2025-01-03 09:18:53 +01:00
# include "llama-model.h"
# include "llama-impl.h"
# include "llama-model-loader.h"
# include "unicode.h" // TODO: remove
# include <algorithm>
# include <cassert>
# include <functional>
# include <sstream>
# include <stdexcept>
static const size_t kiB = 1024 ;
static const size_t MiB = 1024 * kiB ;
static const size_t GiB = 1024 * MiB ;
const char * llm_type_name ( llm_type type ) {
switch ( type ) {
case MODEL_14M : return " 14M " ;
case MODEL_17M : return " 17M " ;
case MODEL_22M : return " 22M " ;
case MODEL_33M : return " 33M " ;
case MODEL_60M : return " 60M " ;
case MODEL_70M : return " 70M " ;
case MODEL_80M : return " 80M " ;
case MODEL_109M : return " 109M " ;
case MODEL_137M : return " 137M " ;
case MODEL_160M : return " 160M " ;
case MODEL_220M : return " 220M " ;
case MODEL_250M : return " 250M " ;
case MODEL_270M : return " 270M " ;
case MODEL_335M : return " 335M " ;
case MODEL_410M : return " 410M " ;
case MODEL_450M : return " 450M " ;
case MODEL_770M : return " 770M " ;
case MODEL_780M : return " 780M " ;
case MODEL_0_5B : return " 0.5B " ;
case MODEL_1B : return " 1B " ;
case MODEL_1_3B : return " 1.3B " ;
case MODEL_1_4B : return " 1.4B " ;
case MODEL_1_5B : return " 1.5B " ;
case MODEL_1_6B : return " 1.6B " ;
case MODEL_2B : return " 2B " ;
case MODEL_2_8B : return " 2.8B " ;
case MODEL_3B : return " 3B " ;
case MODEL_4B : return " 4B " ;
case MODEL_6B : return " 6B " ;
case MODEL_6_9B : return " 6.9B " ;
case MODEL_7B : return " 7B " ;
case MODEL_8B : return " 8B " ;
case MODEL_9B : return " 9B " ;
case MODEL_11B : return " 11B " ;
case MODEL_12B : return " 12B " ;
case MODEL_13B : return " 13B " ;
case MODEL_14B : return " 14B " ;
case MODEL_15B : return " 15B " ;
case MODEL_16B : return " 16B " ;
case MODEL_20B : return " 20B " ;
case MODEL_30B : return " 30B " ;
case MODEL_32B : return " 32B " ;
case MODEL_34B : return " 34B " ;
case MODEL_35B : return " 35B " ;
case MODEL_40B : return " 40B " ;
case MODEL_65B : return " 65B " ;
case MODEL_70B : return " 70B " ;
case MODEL_236B : return " 236B " ;
case MODEL_314B : return " 314B " ;
2025-01-04 21:06:11 +01:00
case MODEL_671B : return " 671B " ;
2025-01-03 09:18:53 +01:00
case MODEL_SMALL : return " 0.1B " ;
case MODEL_MEDIUM : return " 0.4B " ;
case MODEL_LARGE : return " 0.8B " ;
case MODEL_XL : return " 1.5B " ;
case MODEL_A1_7B : return " A1.7B " ;
case MODEL_A2_7B : return " A2.7B " ;
case MODEL_8x7B : return " 8x7B " ;
case MODEL_8x22B : return " 8x22B " ;
case MODEL_16x12B : return " 16x12B " ;
case MODEL_10B_128x3_66B : return " 10B+128x3.66B " ;
case MODEL_57B_A14B : return " 57B.A14B " ;
case MODEL_27B : return " 27B " ;
default : return " ?B " ;
}
}
static std : : string llama_model_ftype_name ( llama_ftype ftype ) {
if ( ftype & LLAMA_FTYPE_GUESSED ) {
return llama_model_ftype_name ( ( enum llama_ftype ) ( ftype & ~ LLAMA_FTYPE_GUESSED ) ) + " (guessed) " ;
}
switch ( ftype ) {
case LLAMA_FTYPE_ALL_F32 : return " all F32 " ;
case LLAMA_FTYPE_MOSTLY_F16 : return " F16 " ;
case LLAMA_FTYPE_MOSTLY_BF16 : return " BF16 " ;
case LLAMA_FTYPE_MOSTLY_Q4_0 : return " Q4_0 " ;
case LLAMA_FTYPE_MOSTLY_Q4_1 : return " Q4_1 " ;
case LLAMA_FTYPE_MOSTLY_Q5_0 : return " Q5_0 " ;
case LLAMA_FTYPE_MOSTLY_Q5_1 : return " Q5_1 " ;
case LLAMA_FTYPE_MOSTLY_Q8_0 : return " Q8_0 " ;
case LLAMA_FTYPE_MOSTLY_Q2_K : return " Q2_K - Medium " ;
case LLAMA_FTYPE_MOSTLY_Q2_K_S : return " Q2_K - Small " ;
case LLAMA_FTYPE_MOSTLY_Q3_K_S : return " Q3_K - Small " ;
case LLAMA_FTYPE_MOSTLY_Q3_K_M : return " Q3_K - Medium " ;
case LLAMA_FTYPE_MOSTLY_Q3_K_L : return " Q3_K - Large " ;
case LLAMA_FTYPE_MOSTLY_Q4_K_S : return " Q4_K - Small " ;
case LLAMA_FTYPE_MOSTLY_Q4_K_M : return " Q4_K - Medium " ;
case LLAMA_FTYPE_MOSTLY_Q5_K_S : return " Q5_K - Small " ;
case LLAMA_FTYPE_MOSTLY_Q5_K_M : return " Q5_K - Medium " ;
case LLAMA_FTYPE_MOSTLY_Q6_K : return " Q6_K " ;
case LLAMA_FTYPE_MOSTLY_TQ1_0 : return " TQ1_0 - 1.69 bpw ternary " ;
case LLAMA_FTYPE_MOSTLY_TQ2_0 : return " TQ2_0 - 2.06 bpw ternary " ;
case LLAMA_FTYPE_MOSTLY_IQ2_XXS : return " IQ2_XXS - 2.0625 bpw " ;
case LLAMA_FTYPE_MOSTLY_IQ2_XS : return " IQ2_XS - 2.3125 bpw " ;
case LLAMA_FTYPE_MOSTLY_IQ2_S : return " IQ2_S - 2.5 bpw " ;
case LLAMA_FTYPE_MOSTLY_IQ2_M : return " IQ2_M - 2.7 bpw " ;
case LLAMA_FTYPE_MOSTLY_IQ3_XS : return " IQ3_XS - 3.3 bpw " ;
case LLAMA_FTYPE_MOSTLY_IQ3_XXS : return " IQ3_XXS - 3.0625 bpw " ;
case LLAMA_FTYPE_MOSTLY_IQ1_S : return " IQ1_S - 1.5625 bpw " ;
case LLAMA_FTYPE_MOSTLY_IQ1_M : return " IQ1_M - 1.75 bpw " ;
case LLAMA_FTYPE_MOSTLY_IQ4_NL : return " IQ4_NL - 4.5 bpw " ;
case LLAMA_FTYPE_MOSTLY_IQ4_XS : return " IQ4_XS - 4.25 bpw " ;
case LLAMA_FTYPE_MOSTLY_IQ3_S : return " IQ3_S - 3.4375 bpw " ;
case LLAMA_FTYPE_MOSTLY_IQ3_M : return " IQ3_S mix - 3.66 bpw " ;
default : return " unknown, may not work " ;
}
}
2025-01-04 21:06:11 +01:00
static const char * llama_expert_gating_func_name ( llama_expert_gating_func_type type ) {
switch ( type ) {
case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX : return " softmax " ;
case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID : return " sigmoid " ;
default : return " unknown " ;
}
}
2025-01-03 09:18:53 +01:00
std : : string llama_model_arch_name ( const llama_model & model ) {
return llm_arch_name ( model . arch ) ;
}
std : : string llama_model_type_name ( const llama_model & model ) {
return llm_type_name ( model . type ) ;
}
std : : string llama_model_ftype_name ( const llama_model & model ) {
return llama_model_ftype_name ( model . ftype ) ;
}
template < typename F >
static bool buft_supported ( ggml_backend_buffer_type_t buft , ggml_backend_dev_t dev , F & fn ) {
ggml_init_params params = {
/*.mem_size =*/ ggml_tensor_overhead ( ) * 8 ,
/*.mem_buffer =*/ NULL ,
/*.no_alloc =*/ true ,
} ;
ggml_context_ptr ctx { ggml_init ( params ) } ;
if ( ! ctx ) {
throw std : : runtime_error ( format ( " failed to create ggml context " ) ) ;
}
ggml_backend_buffer_ptr buf { ggml_backend_buft_alloc_buffer ( buft , 0 ) } ;
ggml_tensor * op_tensor = fn ( ctx . get ( ) ) ;
for ( int i = 0 ; i < GGML_MAX_SRC ; i + + ) {
if ( op_tensor - > src [ i ] ! = nullptr ) {
assert ( op_tensor - > src [ i ] - > buffer = = nullptr ) ;
op_tensor - > src [ i ] - > buffer = buf . get ( ) ;
}
}
bool op_supported = ggml_backend_dev_supports_op ( dev , op_tensor ) ;
return op_supported ;
}
template < typename F >
static ggml_backend_buffer_type_t select_buft ( const llama_model : : buft_list_t & buft_list , const F & fn ) {
for ( const auto & cur : buft_list ) {
ggml_backend_dev_t cur_dev = cur . first ;
ggml_backend_buffer_type_t cur_buft = cur . second ;
if ( buft_supported ( cur_buft , cur_dev , fn ) ) {
return cur_buft ;
}
}
throw std : : runtime_error ( format ( " no suitable buffer type found " ) ) ;
}
ggml_backend_buffer_type_t llama_model_select_buft ( const llama_model & model , int il ) {
return select_buft (
* model . dev_layer . at ( il ) . buft_list ,
[ & ] ( ggml_context * ctx ) {
ggml_tensor * cur = ggml_new_tensor_1d ( ctx , GGML_TYPE_F32 , model . hparams . n_embd ) ;
ggml_tensor * layer_dir = ggml_new_tensor_1d ( ctx , GGML_TYPE_F32 , model . hparams . n_embd ) ;
return ggml_add ( ctx , cur , layer_dir ) ;
} ) ;
}
struct ggml_tensor * llama_model_get_tensor ( const struct llama_model & model , const char * name ) {
auto it = std : : find_if ( model . tensors_by_name . begin ( ) , model . tensors_by_name . end ( ) ,
[ name ] ( const std : : pair < std : : string , struct ggml_tensor * > & it ) {
return it . first = = name ;
} ) ;
if ( it = = model . tensors_by_name . end ( ) ) {
return nullptr ;
}
return it - > second ;
}
size_t llama_model_max_nodes ( const llama_model & model ) {
return std : : max < size_t > ( 8192 , model . tensors_by_name . size ( ) * 5 ) ;
}
static const std : : map < llama_rope_scaling_type , const char * > LLAMA_ROPE_SCALING_TYPES = {
{ LLAMA_ROPE_SCALING_TYPE_NONE , " none " } ,
{ LLAMA_ROPE_SCALING_TYPE_LINEAR , " linear " } ,
{ LLAMA_ROPE_SCALING_TYPE_YARN , " yarn " } ,
{ LLAMA_ROPE_SCALING_TYPE_LONGROPE , " longrope " } ,
} ;
static llama_rope_scaling_type llama_rope_scaling_type_from_string ( const std : : string & name ) {
for ( const auto & kv : LLAMA_ROPE_SCALING_TYPES ) {
if ( kv . second = = name ) {
return ( llama_rope_scaling_type ) kv . first ;
}
}
return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED ;
}
// NOTE: avoid ever using this except for building the token_to_piece caches
static std : : string llama_token_to_piece ( const struct llama_model * model , llama_token token , bool special ) {
std : : string piece ;
piece . resize ( piece . capacity ( ) ) ; // using string internal cache
const int n_chars = llama_token_to_piece ( model , token , & piece [ 0 ] , piece . size ( ) , 0 , special ) ;
if ( n_chars < 0 ) {
piece . resize ( - n_chars ) ;
int check = llama_token_to_piece ( model , token , & piece [ 0 ] , piece . size ( ) , 0 , special ) ;
GGML_ASSERT ( check = = - n_chars ) ;
}
else {
piece . resize ( n_chars ) ;
}
return piece ;
}
void llm_load_stats ( llama_model_loader & ml , llama_model & model ) {
model . n_elements = ml . n_elements ;
model . n_bytes = ml . n_bytes ;
}
void llm_load_arch ( llama_model_loader & ml , llama_model & model ) {
model . arch = ml . get_arch ( ) ;
if ( model . arch = = LLM_ARCH_UNKNOWN ) {
throw std : : runtime_error ( " unknown model architecture: ' " + ml . get_arch_name ( ) + " ' " ) ;
}
}
void llm_load_hparams ( llama_model_loader & ml , llama_model & model ) {
auto & hparams = model . hparams ;
const gguf_context * ctx = ml . meta . get ( ) ;
// get metadata as string
for ( int i = 0 ; i < gguf_get_n_kv ( ctx ) ; i + + ) {
enum gguf_type type = gguf_get_kv_type ( ctx , i ) ;
if ( type = = GGUF_TYPE_ARRAY ) {
continue ;
}
const char * name = gguf_get_key ( ctx , i ) ;
const std : : string value = gguf_kv_to_str ( ctx , i ) ;
model . gguf_kv . emplace ( name , value ) ;
}
// get general kv
ml . get_key ( LLM_KV_GENERAL_NAME , model . name , false ) ;
// get hparams kv
ml . get_key ( LLM_KV_VOCAB_SIZE , hparams . n_vocab , false ) | | ml . get_arr_n ( LLM_KV_TOKENIZER_LIST , hparams . n_vocab , false ) ;
// everything past this point is not vocab-related
if ( hparams . vocab_only ) {
return ;
}
ml . get_key ( LLM_KV_CONTEXT_LENGTH , hparams . n_ctx_train ) ;
ml . get_key ( LLM_KV_EMBEDDING_LENGTH , hparams . n_embd ) ;
ml . get_key ( LLM_KV_BLOCK_COUNT , hparams . n_layer ) ;
ml . get_key ( LLM_KV_EXPERT_COUNT , hparams . n_expert , false ) ;
ml . get_key ( LLM_KV_EXPERT_USED_COUNT , hparams . n_expert_used , false ) ;
if ( model . arch = = LLM_ARCH_WAVTOKENIZER_DEC ) {
ml . get_key ( LLM_KV_FEATURES_LENGTH , hparams . n_embd_features ) ;
ml . get_key ( LLM_KV_POSNET_EMBEDDING_LENGTH , hparams . posnet . n_embd ) ;
ml . get_key ( LLM_KV_POSNET_BLOCK_COUNT , hparams . posnet . n_layer ) ;
ml . get_key ( LLM_KV_CONVNEXT_EMBEDDING_LENGTH , hparams . convnext . n_embd ) ;
ml . get_key ( LLM_KV_CONVNEXT_BLOCK_COUNT , hparams . convnext . n_layer ) ;
}
GGML_ASSERT ( hparams . n_expert < = LLAMA_MAX_EXPERTS ) ;
GGML_ASSERT ( hparams . n_expert_used < = hparams . n_expert ) ;
if ( hparams . n_expert > 0 ) {
GGML_ASSERT ( hparams . n_expert_used > 0 ) ;
} else {
GGML_ASSERT ( hparams . n_expert_used = = 0 ) ;
}
// zero-out the array hparams
std : : fill ( hparams . n_head_arr . begin ( ) , hparams . n_head_arr . end ( ) , 0 ) ;
std : : fill ( hparams . n_head_kv_arr . begin ( ) , hparams . n_head_kv_arr . end ( ) , 0 ) ;
std : : fill ( hparams . n_ff_arr . begin ( ) , hparams . n_ff_arr . end ( ) , 0 ) ;
ml . get_key_or_arr ( LLM_KV_FEED_FORWARD_LENGTH , hparams . n_ff_arr , hparams . n_layer , false ) ;
ml . get_key_or_arr ( LLM_KV_ATTENTION_HEAD_COUNT , hparams . n_head_arr , hparams . n_layer , false ) ;
// n_head_kv is optional, default to n_head
hparams . n_head_kv_arr = hparams . n_head_arr ;
ml . get_key_or_arr ( LLM_KV_ATTENTION_HEAD_COUNT_KV , hparams . n_head_kv_arr , hparams . n_layer , false ) ;
bool rope_finetuned = false ;
ml . get_key ( LLM_KV_ROPE_SCALING_FINETUNED , rope_finetuned , false ) ;
hparams . rope_finetuned = rope_finetuned ;
hparams . n_ctx_orig_yarn = hparams . n_ctx_train ;
ml . get_key ( LLM_KV_ROPE_SCALING_ORIG_CTX_LEN , hparams . n_ctx_orig_yarn , false ) ;
// rope_freq_base (optional)
hparams . rope_freq_base_train = 10000.0f ;
ml . get_key ( LLM_KV_ROPE_FREQ_BASE , hparams . rope_freq_base_train , false ) ;
std : : string rope_scaling ( " linear " ) ;
ml . get_key ( LLM_KV_ROPE_SCALING_TYPE , rope_scaling , false ) ;
hparams . rope_scaling_type_train = llama_rope_scaling_type_from_string ( rope_scaling ) ;
GGML_ASSERT ( hparams . rope_scaling_type_train ! = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED ) ;
// rope_freq_scale (inverse of the kv) is optional
float ropescale = 0.0f ;
if ( ! ml . get_key ( LLM_KV_ROPE_SCALING_FACTOR , ropescale , false ) ) {
// try the old key name
ml . get_key ( LLM_KV_ROPE_SCALE_LINEAR , ropescale , false ) ;
}
hparams . rope_freq_scale_train = ropescale = = 0.0f ? 1.0f : 1.0f / ropescale ;
ml . get_key ( LLM_KV_ROPE_SCALING_ATTN_FACTOR , hparams . rope_attn_factor , false ) ;
// non-transformer models do not have attention heads
if ( hparams . n_head ( ) > 0 ) {
// gpt-neox n_rot = rotary_pct * (n_embd / n_head)
// gpt-j n_rot = rotary_dim
hparams . n_embd_head_k = hparams . n_embd / hparams . n_head ( ) ;
ml . get_key ( LLM_KV_ATTENTION_KEY_LENGTH , hparams . n_embd_head_k , false ) ;
hparams . n_embd_head_v = hparams . n_embd / hparams . n_head ( ) ;
ml . get_key ( LLM_KV_ATTENTION_VALUE_LENGTH , hparams . n_embd_head_v , false ) ;
// sanity check for n_rot (optional)
hparams . n_rot = hparams . n_embd_head_k ;
ml . get_key ( LLM_KV_ROPE_DIMENSION_COUNT , hparams . n_rot , false ) ;
if ( model . arch = = LLM_ARCH_LLAMA | | model . arch = = LLM_ARCH_DECI | | model . arch = = LLM_ARCH_FALCON ) {
if ( hparams . n_rot ! = hparams . n_embd_head_k ) {
throw std : : runtime_error ( format ( " invalid n_rot: %u, expected %u " , hparams . n_rot , hparams . n_embd_head_k ) ) ;
}
}
} else {
hparams . n_rot = 0 ;
hparams . n_embd_head_k = 0 ;
hparams . n_embd_head_v = 0 ;
}
using e_model = llm_type ; // TMP
// arch-specific KVs
switch ( model . arch ) {
case LLM_ARCH_LLAMA :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_RMS_EPS , hparams . f_norm_rms_eps ) ;
if ( hparams . n_expert = = 8 ) {
switch ( hparams . n_layer ) {
case 32 : model . type = e_model : : MODEL_8x7B ; break ;
case 56 : model . type = e_model : : MODEL_8x22B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} else {
switch ( hparams . n_layer ) {
case 16 : model . type = e_model : : MODEL_1B ; break ; // Llama 3.2 1B
case 22 : model . type = e_model : : MODEL_1B ; break ;
case 26 : model . type = e_model : : MODEL_3B ; break ;
case 28 : model . type = e_model : : MODEL_3B ; break ; // Llama 3.2 3B
// granite uses a vocab with len 49152
case 32 : model . type = hparams . n_vocab = = 49152 ? e_model : : MODEL_3B : ( hparams . n_vocab < 40000 ? e_model : : MODEL_7B : e_model : : MODEL_8B ) ; break ;
case 36 : model . type = e_model : : MODEL_8B ; break ; // granite
case 40 : model . type = e_model : : MODEL_13B ; break ;
case 48 : model . type = e_model : : MODEL_34B ; break ;
case 60 : model . type = e_model : : MODEL_30B ; break ;
case 80 : model . type = hparams . n_head ( ) = = hparams . n_head_kv ( ) ? e_model : : MODEL_65B : e_model : : MODEL_70B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
}
} break ;
case LLM_ARCH_DECI :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_RMS_EPS , hparams . f_norm_rms_eps ) ;
switch ( hparams . n_layer ) {
case 32 : model . type = e_model : : MODEL_7B ; break ;
case 80 : model . type = e_model : : MODEL_70B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_MINICPM :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_RMS_EPS , hparams . f_norm_rms_eps ) ;
ml . get_key ( LLM_KV_EMBEDDING_SCALE , hparams . f_embedding_scale ) ;
ml . get_key ( LLM_KV_RESIDUAL_SCALE , hparams . f_residual_scale ) ;
ml . get_key ( LLM_KV_LOGIT_SCALE , hparams . f_logit_scale ) ;
switch ( hparams . n_layer ) {
case 52 : model . type = e_model : : MODEL_1B ; break ;
case 40 : model . type = e_model : : MODEL_2B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_MINICPM3 :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_RMS_EPS , hparams . f_norm_rms_eps ) ;
ml . get_key ( LLM_KV_ATTENTION_Q_LORA_RANK , hparams . n_lora_q ) ;
ml . get_key ( LLM_KV_ATTENTION_KV_LORA_RANK , hparams . n_lora_kv ) ;
switch ( hparams . n_layer ) {
case 62 : model . type = e_model : : MODEL_4B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_GROK :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_RMS_EPS , hparams . f_norm_rms_eps ) ;
switch ( hparams . n_layer ) {
case 64 : model . type = e_model : : MODEL_314B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_FALCON :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_EPS , hparams . f_norm_eps ) ;
switch ( hparams . n_layer ) {
case 32 : model . type = e_model : : MODEL_7B ; break ;
case 60 : model . type = e_model : : MODEL_40B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_BAICHUAN :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_RMS_EPS , hparams . f_norm_rms_eps ) ;
switch ( hparams . n_layer ) {
case 32 : model . type = e_model : : MODEL_7B ; break ;
case 40 : model . type = e_model : : MODEL_13B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
if ( model . type = = e_model : : MODEL_13B ) {
// TODO: become GGUF KV parameter
hparams . f_max_alibi_bias = 8.0f ;
}
} break ;
case LLM_ARCH_STARCODER :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_EPS , hparams . f_norm_eps ) ;
switch ( hparams . n_layer ) {
case 24 : model . type = e_model : : MODEL_1B ; break ;
case 36 : model . type = e_model : : MODEL_3B ; break ;
case 42 : model . type = e_model : : MODEL_7B ; break ;
case 40 : model . type = e_model : : MODEL_15B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_REFACT :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_RMS_EPS , hparams . f_norm_rms_eps ) ;
switch ( hparams . n_layer ) {
case 32 : model . type = e_model : : MODEL_1B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
// TODO: become GGUF KV parameter
hparams . f_max_alibi_bias = 8.0f ;
} break ;
case LLM_ARCH_BERT :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_EPS , hparams . f_norm_eps ) ;
ml . get_key ( LLM_KV_ATTENTION_CAUSAL , hparams . causal_attn ) ;
ml . get_key ( LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT , hparams . n_vocab_type ) ;
ml . get_key ( LLM_KV_POOLING_TYPE , hparams . pooling_type , false ) ;
switch ( hparams . n_layer ) {
case 3 :
model . type = e_model : : MODEL_17M ; break ; // bge-micro
case 6 :
model . type = e_model : : MODEL_22M ; break ; // MiniLM-L6
case 12 :
switch ( hparams . n_embd ) {
case 384 : model . type = e_model : : MODEL_33M ; break ; // MiniLM-L12, bge-small
case 768 : model . type = e_model : : MODEL_109M ; break ; // bge-base
default : model . type = e_model : : MODEL_UNKNOWN ;
} break ;
case 24 :
model . type = e_model : : MODEL_335M ; break ; // bge-large
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_JINA_BERT_V2 :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_EPS , hparams . f_norm_eps ) ;
ml . get_key ( LLM_KV_ATTENTION_CAUSAL , hparams . causal_attn ) ;
ml . get_key ( LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT , hparams . n_vocab_type ) ;
ml . get_key ( LLM_KV_POOLING_TYPE , hparams . pooling_type , false ) ;
hparams . f_max_alibi_bias = 8.0f ;
switch ( hparams . n_layer ) {
case 4 : model . type = e_model : : MODEL_33M ; break ; // jina-embeddings-small
case 12 : model . type = e_model : : MODEL_137M ; break ; // jina-embeddings-base
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_NOMIC_BERT :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_EPS , hparams . f_norm_eps ) ;
ml . get_key ( LLM_KV_ATTENTION_CAUSAL , hparams . causal_attn ) ;
ml . get_key ( LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT , hparams . n_vocab_type ) ;
ml . get_key ( LLM_KV_POOLING_TYPE , hparams . pooling_type ) ;
if ( hparams . n_layer = = 12 & & hparams . n_embd = = 768 ) {
model . type = e_model : : MODEL_137M ;
}
} break ;
case LLM_ARCH_BLOOM :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_EPS , hparams . f_norm_eps ) ;
switch ( hparams . n_layer ) {
case 24 : model . type = e_model : : MODEL_1B ; break ;
case 30 :
switch ( hparams . n_embd ) {
case 2560 : model . type = e_model : : MODEL_3B ; break ;
case 4096 : model . type = e_model : : MODEL_7B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
} break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
// TODO: become GGUF KV parameter
hparams . f_max_alibi_bias = 8.0f ;
} break ;
case LLM_ARCH_MPT :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_EPS , hparams . f_norm_eps ) ;
ml . get_key ( LLM_KV_ATTENTION_CLAMP_KQV , hparams . f_clamp_kqv , false ) ;
ml . get_key ( LLM_KV_ATTENTION_MAX_ALIBI_BIAS , hparams . f_max_alibi_bias ) ;
switch ( hparams . n_layer ) {
case 32 : model . type = e_model : : MODEL_7B ; break ;
case 48 : model . type = e_model : : MODEL_30B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_STABLELM :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_EPS , hparams . f_norm_eps ) ;
switch ( hparams . n_layer ) {
case 24 : model . type = e_model : : MODEL_1B ; break ;
case 32 : model . type = e_model : : MODEL_3B ; break ;
case 40 : model . type = e_model : : MODEL_12B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_QWEN :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_RMS_EPS , hparams . f_norm_rms_eps ) ;
switch ( hparams . n_layer ) {
case 32 : model . type = e_model : : MODEL_7B ; break ;
case 40 : model . type = e_model : : MODEL_13B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_QWEN2VL :
{
ml . get_key_or_arr ( LLM_KV_ROPE_DIMENSION_SECTIONS , hparams . rope_sections , 4 , true ) ;
}
// fall through
case LLM_ARCH_QWEN2 :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_RMS_EPS , hparams . f_norm_rms_eps ) ;
switch ( hparams . n_layer ) {
case 24 : model . type = hparams . n_embd = = 1024 ? e_model : : MODEL_0_5B : e_model : : MODEL_1B ; break ;
case 28 : model . type = hparams . n_embd = = 1536 ? e_model : : MODEL_1_5B : e_model : : MODEL_7B ; break ;
case 32 : model . type = e_model : : MODEL_7B ; break ;
case 36 : model . type = e_model : : MODEL_3B ; break ;
case 40 : model . type = hparams . n_head ( ) = = 20 ? e_model : : MODEL_4B : e_model : : MODEL_13B ; break ;
case 48 : model . type = e_model : : MODEL_14B ; break ;
case 64 : model . type = e_model : : MODEL_32B ; break ;
case 80 : model . type = e_model : : MODEL_70B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_QWEN2MOE :
{
ml . get_key ( LLM_KV_EXPERT_FEED_FORWARD_LENGTH , hparams . n_ff_exp , false ) ;
ml . get_key ( LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH , hparams . n_ff_shexp , false ) ;
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_RMS_EPS , hparams . f_norm_rms_eps ) ;
switch ( hparams . n_layer ) {
case 24 : model . type = e_model : : MODEL_A2_7B ; break ;
case 28 : model . type = e_model : : MODEL_57B_A14B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_PHI2 :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_EPS , hparams . f_norm_eps ) ;
switch ( hparams . n_layer ) {
case 24 : model . type = e_model : : MODEL_1B ; break ;
case 32 : model . type = e_model : : MODEL_3B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_PHI3 :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_RMS_EPS , hparams . f_norm_rms_eps ) ;
switch ( hparams . n_layer ) {
case 24 : model . type = e_model : : MODEL_1B ; break ;
case 32 : model . type = e_model : : MODEL_3B ; break ;
case 40 : model . type = e_model : : MODEL_14B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
// for backward compatibility ; see: https://github.com/ggerganov/llama.cpp/pull/8931
if ( ( hparams . n_layer = = 32 | | hparams . n_layer = = 40 ) & & hparams . n_ctx_train = = 4096 ) {
// default value for Phi-3-mini-4k-instruct and Phi-3-medium-4k-instruct
hparams . n_swa = 2047 ;
} else if ( hparams . n_layer = = 32 & & hparams . n_head_kv ( 0 ) = = 32 & & hparams . n_ctx_train = = 131072 ) {
// default value for Phi-3-mini-128k-instruct
hparams . n_swa = 262144 ;
} else if ( hparams . n_layer = = 40 & & hparams . n_ctx_train = = 131072 ) {
// default value for Phi-3-medium-128k-instruct
hparams . n_swa = 131072 ;
}
bool found_swa = ml . get_key ( LLM_KV_ATTENTION_SLIDING_WINDOW , hparams . n_swa , false ) ;
if ( ! found_swa & & hparams . n_swa = = 0 ) {
throw std : : runtime_error ( " invalid value for sliding_window " ) ;
}
} break ;
case LLM_ARCH_PLAMO :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_RMS_EPS , hparams . f_norm_rms_eps ) ;
switch ( hparams . n_layer ) {
case 40 : model . type = e_model : : MODEL_13B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_GPT2 :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_EPS , hparams . f_norm_eps ) ;
switch ( hparams . n_layer ) {
case 12 : model . type = e_model : : MODEL_SMALL ; break ;
case 24 : model . type = e_model : : MODEL_MEDIUM ; break ;
case 36 : model . type = e_model : : MODEL_LARGE ; break ;
case 48 : model . type = e_model : : MODEL_XL ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_CODESHELL :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_EPS , hparams . f_norm_eps ) ;
switch ( hparams . n_layer ) {
case 42 : model . type = e_model : : MODEL_7B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_ORION :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_EPS , hparams . f_norm_eps ) ;
switch ( hparams . n_layer ) {
case 40 : model . type = e_model : : MODEL_14B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_INTERNLM2 :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_RMS_EPS , hparams . f_norm_rms_eps ) ;
switch ( hparams . n_layer ) {
case 32 : model . type = e_model : : MODEL_7B ; break ;
case 48 : model . type = e_model : : MODEL_20B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_GEMMA :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_RMS_EPS , hparams . f_norm_rms_eps ) ;
switch ( hparams . n_layer ) {
case 18 : model . type = e_model : : MODEL_2B ; break ;
case 28 : model . type = e_model : : MODEL_7B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_GEMMA2 :
{
hparams . n_swa = 4096 ; // default value of gemma 2
ml . get_key ( LLM_KV_ATTENTION_SLIDING_WINDOW , hparams . n_swa , false ) ;
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_RMS_EPS , hparams . f_norm_rms_eps ) ;
ml . get_key ( LLM_KV_ATTN_LOGIT_SOFTCAPPING , hparams . f_attn_logit_softcapping , false ) ;
ml . get_key ( LLM_KV_FINAL_LOGIT_SOFTCAPPING , hparams . f_final_logit_softcapping , false ) ;
hparams . attn_soft_cap = true ;
switch ( hparams . n_layer ) {
case 26 : model . type = e_model : : MODEL_2B ; break ;
case 42 : model . type = e_model : : MODEL_9B ; break ;
case 46 : model . type = e_model : : MODEL_27B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_STARCODER2 :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_EPS , hparams . f_norm_eps ) ;
switch ( hparams . n_layer ) {
case 30 : model . type = e_model : : MODEL_3B ; break ;
case 32 : model . type = e_model : : MODEL_7B ; break ;
case 40 : model . type = e_model : : MODEL_15B ; break ;
case 52 : model . type = e_model : : MODEL_20B ; break ; // granite
case 88 : model . type = e_model : : MODEL_34B ; break ; // granite
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_MAMBA :
{
ml . get_key ( LLM_KV_SSM_CONV_KERNEL , hparams . ssm_d_conv ) ;
ml . get_key ( LLM_KV_SSM_INNER_SIZE , hparams . ssm_d_inner ) ;
ml . get_key ( LLM_KV_SSM_STATE_SIZE , hparams . ssm_d_state ) ;
ml . get_key ( LLM_KV_SSM_TIME_STEP_RANK , hparams . ssm_dt_rank ) ;
ml . get_key ( LLM_KV_SSM_DT_B_C_RMS , hparams . ssm_dt_b_c_rms , false ) ;
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_RMS_EPS , hparams . f_norm_rms_eps ) ;
switch ( hparams . n_layer ) {
case 24 :
switch ( hparams . n_embd ) {
case 768 : model . type = e_model : : MODEL_SMALL ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
} break ;
case 48 :
switch ( hparams . n_embd ) {
case 1024 : model . type = e_model : : MODEL_MEDIUM ; break ;
case 1536 : model . type = e_model : : MODEL_LARGE ; break ;
case 2048 : model . type = e_model : : MODEL_XL ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
} break ;
case 64 :
switch ( hparams . n_embd ) {
case 2560 : model . type = e_model : : MODEL_3B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
} break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_XVERSE :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_RMS_EPS , hparams . f_norm_rms_eps ) ;
switch ( hparams . n_layer ) {
case 32 : model . type = e_model : : MODEL_7B ; break ;
case 40 : model . type = e_model : : MODEL_13B ; break ;
case 80 : model . type = e_model : : MODEL_65B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_COMMAND_R :
{
ml . get_key ( LLM_KV_LOGIT_SCALE , hparams . f_logit_scale ) ;
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_EPS , hparams . f_norm_eps ) ;
switch ( hparams . n_layer ) {
case 40 : model . type = e_model : : MODEL_35B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
2025-01-04 15:33:31 +01:00
case LLM_ARCH_COHERE2 :
{
ml . get_key ( LLM_KV_ATTENTION_SLIDING_WINDOW , hparams . n_swa ) ;
ml . get_key ( LLM_KV_LOGIT_SCALE , hparams . f_logit_scale ) ;
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_EPS , hparams . f_norm_eps ) ;
switch ( hparams . n_layer ) {
case 32 : model . type = e_model : : MODEL_8B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
2025-01-03 09:18:53 +01:00
case LLM_ARCH_DBRX :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_EPS , hparams . f_norm_eps ) ;
ml . get_key ( LLM_KV_ATTENTION_CLAMP_KQV , hparams . f_clamp_kqv ) ;
switch ( hparams . n_layer ) {
case 40 : model . type = e_model : : MODEL_16x12B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_OLMO :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_EPS , hparams . f_norm_eps ) ;
ml . get_key ( LLM_KV_ATTENTION_CLAMP_KQV , hparams . f_clamp_kqv , false ) ;
switch ( hparams . n_layer ) {
case 22 : model . type = e_model : : MODEL_1B ; break ;
case 32 : model . type = e_model : : MODEL_7B ; break ;
case 80 : model . type = e_model : : MODEL_70B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_OLMO2 :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_RMS_EPS , hparams . f_norm_rms_eps ) ;
switch ( hparams . n_layer ) {
case 16 : model . type = e_model : : MODEL_1B ; break ;
case 32 : model . type = e_model : : MODEL_7B ; break ;
case 40 : model . type = e_model : : MODEL_13B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_OLMOE :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_RMS_EPS , hparams . f_norm_rms_eps ) ;
switch ( hparams . n_layer ) {
case 16 : model . type = e_model : : MODEL_A1_7B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_OPENELM :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_RMS_EPS , hparams . f_norm_rms_eps ) ;
switch ( hparams . n_layer ) {
case 16 : model . type = e_model : : MODEL_270M ; break ;
case 20 : model . type = e_model : : MODEL_450M ; break ;
case 28 : model . type = e_model : : MODEL_1B ; break ;
case 36 : model . type = e_model : : MODEL_3B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_GPTNEOX :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_EPS , hparams . f_norm_eps ) ;
ml . get_key ( LLM_KV_USE_PARALLEL_RESIDUAL , hparams . use_par_res ) ;
switch ( hparams . n_layer ) {
case 6 :
switch ( hparams . n_ff ( ) ) {
case 512 : model . type = e_model : : MODEL_14M ; break ;
case 2048 : model . type = e_model : : MODEL_70M ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
} break ;
case 12 :
switch ( hparams . n_ff ( ) ) {
case 3072 : model . type = e_model : : MODEL_160M ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
} break ;
case 16 :
switch ( hparams . n_ff ( ) ) {
case 8192 : model . type = e_model : : MODEL_1B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
} break ;
case 24 :
switch ( hparams . n_ff ( ) ) {
case 4096 : model . type = e_model : : MODEL_410M ; break ;
case 8192 : model . type = e_model : : MODEL_1_4B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
} break ;
case 32 :
switch ( hparams . n_ff ( ) ) {
case 10240 : model . type = e_model : : MODEL_2_8B ; break ;
case 16384 : model . type = e_model : : MODEL_6_9B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
} break ;
case 36 :
switch ( hparams . n_ff ( ) ) {
case 20480 : model . type = e_model : : MODEL_12B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
} break ;
case 44 :
switch ( hparams . n_ff ( ) ) {
case 24576 : model . type = e_model : : MODEL_20B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
} break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_ARCTIC :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_RMS_EPS , hparams . f_norm_rms_eps ) ;
if ( hparams . n_expert = = 128 ) {
switch ( hparams . n_layer ) {
case 35 : model . type = e_model : : MODEL_10B_128x3_66B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} else {
model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_DEEPSEEK :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_RMS_EPS , hparams . f_norm_rms_eps ) ;
ml . get_key ( LLM_KV_LEADING_DENSE_BLOCK_COUNT , hparams . n_layer_dense_lead ) ;
ml . get_key ( LLM_KV_EXPERT_FEED_FORWARD_LENGTH , hparams . n_ff_exp ) ;
ml . get_key ( LLM_KV_EXPERT_SHARED_COUNT , hparams . n_expert_shared ) ;
ml . get_key ( LLM_KV_EXPERT_WEIGHTS_SCALE , hparams . expert_weights_scale ) ;
switch ( hparams . n_layer ) {
case 28 : model . type = e_model : : MODEL_20B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_DEEPSEEK2 :
{
bool is_lite = ( hparams . n_layer = = 27 ) ;
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_RMS_EPS , hparams . f_norm_rms_eps ) ;
ml . get_key ( LLM_KV_LEADING_DENSE_BLOCK_COUNT , hparams . n_layer_dense_lead ) ;
if ( ! is_lite ) {
ml . get_key ( LLM_KV_ATTENTION_Q_LORA_RANK , hparams . n_lora_q ) ;
}
ml . get_key ( LLM_KV_ATTENTION_KV_LORA_RANK , hparams . n_lora_kv ) ;
ml . get_key ( LLM_KV_EXPERT_FEED_FORWARD_LENGTH , hparams . n_ff_exp ) ;
ml . get_key ( LLM_KV_EXPERT_SHARED_COUNT , hparams . n_expert_shared ) ;
ml . get_key ( LLM_KV_EXPERT_WEIGHTS_SCALE , hparams . expert_weights_scale ) ;
2025-01-04 21:06:11 +01:00
ml . get_key ( LLM_KV_EXPERT_WEIGHTS_NORM , hparams . expert_weights_norm , false ) ;
ml . get_key ( LLM_KV_EXPERT_GATING_FUNC , hparams . expert_gating_func , false ) ;
if ( hparams . expert_gating_func = = LLAMA_EXPERT_GATING_FUNC_TYPE_NONE ) {
// for compatibility with existing DeepSeek V2 and V2.5 GGUFs
// that have no expert_gating_func model parameter set
hparams . expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX ;
}
2025-01-03 09:18:53 +01:00
ml . get_key ( LLM_KV_ROPE_SCALING_YARN_LOG_MUL , hparams . rope_yarn_log_mul ) ;
switch ( hparams . n_layer ) {
case 27 : model . type = e_model : : MODEL_16B ; break ;
case 60 : model . type = e_model : : MODEL_236B ; break ;
2025-01-04 21:06:11 +01:00
case 61 : model . type = e_model : : MODEL_671B ; break ;
2025-01-03 09:18:53 +01:00
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_CHATGLM :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_RMS_EPS , hparams . f_norm_rms_eps ) ;
switch ( hparams . n_layer ) {
case 28 : model . type = e_model : : MODEL_6B ; break ;
case 40 : model . type = e_model : : MODEL_9B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_BITNET :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_RMS_EPS , hparams . f_norm_rms_eps ) ;
switch ( hparams . n_layer ) {
case 26 : model . type = e_model : : MODEL_3B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_T5 :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_RMS_EPS , hparams . f_norm_rms_eps ) ;
ml . get_key ( LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT , hparams . n_rel_attn_bkts ) ;
uint32_t dec_start_token_id ;
if ( ml . get_key ( LLM_KV_DECODER_START_TOKEN_ID , dec_start_token_id , false ) ) {
hparams . dec_start_token_id = dec_start_token_id ;
}
switch ( hparams . n_layer ) {
case 6 : model . type = e_model : : MODEL_60M ; break ; // t5-small
case 8 : model . type = e_model : : MODEL_80M ; break ; // flan-t5-small
case 12 :
switch ( hparams . n_ff ( ) ) {
case 3072 : model . type = e_model : : MODEL_220M ; break ; // t5-base
case 2048 : model . type = e_model : : MODEL_250M ; break ; // flan-t5-base
default : model . type = e_model : : MODEL_UNKNOWN ;
} break ;
case 24 :
switch ( hparams . n_ff ( ) ) {
case 4096 : model . type = e_model : : MODEL_770M ; break ; // t5-large
case 2816 : model . type = e_model : : MODEL_780M ; break ; // flan-t5-large
case 16384 : model . type = e_model : : MODEL_3B ; break ; // t5-3b
case 5120 : model . type = e_model : : MODEL_3B ; break ; // flan-t5-xl
case 65536 : model . type = e_model : : MODEL_11B ; break ; // t5-11b
case 10240 : model . type = e_model : : MODEL_11B ; break ; // flan-t5-xxl
default : model . type = e_model : : MODEL_UNKNOWN ;
} break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_T5ENCODER :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_RMS_EPS , hparams . f_norm_rms_eps ) ;
ml . get_key ( LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT , hparams . n_rel_attn_bkts ) ;
model . type = e_model : : MODEL_UNKNOWN ;
} break ;
case LLM_ARCH_JAIS :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_EPS , hparams . f_norm_eps ) ;
ml . get_key ( LLM_KV_ATTENTION_MAX_ALIBI_BIAS , hparams . f_max_alibi_bias ) ;
switch ( hparams . n_layer ) {
case 24 : model . type = e_model : : MODEL_1_3B ; break ;
case 40 : model . type = e_model : : MODEL_13B ; break ;
/* TODO: add variants */
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_NEMOTRON :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_EPS , hparams . f_norm_eps ) ;
switch ( hparams . n_layer ) {
case 32 : model . type = e_model : : MODEL_4B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_EXAONE :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_RMS_EPS , hparams . f_norm_rms_eps ) ;
switch ( hparams . n_layer ) {
case 32 : model . type = e_model : : MODEL_8B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_RWKV6 :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_EPS , hparams . f_norm_eps ) ;
ml . get_key ( LLM_KV_WKV_HEAD_SIZE , hparams . wkv_head_size ) ;
ml . get_key ( LLM_KV_TIME_MIX_EXTRA_DIM , hparams . time_mix_extra_dim ) ;
ml . get_key ( LLM_KV_TIME_DECAY_EXTRA_DIM , hparams . time_decay_extra_dim ) ;
ml . get_key ( LLM_KV_RESCALE_EVERY_N_LAYERS , hparams . rescale_every_n_layers , false ) ;
switch ( hparams . n_layer ) {
case 24 : model . type = e_model : : MODEL_1_6B ; break ;
case 32 :
switch ( hparams . n_embd ) {
case 2560 : model . type = e_model : : MODEL_3B ; break ;
case 4096 : model . type = e_model : : MODEL_7B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
} break ;
case 61 : model . type = e_model : : MODEL_14B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_GRANITE :
case LLM_ARCH_GRANITE_MOE :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_RMS_EPS , hparams . f_norm_rms_eps ) ;
ml . get_key ( LLM_KV_LOGIT_SCALE , hparams . f_logit_scale ) ;
ml . get_key ( LLM_KV_RESIDUAL_SCALE , hparams . f_residual_scale ) ;
ml . get_key ( LLM_KV_EMBEDDING_SCALE , hparams . f_embedding_scale ) ;
ml . get_key ( LLM_KV_ATTENTION_SCALE , hparams . f_attention_scale ) ;
switch ( hparams . n_layer ) {
case 32 : model . type = e_model : : MODEL_3B ; break ;
case 40 : model . type = e_model : : MODEL_3B ; break ;
// Add additional layer/vocab/etc checks here for other model sizes
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_CHAMELEON :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_RMS_EPS , hparams . f_norm_rms_eps ) ;
hparams . f_norm_eps = 1e-5 ; // eps for qk-norm, torch default
ml . get_key ( LLM_KV_SWIN_NORM , hparams . swin_norm ) ;
switch ( hparams . n_layer ) {
case 32 : model . type = e_model : : MODEL_7B ; break ;
case 48 : model . type = e_model : : MODEL_34B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_WAVTOKENIZER_DEC :
{
ml . get_key ( LLM_KV_ATTENTION_LAYERNORM_EPS , hparams . f_norm_eps ) ;
ml . get_key ( LLM_KV_ATTENTION_GROUPNORM_EPS , hparams . f_norm_group_eps ) ;
ml . get_key ( LLM_KV_ATTENTION_GROUPNORM_GROUPS , hparams . n_norm_groups ) ;
ml . get_key ( LLM_KV_ATTENTION_CAUSAL , hparams . causal_attn ) ;
} break ;
default : throw std : : runtime_error ( " unsupported model architecture " ) ;
}
model . ftype = ml . ftype ;
if ( hparams . f_max_alibi_bias > 0.0f ) {
hparams . use_alibi = true ;
}
hparams . rope_type = llama_rope_type ( & model ) ;
}
void llm_load_vocab ( llama_model_loader & ml , llama_model & model ) {
auto & vocab = model . vocab ;
struct gguf_context * ctx = ml . meta . get ( ) ;
const auto kv = LLM_KV ( model . arch ) ;
// determine vocab type
{
std : : string tokenizer_model ;
std : : string tokenizer_pre ;
ml . get_key ( LLM_KV_TOKENIZER_MODEL , tokenizer_model ) ;
ml . get_key ( LLM_KV_TOKENIZER_PRE , tokenizer_pre , false ) ;
if ( tokenizer_model = = " no_vocab " | | tokenizer_model = = " none " ) {
vocab . type = LLAMA_VOCAB_TYPE_NONE ;
// default special tokens
vocab . special_bos_id = LLAMA_TOKEN_NULL ;
vocab . special_eos_id = LLAMA_TOKEN_NULL ;
vocab . special_unk_id = LLAMA_TOKEN_NULL ;
vocab . special_sep_id = LLAMA_TOKEN_NULL ;
vocab . special_pad_id = LLAMA_TOKEN_NULL ;
vocab . special_cls_id = LLAMA_TOKEN_NULL ;
vocab . special_mask_id = LLAMA_TOKEN_NULL ;
vocab . linefeed_id = LLAMA_TOKEN_NULL ;
// read vocab size from metadata
if ( ! ml . get_key ( LLM_KV_VOCAB_SIZE , vocab . n_vocab , false ) ) {
vocab . n_vocab = 0 ;
LLAMA_LOG_WARN ( " %s: there is no vocab_size in metadata, vocab.n_vocab will be set to %u \n " , __func__ , vocab . n_vocab ) ;
}
return ;
}
if ( tokenizer_model = = " llama " ) {
vocab . type = LLAMA_VOCAB_TYPE_SPM ;
// default special tokens
vocab . special_bos_id = 1 ;
vocab . special_eos_id = 2 ;
vocab . special_unk_id = 0 ;
vocab . special_sep_id = LLAMA_TOKEN_NULL ;
vocab . special_pad_id = LLAMA_TOKEN_NULL ;
vocab . special_cls_id = LLAMA_TOKEN_NULL ;
vocab . special_mask_id = LLAMA_TOKEN_NULL ;
} else if ( tokenizer_model = = " bert " ) {
vocab . type = LLAMA_VOCAB_TYPE_WPM ;
// default special tokens
vocab . special_bos_id = LLAMA_TOKEN_NULL ;
vocab . special_eos_id = LLAMA_TOKEN_NULL ;
vocab . special_unk_id = 100 ;
vocab . special_sep_id = 102 ;
vocab . special_pad_id = 0 ;
vocab . special_cls_id = 101 ;
vocab . special_mask_id = 103 ;
} else if ( tokenizer_model = = " gpt2 " ) {
vocab . type = LLAMA_VOCAB_TYPE_BPE ;
// read bpe merges and populate bpe ranks
const int merges_keyidx = gguf_find_key ( ctx , kv ( LLM_KV_TOKENIZER_MERGES ) . c_str ( ) ) ;
if ( merges_keyidx = = - 1 ) {
throw std : : runtime_error ( " cannot find tokenizer merges in model file \n " ) ;
}
const int n_merges = gguf_get_arr_n ( ctx , merges_keyidx ) ;
for ( int i = 0 ; i < n_merges ; i + + ) {
const std : : string word = gguf_get_arr_str ( ctx , merges_keyidx , i ) ;
GGML_ASSERT ( unicode_cpts_from_utf8 ( word ) . size ( ) > 0 ) ;
std : : string first ;
std : : string second ;
const size_t pos = word . find ( ' ' , 1 ) ;
if ( pos ! = std : : string : : npos ) {
first = word . substr ( 0 , pos ) ;
second = word . substr ( pos + 1 ) ;
}
vocab . bpe_ranks . emplace ( std : : make_pair ( first , second ) , i ) ;
}
// default special tokens
vocab . special_bos_id = 11 ;
vocab . special_eos_id = 11 ;
vocab . special_unk_id = LLAMA_TOKEN_NULL ;
vocab . special_sep_id = LLAMA_TOKEN_NULL ;
vocab . special_pad_id = LLAMA_TOKEN_NULL ;
vocab . special_cls_id = LLAMA_TOKEN_NULL ;
vocab . special_mask_id = LLAMA_TOKEN_NULL ;
} else if ( tokenizer_model = = " t5 " ) {
vocab . type = LLAMA_VOCAB_TYPE_UGM ;
// default special tokens
vocab . special_bos_id = LLAMA_TOKEN_NULL ;
vocab . special_eos_id = 1 ;
vocab . special_unk_id = 2 ;
vocab . special_sep_id = LLAMA_TOKEN_NULL ;
vocab . special_pad_id = 0 ;
vocab . special_cls_id = LLAMA_TOKEN_NULL ;
vocab . special_mask_id = LLAMA_TOKEN_NULL ;
const int precompiled_charsmap_keyidx = gguf_find_key ( ctx , kv ( LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP ) . c_str ( ) ) ;
if ( precompiled_charsmap_keyidx ! = - 1 ) {
size_t n_precompiled_charsmap = gguf_get_arr_n ( ctx , precompiled_charsmap_keyidx ) ;
const char * precompiled_charsmap = ( const char * ) gguf_get_arr_data ( ctx , precompiled_charsmap_keyidx ) ;
vocab . precompiled_charsmap . assign ( precompiled_charsmap , precompiled_charsmap + n_precompiled_charsmap ) ;
# ifdef IS_BIG_ENDIAN
// correct endiannes of data in precompiled_charsmap binary blob
uint32_t * xcda_blob_size = ( uint32_t * ) & vocab . precompiled_charsmap [ 0 ] ;
* xcda_blob_size = __builtin_bswap32 ( * xcda_blob_size ) ;
assert ( * xcda_blob_size + sizeof ( uint32_t ) < n_precompiled_charsmap ) ;
size_t xcda_array_size = * xcda_blob_size / sizeof ( uint32_t ) ;
uint32_t * xcda_array = ( uint32_t * ) & vocab . precompiled_charsmap [ sizeof ( uint32_t ) ] ;
for ( size_t i = 0 ; i < xcda_array_size ; + + i ) {
xcda_array [ i ] = __builtin_bswap32 ( xcda_array [ i ] ) ;
}
# endif
}
} else if ( tokenizer_model = = " rwkv " ) {
vocab . type = LLAMA_VOCAB_TYPE_RWKV ;
// default special tokens
vocab . special_bos_id = LLAMA_TOKEN_NULL ;
vocab . special_eos_id = LLAMA_TOKEN_NULL ;
vocab . special_unk_id = LLAMA_TOKEN_NULL ;
vocab . special_sep_id = LLAMA_TOKEN_NULL ;
vocab . special_pad_id = LLAMA_TOKEN_NULL ;
} else {
throw std : : runtime_error ( format ( " unknown tokenizer: '%s' " , tokenizer_model . c_str ( ) ) ) ;
}
// for now, only BPE models have pre-tokenizers
if ( vocab . type = = LLAMA_VOCAB_TYPE_BPE ) {
vocab . tokenizer_add_space_prefix = false ;
vocab . tokenizer_clean_spaces = true ;
if ( tokenizer_pre . empty ( ) ) {
LLAMA_LOG_WARN ( " %s: missing pre-tokenizer type, using: 'default' \n " , __func__ ) ;
LLAMA_LOG_WARN ( " %s: \n " , __func__ ) ;
LLAMA_LOG_WARN ( " %s: ************************************ \n " , __func__ ) ;
LLAMA_LOG_WARN ( " %s: GENERATION QUALITY WILL BE DEGRADED! \n " , __func__ ) ;
LLAMA_LOG_WARN ( " %s: CONSIDER REGENERATING THE MODEL \n " , __func__ ) ;
LLAMA_LOG_WARN ( " %s: ************************************ \n " , __func__ ) ;
LLAMA_LOG_WARN ( " %s: \n " , __func__ ) ;
vocab . type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT ;
} else if ( tokenizer_pre = = " default " ) {
vocab . type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT ;
} else if (
tokenizer_pre = = " llama3 " | |
tokenizer_pre = = " llama-v3 " | |
tokenizer_pre = = " llama-bpe " | |
tokenizer_pre = = " falcon3 " ) {
vocab . type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3 ;
vocab . tokenizer_ignore_merges = true ;
vocab . tokenizer_add_bos = true ;
} else if (
tokenizer_pre = = " deepseek-llm " ) {
vocab . type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM ;
vocab . tokenizer_clean_spaces = false ;
} else if (
tokenizer_pre = = " deepseek-coder " ) {
vocab . type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER ;
vocab . tokenizer_clean_spaces = false ;
2025-01-04 21:06:11 +01:00
} else if (
tokenizer_pre = = " deepseek-v3 " ) {
vocab . type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM ;
vocab . tokenizer_clean_spaces = false ;
2025-01-03 09:18:53 +01:00
} else if (
tokenizer_pre = = " falcon " ) {
vocab . type_pre = LLAMA_VOCAB_PRE_TYPE_FALCON ;
} else if (
tokenizer_pre = = " mpt " ) {
vocab . type_pre = LLAMA_VOCAB_PRE_TYPE_MPT ;
} else if (
tokenizer_pre = = " starcoder " ) {
vocab . type_pre = LLAMA_VOCAB_PRE_TYPE_STARCODER ;
} else if (
tokenizer_pre = = " gpt-2 " | |
tokenizer_pre = = " phi-2 " | |
tokenizer_pre = = " jina-es " | |
tokenizer_pre = = " jina-de " | |
tokenizer_pre = = " gigachat " | |
tokenizer_pre = = " jina-v1-en " | |
tokenizer_pre = = " jina-v2-es " | |
tokenizer_pre = = " jina-v2-de " | |
tokenizer_pre = = " jina-v2-code " | |
tokenizer_pre = = " roberta-bpe " ) {
vocab . type_pre = LLAMA_VOCAB_PRE_TYPE_GPT2 ;
} else if (
tokenizer_pre = = " refact " ) {
vocab . type_pre = LLAMA_VOCAB_PRE_TYPE_REFACT ;
} else if (
tokenizer_pre = = " command-r " ) {
vocab . type_pre = LLAMA_VOCAB_PRE_TYPE_COMMAND_R ;
vocab . tokenizer_clean_spaces = false ;
} else if (
tokenizer_pre = = " qwen2 " ) {
vocab . type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2 ;
vocab . tokenizer_clean_spaces = false ;
} else if (
tokenizer_pre = = " stablelm2 " ) {
vocab . type_pre = LLAMA_VOCAB_PRE_TYPE_STABLELM2 ;
} else if (
tokenizer_pre = = " olmo " ) {
vocab . type_pre = LLAMA_VOCAB_PRE_TYPE_OLMO ;
} else if (
tokenizer_pre = = " dbrx " ) {
vocab . type_pre = LLAMA_VOCAB_PRE_TYPE_DBRX ;
} else if (
tokenizer_pre = = " smaug-bpe " ) {
vocab . type_pre = LLAMA_VOCAB_PRE_TYPE_SMAUG ;
} else if (
tokenizer_pre = = " poro-chat " ) {
vocab . type_pre = LLAMA_VOCAB_PRE_TYPE_PORO ;
vocab . tokenizer_clean_spaces = false ;
} else if (
tokenizer_pre = = " chatglm-bpe " ) {
vocab . type_pre = LLAMA_VOCAB_PRE_TYPE_CHATGLM4 ;
vocab . special_bos_id = LLAMA_TOKEN_NULL ;
} else if (
tokenizer_pre = = " viking " ) {
vocab . type_pre = LLAMA_VOCAB_PRE_TYPE_VIKING ;
vocab . tokenizer_clean_spaces = false ;
} else if (
tokenizer_pre = = " jais " ) {
vocab . type_pre = LLAMA_VOCAB_PRE_TYPE_JAIS ;
} else if (
tokenizer_pre = = " tekken " ) {
vocab . type_pre = LLAMA_VOCAB_PRE_TYPE_TEKKEN ;
vocab . tokenizer_clean_spaces = false ;
vocab . tokenizer_ignore_merges = true ;
vocab . tokenizer_add_bos = true ;
} else if (
tokenizer_pre = = " smollm " ) {
vocab . type_pre = LLAMA_VOCAB_PRE_TYPE_SMOLLM ;
vocab . tokenizer_clean_spaces = false ;
} else if (
tokenizer_pre = = " codeshell " ) {
vocab . type_pre = LLAMA_VOCAB_PRE_TYPE_CODESHELL ;
} else if (
tokenizer_pre = = " bloom " ) {
vocab . type_pre = LLAMA_VOCAB_PRE_TYPE_BLOOM ;
} else if (
tokenizer_pre = = " gpt3-finnish " ) {
vocab . type_pre = LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH ;
} else if (
tokenizer_pre = = " exaone " ) {
vocab . type_pre = LLAMA_VOCAB_PRE_TYPE_EXAONE ;
} else if (
tokenizer_pre = = " chameleon " ) {
vocab . type_pre = LLAMA_VOCAB_PRE_TYPE_CHAMELEON ;
vocab . tokenizer_add_bos = true ;
vocab . tokenizer_clean_spaces = false ;
} else if (
tokenizer_pre = = " minerva-7b " ) {
vocab . type_pre = LLAMA_VOCAB_PRE_TYPE_MINERVA ;
} else if (
tokenizer_pre = = " megrez " ) {
vocab . type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2 ;
} else {
throw std : : runtime_error ( format ( " unknown pre-tokenizer type: '%s' " , tokenizer_pre . c_str ( ) ) ) ;
}
} else if ( vocab . type = = LLAMA_VOCAB_TYPE_SPM ) {
vocab . type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT ;
vocab . tokenizer_add_space_prefix = true ;
vocab . tokenizer_clean_spaces = false ;
vocab . tokenizer_add_bos = true ;
vocab . tokenizer_add_eos = false ;
} else if ( vocab . type = = LLAMA_VOCAB_TYPE_WPM ) {
vocab . type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT ;
vocab . tokenizer_add_space_prefix = false ;
vocab . tokenizer_clean_spaces = true ;
vocab . tokenizer_add_bos = true ;
vocab . tokenizer_add_eos = false ;
} else if ( vocab . type = = LLAMA_VOCAB_TYPE_UGM ) {
vocab . type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT ;
vocab . tokenizer_add_bos = false ;
vocab . tokenizer_add_eos = true ;
} else if ( vocab . type = = LLAMA_VOCAB_TYPE_RWKV ) {
vocab . type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT ;
vocab . tokenizer_add_space_prefix = false ;
vocab . tokenizer_clean_spaces = false ;
vocab . tokenizer_add_bos = false ;
vocab . tokenizer_add_eos = false ;
} else {
vocab . type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT ;
}
ml . get_key ( LLM_KV_TOKENIZER_ADD_PREFIX , vocab . tokenizer_add_space_prefix , false ) ;
ml . get_key ( LLM_KV_TOKENIZER_REMOVE_EXTRA_WS , vocab . tokenizer_remove_extra_whitespaces , false ) ;
}
const int token_idx = gguf_find_key ( ctx , kv ( LLM_KV_TOKENIZER_LIST ) . c_str ( ) ) ;
if ( token_idx = = - 1 ) {
throw std : : runtime_error ( " cannot find tokenizer vocab in model file \n " ) ;
}
const float * scores = nullptr ;
const int score_idx = gguf_find_key ( ctx , kv ( LLM_KV_TOKENIZER_SCORES ) . c_str ( ) ) ;
if ( score_idx ! = - 1 ) {
scores = ( const float * ) gguf_get_arr_data ( ctx , score_idx ) ;
}
const int * toktypes = nullptr ;
const int toktype_idx = gguf_find_key ( ctx , kv ( LLM_KV_TOKENIZER_TOKEN_TYPE ) . c_str ( ) ) ;
if ( toktype_idx ! = - 1 ) {
toktypes = ( const int * ) gguf_get_arr_data ( ctx , toktype_idx ) ;
}
const uint32_t n_vocab = gguf_get_arr_n ( ctx , token_idx ) ;
vocab . n_vocab = n_vocab ;
vocab . id_to_token . resize ( n_vocab ) ;
for ( uint32_t i = 0 ; i < n_vocab ; i + + ) {
std : : string word = gguf_get_arr_str ( ctx , token_idx , i ) ;
if ( word . empty ( ) ) {
LLAMA_LOG_WARN ( " %s: empty token at index %u \n " , __func__ , i ) ;
word = " [EMPTY_ " + std : : to_string ( i ) + " ] " ;
}
vocab . token_to_id [ word ] = i ;
vocab . max_token_len = std : : max ( vocab . max_token_len , ( int ) word . size ( ) ) ;
auto & token_data = vocab . id_to_token [ i ] ;
token_data . text = std : : move ( word ) ;
token_data . score = scores ? scores [ i ] : 0.0f ;
token_data . attr = LLAMA_TOKEN_ATTR_NORMAL ;
if ( toktypes ) { //TODO: remove, required until per token attributes are available from GGUF file
switch ( toktypes [ i ] ) {
case LLAMA_TOKEN_TYPE_UNKNOWN : token_data . attr = LLAMA_TOKEN_ATTR_UNKNOWN ; break ;
case LLAMA_TOKEN_TYPE_UNUSED : token_data . attr = LLAMA_TOKEN_ATTR_UNUSED ; break ;
case LLAMA_TOKEN_TYPE_NORMAL : token_data . attr = LLAMA_TOKEN_ATTR_NORMAL ; break ;
case LLAMA_TOKEN_TYPE_CONTROL : token_data . attr = LLAMA_TOKEN_ATTR_CONTROL ; break ;
case LLAMA_TOKEN_TYPE_USER_DEFINED : token_data . attr = LLAMA_TOKEN_ATTR_USER_DEFINED ; break ;
case LLAMA_TOKEN_TYPE_BYTE : token_data . attr = LLAMA_TOKEN_ATTR_BYTE ; break ;
case LLAMA_TOKEN_TYPE_UNDEFINED : token_data . attr = LLAMA_TOKEN_ATTR_UNDEFINED ; break ;
default : token_data . attr = LLAMA_TOKEN_ATTR_UNDEFINED ; break ;
}
}
}
GGML_ASSERT ( vocab . id_to_token . size ( ) = = vocab . token_to_id . size ( ) ) ;
vocab . init_tokenizer ( ) ;
// determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
if ( vocab . type = = LLAMA_VOCAB_TYPE_SPM ) {
try {
vocab . linefeed_id = llama_byte_to_token_impl ( vocab , ' \n ' ) ;
} catch ( const std : : exception & e ) {
LLAMA_LOG_WARN ( " %s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead. " , __func__ , e . what ( ) ) ;
vocab . linefeed_id = vocab . special_pad_id ;
}
} else if ( vocab . type = = LLAMA_VOCAB_TYPE_WPM ) {
vocab . linefeed_id = vocab . special_pad_id ;
} else if ( vocab . type = = LLAMA_VOCAB_TYPE_RWKV ) {
const std : : vector < int > ids = llama_tokenize_internal ( vocab , " \n " , false ) ;
GGML_ASSERT ( ! ids . empty ( ) & & " model vocab missing newline token " ) ;
vocab . linefeed_id = ids [ 0 ] ;
} else {
const std : : vector < int > ids = llama_tokenize_internal ( vocab , " \xC4 \x8A " , false ) ; // U+010A
//GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
if ( ids . empty ( ) ) {
LLAMA_LOG_WARN ( " %s: model vocab missing newline token, using special_pad_id instead \n " , __func__ ) ;
vocab . linefeed_id = vocab . special_pad_id ;
} else {
vocab . linefeed_id = ids [ 0 ] ;
}
}
// special tokens
{
const std : : vector < std : : pair < enum llm_kv , int32_t & > > special_token_types = {
{ LLM_KV_TOKENIZER_BOS_ID , vocab . special_bos_id } ,
{ LLM_KV_TOKENIZER_EOS_ID , vocab . special_eos_id } ,
{ LLM_KV_TOKENIZER_EOT_ID , vocab . special_eot_id } ,
{ LLM_KV_TOKENIZER_EOM_ID , vocab . special_eom_id } ,
{ LLM_KV_TOKENIZER_UNK_ID , vocab . special_unk_id } ,
{ LLM_KV_TOKENIZER_SEP_ID , vocab . special_sep_id } ,
{ LLM_KV_TOKENIZER_PAD_ID , vocab . special_pad_id } ,
{ LLM_KV_TOKENIZER_CLS_ID , vocab . special_cls_id } ,
{ LLM_KV_TOKENIZER_MASK_ID , vocab . special_mask_id } ,
{ LLM_KV_TOKENIZER_FIM_PRE_ID , vocab . special_fim_pre_id } ,
{ LLM_KV_TOKENIZER_FIM_SUF_ID , vocab . special_fim_suf_id } ,
{ LLM_KV_TOKENIZER_FIM_MID_ID , vocab . special_fim_mid_id } ,
{ LLM_KV_TOKENIZER_FIM_PAD_ID , vocab . special_fim_pad_id } ,
{ LLM_KV_TOKENIZER_FIM_REP_ID , vocab . special_fim_rep_id } ,
{ LLM_KV_TOKENIZER_FIM_SEP_ID , vocab . special_fim_sep_id } ,
// deprecated
{ LLM_KV_TOKENIZER_PREFIX_ID , vocab . special_fim_pre_id } ,
{ LLM_KV_TOKENIZER_SUFFIX_ID , vocab . special_fim_suf_id } ,
{ LLM_KV_TOKENIZER_MIDDLE_ID , vocab . special_fim_mid_id } ,
} ;
for ( const auto & it : special_token_types ) {
const std : : string & key = kv ( std : : get < 0 > ( it ) ) ;
int32_t & id = std : : get < 1 > ( it ) ;
uint32_t new_id ;
if ( ! ml . get_key ( std : : get < 0 > ( it ) , new_id , false ) ) {
continue ;
}
if ( new_id > = vocab . id_to_token . size ( ) ) {
LLAMA_LOG_WARN ( " %s: bad special token: '%s' = %ud, using default id %d \n " ,
__func__ , key . c_str ( ) , new_id , id ) ;
} else {
id = new_id ;
}
}
// Handle add_bos_token and add_eos_token
{
bool temp = true ;
if ( ml . get_key ( LLM_KV_TOKENIZER_ADD_BOS , temp , false ) ) {
vocab . tokenizer_add_bos = temp ;
}
if ( ml . get_key ( LLM_KV_TOKENIZER_ADD_EOS , temp , false ) ) {
vocab . tokenizer_add_eos = temp ;
}
}
// auto-detect special tokens by text
// TODO: convert scripts should provide these tokens through the KV metadata LLM_KV_TOKENIZER_...
// for now, we apply this workaround to find the tokens based on their text
for ( const auto & t : vocab . token_to_id ) {
// find EOT token: "<|eot_id|>", "<|im_end|>", "<end_of_turn>", etc.
if ( vocab . special_eot_id = = LLAMA_TOKEN_NULL ) {
if ( false
| | t . first = = " <|eot_id|> "
| | t . first = = " <|im_end|> "
| | t . first = = " <|end|> "
| | t . first = = " <end_of_turn> "
| | t . first = = " <|endoftext|> "
| | t . first = = " <EOT> "
| | t . first = = " <| end▁of▁sentence| > " // DeepSeek
) {
vocab . special_eot_id = t . second ;
if ( ( vocab . id_to_token [ t . second ] . attr & LLAMA_TOKEN_ATTR_CONTROL ) = = 0 ) {
LLAMA_LOG_WARN ( " %s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden \n " ,
__func__ , t . second , t . first . c_str ( ) ) ;
vocab . id_to_token [ t . second ] . attr = LLAMA_TOKEN_ATTR_CONTROL ;
}
}
}
// find EOM token: "<|eom_id|>"
if ( vocab . special_eom_id = = LLAMA_TOKEN_NULL ) {
if ( false
| | t . first = = " <|eom_id|> "
) {
vocab . special_eom_id = t . second ;
if ( ( vocab . id_to_token [ t . second ] . attr & LLAMA_TOKEN_ATTR_CONTROL ) = = 0 ) {
LLAMA_LOG_WARN ( " %s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden \n " ,
__func__ , t . second , t . first . c_str ( ) ) ;
vocab . id_to_token [ t . second ] . attr = LLAMA_TOKEN_ATTR_CONTROL ;
}
}
}
// find FIM_PRE token: "<|fim_prefix|>", "<fim-prefix>", "<PRE>", etc.
if ( vocab . special_fim_pre_id = = LLAMA_TOKEN_NULL ) {
if ( false
| | t . first = = " <|fim_prefix|> " // Qwen
| | t . first = = " <fim-prefix> "
| | t . first = = " <| fim▁begin| > " // DeepSeek
| | t . first = = " <PRE> "
) {
vocab . special_fim_pre_id = t . second ;
if ( ( vocab . id_to_token [ t . second ] . attr & LLAMA_TOKEN_ATTR_CONTROL ) = = 0 ) {
LLAMA_LOG_WARN ( " %s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden \n " ,
__func__ , t . second , t . first . c_str ( ) ) ;
vocab . id_to_token [ t . second ] . attr = LLAMA_TOKEN_ATTR_CONTROL ;
}
}
}
// find FIM_SUF token: "<|fim_suffix|>", "<fim-suffix>", "<SUF>", etc.
if ( vocab . special_fim_suf_id = = LLAMA_TOKEN_NULL ) {
if ( false
| | t . first = = " <|fim_suffix|> " // Qwen
| | t . first = = " <fim-suffix> "
| | t . first = = " <| fim▁hole| > " // DeepSeek
| | t . first = = " <SUF> "
) {
vocab . special_fim_suf_id = t . second ;
if ( ( vocab . id_to_token [ t . second ] . attr & LLAMA_TOKEN_ATTR_CONTROL ) = = 0 ) {
LLAMA_LOG_WARN ( " %s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden \n " ,
__func__ , t . second , t . first . c_str ( ) ) ;
vocab . id_to_token [ t . second ] . attr = LLAMA_TOKEN_ATTR_CONTROL ;
}
}
}
// find FIM_MID token: "<|fim_middle|>", "<fim-middle>", "<MID>", etc.
if ( vocab . special_fim_mid_id = = LLAMA_TOKEN_NULL ) {
if ( false
| | t . first = = " <|fim_middle|> " // Qwen
| | t . first = = " <fim-middle> "
| | t . first = = " <| fim▁end| > " // DeepSeek
| | t . first = = " <MID> "
) {
vocab . special_fim_mid_id = t . second ;
if ( ( vocab . id_to_token [ t . second ] . attr & LLAMA_TOKEN_ATTR_CONTROL ) = = 0 ) {
LLAMA_LOG_WARN ( " %s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden \n " ,
__func__ , t . second , t . first . c_str ( ) ) ;
vocab . id_to_token [ t . second ] . attr = LLAMA_TOKEN_ATTR_CONTROL ;
}
}
}
// find FIM_PAD token: "<|fim_pad|>", "<fim-pad>", "<PAD>", etc.
if ( vocab . special_fim_pad_id = = LLAMA_TOKEN_NULL ) {
if ( false
| | t . first = = " <|fim_pad|> " // Qwen
| | t . first = = " <fim-pad> "
| | t . first = = " <PAD> "
) {
vocab . special_fim_pad_id = t . second ;
if ( ( vocab . id_to_token [ t . second ] . attr & LLAMA_TOKEN_ATTR_CONTROL ) = = 0 ) {
LLAMA_LOG_WARN ( " %s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden \n " ,
__func__ , t . second , t . first . c_str ( ) ) ;
vocab . id_to_token [ t . second ] . attr = LLAMA_TOKEN_ATTR_CONTROL ;
}
}
}
// find FIM_REP token: "<|fim_repo|>", "<fim-repo>", "<REP>", etc.
if ( vocab . special_fim_rep_id = = LLAMA_TOKEN_NULL ) {
if ( false
| | t . first = = " <|fim_repo|> " // Qwen
| | t . first = = " <|repo_name|> "
| | t . first = = " <fim-repo> "
| | t . first = = " <REPO> "
) {
vocab . special_fim_rep_id = t . second ;
if ( ( vocab . id_to_token [ t . second ] . attr & LLAMA_TOKEN_ATTR_CONTROL ) = = 0 ) {
LLAMA_LOG_WARN ( " %s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden \n " ,
__func__ , t . second , t . first . c_str ( ) ) ;
vocab . id_to_token [ t . second ] . attr = LLAMA_TOKEN_ATTR_CONTROL ;
}
}
}
// find FIM_SEP token: "<|file_sep|>"
if ( vocab . special_fim_sep_id = = LLAMA_TOKEN_NULL ) {
if ( false
| | t . first = = " <|file_sep|> " // Qwen
) {
vocab . special_fim_sep_id = t . second ;
if ( ( vocab . id_to_token [ t . second ] . attr & LLAMA_TOKEN_ATTR_CONTROL ) = = 0 ) {
LLAMA_LOG_WARN ( " %s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden \n " ,
__func__ , t . second , t . first . c_str ( ) ) ;
vocab . id_to_token [ t . second ] . attr = LLAMA_TOKEN_ATTR_CONTROL ;
}
}
}
}
// maintain a list of tokens that cause end-of-generation
// this is currently determined based on the token text, which is obviously not ideal
// ref: https://github.com/ggerganov/llama.cpp/issues/9606
vocab . special_eog_ids . clear ( ) ;
if ( vocab . special_fim_pad_id ! = LLAMA_TOKEN_NULL & & vocab . special_eog_ids . count ( vocab . special_fim_pad_id ) = = 0 ) {
vocab . special_eog_ids . insert ( vocab . special_fim_pad_id ) ;
}
if ( vocab . special_fim_rep_id ! = LLAMA_TOKEN_NULL & & vocab . special_eog_ids . count ( vocab . special_fim_rep_id ) = = 0 ) {
vocab . special_eog_ids . insert ( vocab . special_fim_rep_id ) ;
}
if ( vocab . special_fim_sep_id ! = LLAMA_TOKEN_NULL & & vocab . special_eog_ids . count ( vocab . special_fim_sep_id ) = = 0 ) {
vocab . special_eog_ids . insert ( vocab . special_fim_sep_id ) ;
}
for ( const auto & t : vocab . token_to_id ) {
if ( false
| | t . first = = " <|eot_id|> "
| | t . first = = " <|im_end|> "
| | t . first = = " <|end|> "
| | t . first = = " <end_of_turn> "
| | t . first = = " <|endoftext|> "
| | t . first = = " <|eom_id|> "
| | t . first = = " <EOT> "
) {
vocab . special_eog_ids . insert ( t . second ) ;
if ( ( vocab . id_to_token [ t . second ] . attr & LLAMA_TOKEN_ATTR_CONTROL ) = = 0 ) {
LLAMA_LOG_WARN ( " %s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden \n " ,
__func__ , t . second , t . first . c_str ( ) ) ;
vocab . id_to_token [ t . second ] . attr = LLAMA_TOKEN_ATTR_CONTROL ;
}
} else {
// token is control, but not marked as EOG -> print a debug log
if ( vocab . id_to_token [ t . second ] . attr & LLAMA_TOKEN_ATTR_CONTROL & & vocab . special_eog_ids . count ( t . second ) = = 0 ) {
LLAMA_LOG_DEBUG ( " %s: control token: %6d '%s' is not marked as EOG \n " ,
__func__ , t . second , t . first . c_str ( ) ) ;
}
}
}
// sanity checks
if ( vocab . special_eos_id ! = LLAMA_TOKEN_NULL & & vocab . special_eog_ids . count ( vocab . special_eos_id ) = = 0 ) {
vocab . special_eog_ids . insert ( vocab . special_eos_id ) ;
LLAMA_LOG_WARN ( " %s: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect \n " , __func__ ) ;
}
if ( vocab . special_eot_id ! = LLAMA_TOKEN_NULL & & vocab . special_eog_ids . count ( vocab . special_eot_id ) = = 0 ) {
vocab . special_eog_ids . insert ( vocab . special_eot_id ) ;
LLAMA_LOG_WARN ( " %s: special_eot_id is not in special_eog_ids - the tokenizer config may be incorrect \n " , __func__ ) ;
}
if ( vocab . special_eom_id ! = LLAMA_TOKEN_NULL & & vocab . special_eog_ids . count ( vocab . special_eom_id ) = = 0 ) {
vocab . special_eog_ids . insert ( vocab . special_eom_id ) ;
LLAMA_LOG_WARN ( " %s: special_eom_id is not in special_eog_ids - the tokenizer config may be incorrect \n " , __func__ ) ;
}
}
// build special tokens cache
{
for ( llama_vocab : : id id = 0 ; id < ( llama_vocab : : id ) n_vocab ; + + id ) {
if ( vocab . id_to_token [ id ] . attr & ( LLAMA_TOKEN_ATTR_CONTROL | LLAMA_TOKEN_ATTR_USER_DEFINED | LLAMA_TOKEN_ATTR_UNKNOWN ) ) {
vocab . cache_special_tokens . push_back ( id ) ;
}
}
std : : sort ( vocab . cache_special_tokens . begin ( ) , vocab . cache_special_tokens . end ( ) ,
[ & ] ( const llama_vocab : : id a , const llama_vocab : : id b ) {
return vocab . id_to_token [ a ] . text . size ( ) > vocab . id_to_token [ b ] . text . size ( ) ;
}
) ;
LLAMA_LOG_INFO ( " %s: special tokens cache size = %u \n " , __func__ , ( uint32_t ) vocab . cache_special_tokens . size ( ) ) ;
}
// build token to piece cache
{
size_t size_cache = 0 ;
std : : vector < llama_vocab : : token > cache_token_to_piece ( n_vocab ) ;
for ( uint32_t id = 0 ; id < n_vocab ; + + id ) {
cache_token_to_piece [ id ] = llama_token_to_piece ( & model , id , true ) ;
size_cache + = cache_token_to_piece [ id ] . size ( ) ;
}
std : : swap ( vocab . cache_token_to_piece , cache_token_to_piece ) ;
LLAMA_LOG_INFO ( " %s: token to piece cache size = %.4f MB \n " , __func__ , size_cache / 1024.0 / 1024.0 ) ;
}
// Handle per token attributes
//NOTE: Each model customizes per token attributes.
//NOTE: Per token attributes are missing from the GGUF file.
//TODO: Extract attributes from GGUF file.
{
auto _contains_any = [ ] ( const std : : string & str , const std : : vector < std : : string > & substrs ) - > bool {
for ( auto substr : substrs ) {
if ( str . find ( substr ) < std : : string : : npos ) {
return true ;
}
}
return false ;
} ;
auto _set_tokenid_attr = [ & ] ( const llama_vocab : : id id , llama_token_attr attr , bool value ) {
uint32_t current = vocab . id_to_token . at ( id ) . attr ;
current = value ? ( current | attr ) : ( current & ~ attr ) ;
vocab . id_to_token [ id ] . attr = ( llama_token_attr ) current ;
} ;
auto _set_token_attr = [ & ] ( const std : : string & token , llama_token_attr attr , bool value ) {
_set_tokenid_attr ( vocab . token_to_id . at ( token ) , attr , value ) ;
} ;
std : : string model_name ;
std : : string tokenizer_pre ;
ml . get_key ( LLM_KV_GENERAL_NAME , model_name , false ) ;
ml . get_key ( LLM_KV_TOKENIZER_PRE , tokenizer_pre , false ) ;
// model name to lowercase
std : : transform ( model_name . begin ( ) , model_name . end ( ) , model_name . begin ( ) ,
[ ] ( const std : : string : : value_type x ) {
return std : : tolower ( x ) ;
}
) ;
// set attributes by model/tokenizer name
if ( _contains_any ( tokenizer_pre , { " jina-v2-de " , " jina-v2-es " , " jina-v2-code " } ) ) {
_set_token_attr ( " <mask> " , LLAMA_TOKEN_ATTR_LSTRIP , true ) ;
} else if ( _contains_any ( model_name , { " phi-3 " , " phi3 " } ) ) {
for ( auto id : vocab . cache_special_tokens ) {
_set_tokenid_attr ( id , LLAMA_TOKEN_ATTR_RSTRIP , true ) ;
}
for ( auto token : { " </s> " } ) {
_set_token_attr ( token , LLAMA_TOKEN_ATTR_RSTRIP , true ) ;
}
for ( auto token : { " <unk> " , " <s> " , " <|endoftext|> " } ) {
_set_token_attr ( token , LLAMA_TOKEN_ATTR_RSTRIP , false ) ;
}
}
}
}
void llm_load_print_meta ( llama_model_loader & ml , llama_model & model ) {
const auto & hparams = model . hparams ;
const auto & vocab = model . vocab ;
const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES . at ( hparams . rope_scaling_type_train ) ;
auto print_f = [ ] ( const std : : function < uint32_t ( uint32_t ) > & f , uint32_t n ) {
bool is_var = false ;
std : : vector < uint32_t > v ;
for ( uint32_t i = 0 ; i < n ; + + i ) {
v . push_back ( f ( i ) ) ;
if ( v [ i ] ! = v [ 0 ] ) {
is_var = true ;
}
}
std : : stringstream ss ;
if ( is_var ) {
ss < < " [ " ;
for ( uint32_t i = 0 ; i < n ; + + i ) {
ss < < v [ i ] ;
if ( i < n - 1 ) {
ss < < " , " ;
}
}
ss < < " ] " ;
} else {
ss < < v [ 0 ] ;
}
return ss . str ( ) ;
} ;
// hparams
LLAMA_LOG_INFO ( " %s: format = %s \n " , __func__ , llama_file_version_name ( ml . fver ) ) ;
LLAMA_LOG_INFO ( " %s: arch = %s \n " , __func__ , llm_arch_name ( model . arch ) ) ;
LLAMA_LOG_INFO ( " %s: vocab type = %s \n " , __func__ , llama_model_vocab_type_name ( vocab . type ) ) ;
LLAMA_LOG_INFO ( " %s: n_vocab = %u \n " , __func__ , hparams . n_vocab ) ;
LLAMA_LOG_INFO ( " %s: n_merges = %u \n " , __func__ , ( int ) vocab . bpe_ranks . size ( ) ) ;
LLAMA_LOG_INFO ( " %s: vocab_only = %d \n " , __func__ , hparams . vocab_only ) ;
if ( ! hparams . vocab_only ) {
LLAMA_LOG_INFO ( " %s: n_ctx_train = %u \n " , __func__ , hparams . n_ctx_train ) ;
LLAMA_LOG_INFO ( " %s: n_embd = %u \n " , __func__ , hparams . n_embd ) ;
LLAMA_LOG_INFO ( " %s: n_layer = %u \n " , __func__ , hparams . n_layer ) ;
LLAMA_LOG_INFO ( " %s: n_head = %s \n " , __func__ , print_f ( [ & ] ( uint32_t il ) { return hparams . n_head ( il ) ; } , hparams . n_layer ) . c_str ( ) ) ;
LLAMA_LOG_INFO ( " %s: n_head_kv = %s \n " , __func__ , print_f ( [ & ] ( uint32_t il ) { return hparams . n_head_kv ( il ) ; } , hparams . n_layer ) . c_str ( ) ) ;
LLAMA_LOG_INFO ( " %s: n_rot = %u \n " , __func__ , hparams . n_rot ) ;
LLAMA_LOG_INFO ( " %s: n_swa = %u \n " , __func__ , hparams . n_swa ) ;
LLAMA_LOG_INFO ( " %s: n_embd_head_k = %u \n " , __func__ , hparams . n_embd_head_k ) ;
LLAMA_LOG_INFO ( " %s: n_embd_head_v = %u \n " , __func__ , hparams . n_embd_head_v ) ;
LLAMA_LOG_INFO ( " %s: n_gqa = %s \n " , __func__ , print_f ( [ & ] ( uint32_t il ) { return hparams . n_gqa ( il ) ; } , hparams . n_layer ) . c_str ( ) ) ;
LLAMA_LOG_INFO ( " %s: n_embd_k_gqa = %s \n " , __func__ , print_f ( [ & ] ( uint32_t il ) { return hparams . n_embd_k_gqa ( il ) ; } , hparams . n_layer ) . c_str ( ) ) ;
LLAMA_LOG_INFO ( " %s: n_embd_v_gqa = %s \n " , __func__ , print_f ( [ & ] ( uint32_t il ) { return hparams . n_embd_v_gqa ( il ) ; } , hparams . n_layer ) . c_str ( ) ) ;
LLAMA_LOG_INFO ( " %s: f_norm_eps = %.1e \n " , __func__ , hparams . f_norm_eps ) ;
LLAMA_LOG_INFO ( " %s: f_norm_rms_eps = %.1e \n " , __func__ , hparams . f_norm_rms_eps ) ;
LLAMA_LOG_INFO ( " %s: f_clamp_kqv = %.1e \n " , __func__ , hparams . f_clamp_kqv ) ;
LLAMA_LOG_INFO ( " %s: f_max_alibi_bias = %.1e \n " , __func__ , hparams . f_max_alibi_bias ) ;
LLAMA_LOG_INFO ( " %s: f_logit_scale = %.1e \n " , __func__ , hparams . f_logit_scale ) ;
LLAMA_LOG_INFO ( " %s: n_ff = %s \n " , __func__ , print_f ( [ & ] ( uint32_t il ) { return hparams . n_ff ( il ) ; } , hparams . n_layer ) . c_str ( ) ) ;
LLAMA_LOG_INFO ( " %s: n_expert = %u \n " , __func__ , hparams . n_expert ) ;
LLAMA_LOG_INFO ( " %s: n_expert_used = %u \n " , __func__ , hparams . n_expert_used ) ;
LLAMA_LOG_INFO ( " %s: causal attn = %d \n " , __func__ , hparams . causal_attn ) ;
LLAMA_LOG_INFO ( " %s: pooling type = %d \n " , __func__ , hparams . pooling_type ) ;
LLAMA_LOG_INFO ( " %s: rope type = %d \n " , __func__ , hparams . rope_type ) ;
LLAMA_LOG_INFO ( " %s: rope scaling = %s \n " , __func__ , rope_scaling_type ) ;
LLAMA_LOG_INFO ( " %s: freq_base_train = %.1f \n " , __func__ , hparams . rope_freq_base_train ) ;
LLAMA_LOG_INFO ( " %s: freq_scale_train = %g \n " , __func__ , hparams . rope_freq_scale_train ) ;
LLAMA_LOG_INFO ( " %s: n_ctx_orig_yarn = %u \n " , __func__ , hparams . n_ctx_orig_yarn ) ;
LLAMA_LOG_INFO ( " %s: rope_finetuned = %s \n " , __func__ , hparams . rope_finetuned ? " yes " : " unknown " ) ;
LLAMA_LOG_INFO ( " %s: ssm_d_conv = %u \n " , __func__ , hparams . ssm_d_conv ) ;
LLAMA_LOG_INFO ( " %s: ssm_d_inner = %u \n " , __func__ , hparams . ssm_d_inner ) ;
LLAMA_LOG_INFO ( " %s: ssm_d_state = %u \n " , __func__ , hparams . ssm_d_state ) ;
LLAMA_LOG_INFO ( " %s: ssm_dt_rank = %u \n " , __func__ , hparams . ssm_dt_rank ) ;
LLAMA_LOG_INFO ( " %s: ssm_dt_b_c_rms = %d \n " , __func__ , hparams . ssm_dt_b_c_rms ) ;
}
LLAMA_LOG_INFO ( " %s: model type = %s \n " , __func__ , llama_model_type_name ( model ) . c_str ( ) ) ;
LLAMA_LOG_INFO ( " %s: model ftype = %s \n " , __func__ , llama_model_ftype_name ( model ) . c_str ( ) ) ;
if ( ml . n_elements > = 1e12 ) {
LLAMA_LOG_INFO ( " %s: model params = %.2f T \n " , __func__ , ml . n_elements * 1e-12 ) ;
} else if ( ml . n_elements > = 1e9 ) {
LLAMA_LOG_INFO ( " %s: model params = %.2f B \n " , __func__ , ml . n_elements * 1e-9 ) ;
} else if ( ml . n_elements > = 1e6 ) {
LLAMA_LOG_INFO ( " %s: model params = %.2f M \n " , __func__ , ml . n_elements * 1e-6 ) ;
} else {
LLAMA_LOG_INFO ( " %s: model params = %.2f K \n " , __func__ , ml . n_elements * 1e-3 ) ;
}
if ( ml . n_bytes < GiB ) {
LLAMA_LOG_INFO ( " %s: model size = %.2f MiB (%.2f BPW) \n " , __func__ , ml . n_bytes / 1024.0 / 1024.0 , ml . n_bytes * 8.0 / ml . n_elements ) ;
} else {
LLAMA_LOG_INFO ( " %s: model size = %.2f GiB (%.2f BPW) \n " , __func__ , ml . n_bytes / 1024.0 / 1024.0 / 1024.0 , ml . n_bytes * 8.0 / ml . n_elements ) ;
}
// general kv
LLAMA_LOG_INFO ( " %s: general.name = %s \n " , __func__ , model . name . c_str ( ) ) ;
// special tokens
if ( vocab . special_bos_id ! = - 1 ) { LLAMA_LOG_INFO ( " %s: BOS token = %d '%s' \n " , __func__ , vocab . special_bos_id , vocab . id_to_token [ vocab . special_bos_id ] . text . c_str ( ) ) ; }
if ( vocab . special_eos_id ! = - 1 ) { LLAMA_LOG_INFO ( " %s: EOS token = %d '%s' \n " , __func__ , vocab . special_eos_id , vocab . id_to_token [ vocab . special_eos_id ] . text . c_str ( ) ) ; }
if ( vocab . special_eot_id ! = - 1 ) { LLAMA_LOG_INFO ( " %s: EOT token = %d '%s' \n " , __func__ , vocab . special_eot_id , vocab . id_to_token [ vocab . special_eot_id ] . text . c_str ( ) ) ; }
if ( vocab . special_eom_id ! = - 1 ) { LLAMA_LOG_INFO ( " %s: EOM token = %d '%s' \n " , __func__ , vocab . special_eom_id , vocab . id_to_token [ vocab . special_eom_id ] . text . c_str ( ) ) ; }
if ( vocab . special_unk_id ! = - 1 ) { LLAMA_LOG_INFO ( " %s: UNK token = %d '%s' \n " , __func__ , vocab . special_unk_id , vocab . id_to_token [ vocab . special_unk_id ] . text . c_str ( ) ) ; }
if ( vocab . special_sep_id ! = - 1 ) { LLAMA_LOG_INFO ( " %s: SEP token = %d '%s' \n " , __func__ , vocab . special_sep_id , vocab . id_to_token [ vocab . special_sep_id ] . text . c_str ( ) ) ; }
if ( vocab . special_pad_id ! = - 1 ) { LLAMA_LOG_INFO ( " %s: PAD token = %d '%s' \n " , __func__ , vocab . special_pad_id , vocab . id_to_token [ vocab . special_pad_id ] . text . c_str ( ) ) ; }
if ( vocab . special_cls_id ! = - 1 ) { LLAMA_LOG_INFO ( " %s: CLS token = %d '%s' \n " , __func__ , vocab . special_cls_id , vocab . id_to_token [ vocab . special_cls_id ] . text . c_str ( ) ) ; }
if ( vocab . special_mask_id ! = - 1 ) { LLAMA_LOG_INFO ( " %s: MASK token = %d '%s' \n " , __func__ , vocab . special_mask_id , vocab . id_to_token [ vocab . special_mask_id ] . text . c_str ( ) ) ; }
if ( vocab . linefeed_id ! = - 1 ) { LLAMA_LOG_INFO ( " %s: LF token = %d '%s' \n " , __func__ , vocab . linefeed_id , vocab . id_to_token [ vocab . linefeed_id ] . text . c_str ( ) ) ; }
if ( vocab . special_fim_pre_id ! = - 1 ) { LLAMA_LOG_INFO ( " %s: FIM PRE token = %d '%s' \n " , __func__ , vocab . special_fim_pre_id , vocab . id_to_token [ vocab . special_fim_pre_id ] . text . c_str ( ) ) ; }
if ( vocab . special_fim_suf_id ! = - 1 ) { LLAMA_LOG_INFO ( " %s: FIM SUF token = %d '%s' \n " , __func__ , vocab . special_fim_suf_id , vocab . id_to_token [ vocab . special_fim_suf_id ] . text . c_str ( ) ) ; }
if ( vocab . special_fim_mid_id ! = - 1 ) { LLAMA_LOG_INFO ( " %s: FIM MID token = %d '%s' \n " , __func__ , vocab . special_fim_mid_id , vocab . id_to_token [ vocab . special_fim_mid_id ] . text . c_str ( ) ) ; }
if ( vocab . special_fim_pad_id ! = - 1 ) { LLAMA_LOG_INFO ( " %s: FIM PAD token = %d '%s' \n " , __func__ , vocab . special_fim_pad_id , vocab . id_to_token [ vocab . special_fim_pad_id ] . text . c_str ( ) ) ; }
if ( vocab . special_fim_rep_id ! = - 1 ) { LLAMA_LOG_INFO ( " %s: FIM REP token = %d '%s' \n " , __func__ , vocab . special_fim_rep_id , vocab . id_to_token [ vocab . special_fim_rep_id ] . text . c_str ( ) ) ; }
if ( vocab . special_fim_sep_id ! = - 1 ) { LLAMA_LOG_INFO ( " %s: FIM SEP token = %d '%s' \n " , __func__ , vocab . special_fim_sep_id , vocab . id_to_token [ vocab . special_fim_sep_id ] . text . c_str ( ) ) ; }
for ( const auto & id : vocab . special_eog_ids ) {
LLAMA_LOG_INFO ( " %s: EOG token = %d '%s' \n " , __func__ , id , vocab . id_to_token [ id ] . text . c_str ( ) ) ;
}
LLAMA_LOG_INFO ( " %s: max token length = %d \n " , __func__ , vocab . max_token_len ) ;
if ( model . arch = = LLM_ARCH_DEEPSEEK ) {
LLAMA_LOG_INFO ( " %s: n_layer_dense_lead = %d \n " , __func__ , hparams . n_layer_dense_lead ) ;
LLAMA_LOG_INFO ( " %s: n_ff_exp = %d \n " , __func__ , hparams . n_ff_exp ) ;
LLAMA_LOG_INFO ( " %s: n_expert_shared = %d \n " , __func__ , hparams . n_expert_shared ) ;
LLAMA_LOG_INFO ( " %s: expert_weights_scale = %.1f \n " , __func__ , hparams . expert_weights_scale ) ;
}
if ( model . arch = = LLM_ARCH_DEEPSEEK2 ) {
LLAMA_LOG_INFO ( " %s: n_layer_dense_lead = %d \n " , __func__ , hparams . n_layer_dense_lead ) ;
LLAMA_LOG_INFO ( " %s: n_lora_q = %d \n " , __func__ , hparams . n_lora_q ) ;
LLAMA_LOG_INFO ( " %s: n_lora_kv = %d \n " , __func__ , hparams . n_lora_kv ) ;
LLAMA_LOG_INFO ( " %s: n_ff_exp = %d \n " , __func__ , hparams . n_ff_exp ) ;
LLAMA_LOG_INFO ( " %s: n_expert_shared = %d \n " , __func__ , hparams . n_expert_shared ) ;
LLAMA_LOG_INFO ( " %s: expert_weights_scale = %.1f \n " , __func__ , hparams . expert_weights_scale ) ;
2025-01-04 21:06:11 +01:00
LLAMA_LOG_INFO ( " %s: expert_weights_norm = %d \n " , __func__ , hparams . expert_weights_norm ) ;
LLAMA_LOG_INFO ( " %s: expert_gating_func = %s \n " , __func__ , llama_expert_gating_func_name ( ( enum llama_expert_gating_func_type ) hparams . expert_gating_func ) ) ;
2025-01-03 09:18:53 +01:00
LLAMA_LOG_INFO ( " %s: rope_yarn_log_mul = %.4f \n " , __func__ , hparams . rope_yarn_log_mul ) ;
}
if ( model . arch = = LLM_ARCH_QWEN2MOE ) {
LLAMA_LOG_INFO ( " %s: n_ff_exp = %d \n " , __func__ , hparams . n_ff_exp ) ;
LLAMA_LOG_INFO ( " %s: n_ff_shexp = %d \n " , __func__ , hparams . n_ff_shexp ) ;
}
if ( model . arch = = LLM_ARCH_MINICPM | | model . arch = = LLM_ARCH_GRANITE | | model . arch = = LLM_ARCH_GRANITE_MOE ) {
LLAMA_LOG_INFO ( " %s: f_embedding_scale = %f \n " , __func__ , hparams . f_embedding_scale ) ;
LLAMA_LOG_INFO ( " %s: f_residual_scale = %f \n " , __func__ , hparams . f_residual_scale ) ;
LLAMA_LOG_INFO ( " %s: f_attention_scale = %f \n " , __func__ , hparams . f_attention_scale ) ;
}
}
//
// interface implementation
//
struct llama_model_params llama_model_default_params ( ) {
struct llama_model_params result = {
/*.devices =*/ nullptr ,
/*.n_gpu_layers =*/ 0 ,
/*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER ,
/*.main_gpu =*/ 0 ,
/*.tensor_split =*/ nullptr ,
/*.rpc_servers =*/ nullptr ,
/*.progress_callback =*/ nullptr ,
/*.progress_callback_user_data =*/ nullptr ,
/*.kv_overrides =*/ nullptr ,
/*.vocab_only =*/ false ,
/*.use_mmap =*/ true ,
/*.use_mlock =*/ false ,
/*.check_tensors =*/ false ,
} ;
# ifdef GGML_USE_METAL
// note: we usually have plenty of VRAM, so by default offload all layers to the GPU
result . n_gpu_layers = 999 ;
# endif
return result ;
}
void llama_free_model ( struct llama_model * model ) {
delete model ;
}
enum llama_vocab_type llama_vocab_type ( const struct llama_model * model ) {
return model - > vocab . type ;
}
int32_t llama_n_vocab ( const struct llama_model * model ) {
return model - > hparams . n_vocab ;
}
int32_t llama_n_ctx_train ( const struct llama_model * model ) {
return model - > hparams . n_ctx_train ;
}
int32_t llama_n_embd ( const struct llama_model * model ) {
return model - > hparams . n_embd ;
}
int32_t llama_n_layer ( const struct llama_model * model ) {
return model - > hparams . n_layer ;
}
int32_t llama_n_head ( const struct llama_model * model ) {
return model - > hparams . n_head ( ) ;
}
enum llama_rope_type llama_rope_type ( const struct llama_model * model ) {
switch ( model - > arch ) {
// these models do not use RoPE
case LLM_ARCH_GPT2 :
case LLM_ARCH_GPTJ :
case LLM_ARCH_MPT :
case LLM_ARCH_REFACT :
case LLM_ARCH_BLOOM :
case LLM_ARCH_MAMBA :
case LLM_ARCH_JINA_BERT_V2 :
case LLM_ARCH_T5 :
case LLM_ARCH_T5ENCODER :
case LLM_ARCH_JAIS :
case LLM_ARCH_RWKV6 :
case LLM_ARCH_WAVTOKENIZER_DEC :
return LLAMA_ROPE_TYPE_NONE ;
// use what we call a normal RoPE, operating on pairs of consecutive head values
case LLM_ARCH_LLAMA :
case LLM_ARCH_DECI :
case LLM_ARCH_BAICHUAN :
case LLM_ARCH_STARCODER :
case LLM_ARCH_PLAMO :
case LLM_ARCH_ORION :
case LLM_ARCH_INTERNLM2 :
case LLM_ARCH_MINICPM :
case LLM_ARCH_XVERSE :
case LLM_ARCH_COMMAND_R :
2025-01-04 15:33:31 +01:00
case LLM_ARCH_COHERE2 :
2025-01-03 09:18:53 +01:00
case LLM_ARCH_OLMO :
case LLM_ARCH_ARCTIC :
case LLM_ARCH_DEEPSEEK :
case LLM_ARCH_DEEPSEEK2 :
case LLM_ARCH_CHATGLM :
case LLM_ARCH_GRANITE :
case LLM_ARCH_GRANITE_MOE :
case LLM_ARCH_CHAMELEON :
return LLAMA_ROPE_TYPE_NORM ;
// the pairs of head values are offset by n_rot/2
case LLM_ARCH_FALCON :
case LLM_ARCH_GROK :
case LLM_ARCH_DBRX :
case LLM_ARCH_BERT :
case LLM_ARCH_NOMIC_BERT :
case LLM_ARCH_STABLELM :
case LLM_ARCH_BITNET :
case LLM_ARCH_QWEN :
case LLM_ARCH_QWEN2 :
case LLM_ARCH_QWEN2MOE :
case LLM_ARCH_OLMO2 :
case LLM_ARCH_OLMOE :
case LLM_ARCH_PHI2 :
case LLM_ARCH_PHI3 :
case LLM_ARCH_GEMMA :
case LLM_ARCH_GEMMA2 :
case LLM_ARCH_STARCODER2 :
case LLM_ARCH_OPENELM :
case LLM_ARCH_GPTNEOX :
case LLM_ARCH_CODESHELL :
case LLM_ARCH_NEMOTRON :
case LLM_ARCH_EXAONE :
case LLM_ARCH_MINICPM3 :
return LLAMA_ROPE_TYPE_NEOX ;
case LLM_ARCH_QWEN2VL :
return LLAMA_ROPE_TYPE_MROPE ;
// all model arches should be listed explicitly here
case LLM_ARCH_UNKNOWN :
GGML_ABORT ( " unknown architecture " ) ;
}
return LLAMA_ROPE_TYPE_NONE ;
}
float llama_rope_freq_scale_train ( const struct llama_model * model ) {
return model - > hparams . rope_freq_scale_train ;
}
int32_t llama_model_meta_val_str ( const struct llama_model * model , const char * key , char * buf , size_t buf_size ) {
const auto & it = model - > gguf_kv . find ( key ) ;
if ( it = = model - > gguf_kv . end ( ) ) {
if ( buf_size > 0 ) {
buf [ 0 ] = ' \0 ' ;
}
return - 1 ;
}
return snprintf ( buf , buf_size , " %s " , it - > second . c_str ( ) ) ;
}
int32_t llama_model_meta_count ( const struct llama_model * model ) {
return ( int ) model - > gguf_kv . size ( ) ;
}
int32_t llama_model_meta_key_by_index ( const struct llama_model * model , int i , char * buf , size_t buf_size ) {
if ( i < 0 | | i > = ( int ) model - > gguf_kv . size ( ) ) {
if ( buf_size > 0 ) {
buf [ 0 ] = ' \0 ' ;
}
return - 1 ;
}
auto it = model - > gguf_kv . begin ( ) ;
std : : advance ( it , i ) ;
return snprintf ( buf , buf_size , " %s " , it - > first . c_str ( ) ) ;
}
int32_t llama_model_meta_val_str_by_index ( const struct llama_model * model , int32_t i , char * buf , size_t buf_size ) {
if ( i < 0 | | i > = ( int ) model - > gguf_kv . size ( ) ) {
if ( buf_size > 0 ) {
buf [ 0 ] = ' \0 ' ;
}
return - 1 ;
}
auto it = model - > gguf_kv . begin ( ) ;
std : : advance ( it , i ) ;
return snprintf ( buf , buf_size , " %s " , it - > second . c_str ( ) ) ;
}
int32_t llama_model_desc ( const struct llama_model * model , char * buf , size_t buf_size ) {
return snprintf ( buf , buf_size , " %s %s %s " ,
llama_model_arch_name ( * model ) . c_str ( ) ,
llama_model_type_name ( * model ) . c_str ( ) ,
llama_model_ftype_name ( * model ) . c_str ( ) ) ;
}
uint64_t llama_model_size ( const struct llama_model * model ) {
return model - > n_bytes ;
}
uint64_t llama_model_n_params ( const struct llama_model * model ) {
return model - > n_elements ;
}
bool llama_model_has_encoder ( const struct llama_model * model ) {
switch ( model - > arch ) {
case LLM_ARCH_T5 : return true ;
case LLM_ARCH_T5ENCODER : return true ;
default : return false ;
}
}
bool llama_model_has_decoder ( const struct llama_model * model ) {
switch ( model - > arch ) {
case LLM_ARCH_T5ENCODER : return false ;
default : return true ;
}
}
llama_token llama_model_decoder_start_token ( const struct llama_model * model ) {
return model - > hparams . dec_start_token_id ;
}
bool llama_model_is_recurrent ( const struct llama_model * model ) {
switch ( model - > arch ) {
case LLM_ARCH_MAMBA : return true ;
case LLM_ARCH_RWKV6 : return true ;
default : return false ;
}
}