cur->data, (uint8_t *)mapping->addr() + w.offs, ggml_nbytes(cur));
}
} else {
GGML_ASSERT(cur->data != nullptr);
GGML_ASSERT(w.idx < files.size());
const auto & file = files.at(w.idx);
file->seek(w.offs, SEEK_SET);
file->read_raw(cur->data, ggml_nbytes(cur));
}
if (check_tensors && !ggml_validate_row_data(cur->type, cur->data, ggml_nbytes(cur))) {
throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
}
}
bool llama_model_loader::load_all_data(
struct ggml_context * ctx,
llama_buf_map & bufs,
llama_mlocks * lmlocks,
llama_progress_callback progress_callback,
void * progress_callback_user_data) {
GGML_ASSERT(size_data != 0 && "call init_mappings() first");
std::vector<no_init<uint8_t>> read_buf;
std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result;
// 4 staging buffers for async uploads, each sized 1MB seems to be a good default for single NVMe drives.
// NVMe raid configurations might require more / larger buffers.
constexpr size_t n_buffers = 4;
constexpr size_t buffer_size = 1 * 1024 * 1024; // 1MB
std::vector<ggml_backend_buffer_t> host_buffers;
std::vector<ggml_backend_event_t> events;
std::vector<void *> host_ptrs;
size_t buffer_idx = 0; // buffer to use for async loads
ggml_backend_t upload_backend = [&](const char * func) -> ggml_backend_t {
if (use_mmap || check_tensors) {
return nullptr;
}
// When not using mmaped io use async uploads from pinned memory to GPU memory.
// First determine if the backend supports the necessary features for async uploads.
auto * buf = bufs.count(0) ? bufs.at(0) : nullptr;
if (!buf) {
LLAMA_LOG_DEBUG("%s: no buffer found for async uploads\n", func);
return nullptr;
}
auto * buft = ggml_backend_buffer_get_type(buf);
auto * dev = ggml_backend_buft_get_device(buft);
if (!dev) {
LLAMA_LOG_DEBUG("%s: no device found for buffer type %s for async uploads\n", func,
ggml_backend_buft_name(buft));
return nullptr;
}
if (buft != ggml_backend_dev_buffer_type(dev)) {
LLAMA_LOG_DEBUG("%s: buffer type %s is not the default buffer type for device %s for async uploads\n", func,
ggml_backend_buft_name(buft), ggml_backend_dev_name(dev));
return nullptr;
}
ggml_backend_dev_props props;
ggml_backend_dev_get_props(dev, &props);
if (!props.caps.async || !props.caps.host_buffer || !props.caps.events) {
LLAMA_LOG_DEBUG("%s: device %s does not support async, host buffers or events\n", func,
ggml_backend_dev_name(dev));
return nullptr;
}
auto * host_buft = ggml_backend_dev_host_buffer_type(dev);
if (!host_buft) {
LLAMA_LOG_DEBUG("%s: no host buffer type found for device %s\n", func,
ggml_backend_dev_name(dev));
return nullptr;
}
// If the backend is supported, create pinned memory buffers and events for synchronisation.
for (size_t idx = 0; idx < n_buffers; ++idx) {
auto * buf = ggml_backend_buft_alloc_buffer(host_buft, buffer_size);
if (!buf) {
LLAMA_LOG_DEBUG("%s: failed to allocate host buffer for async uploads for device %s\n", func,
ggml_backend_dev_name(dev));
return nullptr;
}
host_buffers.emplace_back(buf);
host_ptrs.emplace_back(ggml_backend_buffer_get_base(buf));
auto * event = ggml_backend_event_new(dev);
if (!event) {
LLAMA_LOG_DEBUG("%s: failed to create event for async uploads for device %s\n", func,
ggml_backend_dev_name(dev));
return nullptr;
}
events.emplace_back(event);
}
ggml_backend_t backend = ggml_backend_dev_init(dev, nullptr);
if (!backend) {
LLAMA_LOG_DEBUG("%s: failed to initialize backend for device %s for async uploads\n", func,
ggml_backend_dev_name(dev));
return nullptr;
}
return backend;
}(__func__);
if (upload_backend) {
LLAMA_LOG_DEBUG("%s: using async uploads for device %s, buffer type %s, backend %s\n", __func__,
ggml_backend_dev_name(ggml_backend_get_device(upload_backend)),
ggml_backend_buft_name(ggml_backend_buffer_get_type(bufs.at(0))),
ggml_backend_name(upload_backend));
}
for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
const auto * weight = get_weight(ggml_get_name(cur));
if (weight == nullptr) {
// this can happen with split experts models
continue;
}
if (progress_callback) {
if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
return false;
}
}
size_t n_size = ggml_nbytes(cur);
if (use_mmap) {
const auto & mapping = mappings.at(weight->idx);
ggml_backend_buffer_t buf_mmap = nullptr;
if (bufs.count(weight->idx)) {
buf_mmap = bufs.at(weight->idx);
}
uint8_t * data = (uint8_t *) mapping->addr() + weight->offs;
if (check_tensors) {
validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] {
return std::make_pair(cur, ggml_validate_row_data(cur->type, data, n_size));
}));
}
GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
if (buf_mmap && cur->data == nullptr) {
ggml_backend_tensor_alloc(buf_mmap, cur, data);
if (lmlocks) {
const auto & lmlock = lmlocks->at(weight->idx);
lmlock->grow_to(weight->offs + n_size);
}
auto & mmap_used = mmaps_used[weight->idx];
mmap_used.first = std::min(mmap_used.first, weight->offs);
mmap_used.second = std::max(mmap_used.second, weight->offs + n_size);
} else {
ggml_backend_tensor_set(cur, data, 0, n_size);
}
} else {
const auto & file = files.at(weight->idx);
if (ggml_backend_buffer_is_host(cur->buffer)) {
file->seek(weight->offs, SEEK_SET);
file->read_raw(cur->data, n_size);
if (check_tensors) {
validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] {
return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size));
}));
}
} else {
// If upload_backend is valid load the tensor in chunks to pinned memory and upload the buffers asynchronously to the GPU.
if (upload_backend) {
file->seek(weight->offs, SEEK_SET);
size_t bytes_read = 0;
while (bytes_read < n_size) {
size_t read_iteration = std::min<size_t>(buffer_size, n_size - bytes_read);
ggml_backend_event_synchronize(events[buffer_idx]);
file->read_raw(host_ptrs[buffer_idx], read_iteration);
ggml_backend_tensor_set_async(upload_backend, cur, host_ptrs[buffer_idx], bytes_read, read_iteration);
ggml_backend_event_record(events[buffer_idx], upload_backend);
bytes_read += read_iteration;
++buffer_idx;
buffer_idx %= n_buffers;
}
} else {
read_buf.resize(n_size);
file->seek(weight->offs, SEEK_SET);
file->read_raw(read_buf.data(), n_size);
ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) {
throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
}
}
}
}
size_done += n_size;
}
// free temporary resources used for async uploads
for (auto * event : events) {
ggml_backend_event_synchronize(event);
ggml_backend_event_free(event);
}
for (auto * buf : host_buffers) {
ggml_backend_buffer_free(buf);
}
ggml_backend_free(upload_backend);
// check validation results
bool validation_failed = false;
for (auto & future : validation_result) {
auto result = future.get();
if (!result.second) {
LLAMA_LOG_ERROR("%s: tensor '%s' has invalid data\n", __func__, ggml_get_name(result.first));
validation_failed = true;
}
}
if (validation_failed) {
throw std::runtime_error("found tensors with invalid data");
}
// check if this is the last call and do final cleanup
if (size_done >= size_data) {
// unmap offloaded tensors and metadata
if (use_mmap) {
for (uint32_t idx = 0; idx < mappings.size(); idx++) {
const auto & mmap_used = mmaps_used.at(idx);
auto & mapping = mappings.at(idx);
mapping->unmap_fragment(0, mmap_used.first);
if (mmap_used.second != 0) {
mapping->unmap_fragment(mmap_used.second, mapping->size());
}
}
}
if (progress_callback) {
// Even though the model is done loading, we still honor
// cancellation since we need to free allocations.
return progress_callback(1.0f, progress_callback_user_data);
}
}
return true;
}