2023-08-18 12:44:58 +02:00
|
|
|
#include <algorithm>
|
|
|
|
#include <array>
|
|
|
|
#include <cassert>
|
|
|
|
#include <chrono>
|
|
|
|
#include <cinttypes>
|
2023-08-28 19:19:18 +02:00
|
|
|
#include <clocale>
|
|
|
|
#include <cmath>
|
|
|
|
#include <cstdio>
|
2023-08-18 12:44:58 +02:00
|
|
|
#include <cstring>
|
|
|
|
#include <ctime>
|
2024-03-15 09:22:24 +01:00
|
|
|
#include <cstdlib>
|
2023-08-18 12:44:58 +02:00
|
|
|
#include <iterator>
|
|
|
|
#include <map>
|
|
|
|
#include <numeric>
|
|
|
|
#include <regex>
|
|
|
|
#include <sstream>
|
|
|
|
#include <string>
|
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
#include "ggml.h"
|
|
|
|
#include "llama.h"
|
|
|
|
#include "common.h"
|
|
|
|
#include "ggml-cuda.h"
|
2024-02-02 03:48:53 +08:00
|
|
|
#include "ggml-sycl.h"
|
2023-08-18 12:44:58 +02:00
|
|
|
|
|
|
|
// utils
|
|
|
|
static uint64_t get_time_ns() {
|
|
|
|
using clock = std::chrono::high_resolution_clock;
|
|
|
|
return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
|
|
|
|
}
|
|
|
|
|
|
|
|
template<class T>
|
|
|
|
static std::string join(const std::vector<T> & values, const std::string & delim) {
|
|
|
|
std::ostringstream str;
|
|
|
|
for (size_t i = 0; i < values.size(); i++) {
|
|
|
|
str << values[i];
|
|
|
|
if (i < values.size() - 1) {
|
|
|
|
str << delim;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return str.str();
|
|
|
|
}
|
|
|
|
|
|
|
|
template<class T>
|
|
|
|
static std::vector<T> split(const std::string & str, char delim) {
|
|
|
|
std::vector<T> values;
|
|
|
|
std::istringstream str_stream(str);
|
|
|
|
std::string token;
|
|
|
|
while (std::getline(str_stream, token, delim)) {
|
|
|
|
T value;
|
|
|
|
std::istringstream token_stream(token);
|
|
|
|
token_stream >> value;
|
|
|
|
values.push_back(value);
|
|
|
|
}
|
|
|
|
return values;
|
|
|
|
}
|
|
|
|
|
2023-12-07 13:03:17 +02:00
|
|
|
template<typename T, typename F>
|
|
|
|
static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
|
|
|
|
std::vector<std::string> str_values;
|
|
|
|
std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
|
|
|
|
return str_values;
|
|
|
|
}
|
|
|
|
|
2023-08-18 12:44:58 +02:00
|
|
|
template<typename T>
|
|
|
|
static T avg(const std::vector<T> & v) {
|
|
|
|
if (v.empty()) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
T sum = std::accumulate(v.begin(), v.end(), T(0));
|
|
|
|
return sum / (T)v.size();
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename T>
|
|
|
|
static T stdev(const std::vector<T> & v) {
|
|
|
|
if (v.size() <= 1) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
T mean = avg(v);
|
|
|
|
T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
|
|
|
|
T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
|
|
|
|
return stdev;
|
|
|
|
}
|
|
|
|
|
|
|
|
static std::string get_cpu_info() {
|
|
|
|
std::string id;
|
|
|
|
#ifdef __linux__
|
|
|
|
FILE * f = fopen("/proc/cpuinfo", "r");
|
|
|
|
if (f) {
|
|
|
|
char buf[1024];
|
|
|
|
while (fgets(buf, sizeof(buf), f)) {
|
|
|
|
if (strncmp(buf, "model name", 10) == 0) {
|
|
|
|
char * p = strchr(buf, ':');
|
|
|
|
if (p) {
|
|
|
|
p++;
|
|
|
|
while (std::isspace(*p)) {
|
|
|
|
p++;
|
|
|
|
}
|
|
|
|
while (std::isspace(p[strlen(p) - 1])) {
|
|
|
|
p[strlen(p) - 1] = '\0';
|
|
|
|
}
|
|
|
|
id = p;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2024-03-14 14:29:32 -04:00
|
|
|
fclose(f);
|
2023-08-18 12:44:58 +02:00
|
|
|
}
|
|
|
|
#endif
|
|
|
|
// TODO: other platforms
|
|
|
|
return id;
|
|
|
|
}
|
|
|
|
|
|
|
|
static std::string get_gpu_info() {
|
|
|
|
std::string id;
|
2024-03-26 01:16:01 +01:00
|
|
|
#ifdef GGML_USE_CUDA
|
2024-03-18 11:03:04 +01:00
|
|
|
int count = ggml_backend_cuda_get_device_count();
|
2023-08-18 12:44:58 +02:00
|
|
|
for (int i = 0; i < count; i++) {
|
|
|
|
char buf[128];
|
2024-03-18 11:03:04 +01:00
|
|
|
ggml_backend_cuda_get_device_description(i, buf, sizeof(buf));
|
2023-08-18 12:44:58 +02:00
|
|
|
id += buf;
|
|
|
|
if (i < count - 1) {
|
|
|
|
id += "/";
|
|
|
|
}
|
|
|
|
}
|
2024-02-02 03:48:53 +08:00
|
|
|
#endif
|
|
|
|
#ifdef GGML_USE_SYCL
|
2024-03-02 19:49:30 +08:00
|
|
|
int count = ggml_backend_sycl_get_device_count();
|
|
|
|
for (int i = 0; i < count; i++) {
|
|
|
|
char buf[128];
|
|
|
|
ggml_sycl_get_device_description(i, buf, sizeof(buf));
|
|
|
|
id += buf;
|
|
|
|
if (i < count - 1) {
|
2024-02-02 03:48:53 +08:00
|
|
|
id += "/";
|
|
|
|
}
|
|
|
|
}
|
2023-08-18 12:44:58 +02:00
|
|
|
#endif
|
|
|
|
// TODO: other backends
|
|
|
|
return id;
|
|
|
|
}
|
|
|
|
|
|
|
|
// command line params
|
|
|
|
enum output_formats {CSV, JSON, MARKDOWN, SQL};
|
|
|
|
|
2024-01-12 20:07:38 +01:00
|
|
|
static const char * output_format_str(output_formats format) {
|
|
|
|
switch (format) {
|
|
|
|
case CSV: return "csv";
|
|
|
|
case JSON: return "json";
|
|
|
|
case MARKDOWN: return "md";
|
|
|
|
case SQL: return "sql";
|
|
|
|
default: GGML_ASSERT(!"invalid output format");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static const char * split_mode_str(llama_split_mode mode) {
|
|
|
|
switch (mode) {
|
2024-02-25 12:09:09 +02:00
|
|
|
case LLAMA_SPLIT_MODE_NONE: return "none";
|
|
|
|
case LLAMA_SPLIT_MODE_LAYER: return "layer";
|
|
|
|
case LLAMA_SPLIT_MODE_ROW: return "row";
|
2024-01-12 20:07:38 +01:00
|
|
|
default: GGML_ASSERT(!"invalid split mode");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-05-10 18:03:54 +02:00
|
|
|
static std::string pair_str(const std::pair<int, int> & p) {
|
|
|
|
static char buf[32];
|
|
|
|
snprintf(buf, sizeof(buf), "%d,%d", p.first, p.second);
|
|
|
|
return buf;
|
|
|
|
}
|
|
|
|
|
2023-08-18 12:44:58 +02:00
|
|
|
struct cmd_params {
|
|
|
|
std::vector<std::string> model;
|
|
|
|
std::vector<int> n_prompt;
|
|
|
|
std::vector<int> n_gen;
|
2024-05-10 18:03:54 +02:00
|
|
|
std::vector<std::pair<int, int>> n_pg;
|
2023-08-18 12:44:58 +02:00
|
|
|
std::vector<int> n_batch;
|
2024-03-13 18:54:21 +01:00
|
|
|
std::vector<int> n_ubatch;
|
2023-12-07 13:03:17 +02:00
|
|
|
std::vector<ggml_type> type_k;
|
|
|
|
std::vector<ggml_type> type_v;
|
2023-08-18 12:44:58 +02:00
|
|
|
std::vector<int> n_threads;
|
|
|
|
std::vector<int> n_gpu_layers;
|
2024-01-12 20:07:38 +01:00
|
|
|
std::vector<llama_split_mode> split_mode;
|
2023-08-18 12:44:58 +02:00
|
|
|
std::vector<int> main_gpu;
|
2024-01-07 17:59:01 +01:00
|
|
|
std::vector<bool> no_kv_offload;
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 12:16:08 +03:00
|
|
|
std::vector<bool> flash_attn;
|
2024-01-31 17:30:17 +02:00
|
|
|
std::vector<std::vector<float>> tensor_split;
|
2024-02-02 03:48:53 +08:00
|
|
|
std::vector<bool> use_mmap;
|
2024-03-07 16:32:38 +02:00
|
|
|
std::vector<bool> embeddings;
|
2024-05-05 07:17:47 -05:00
|
|
|
ggml_numa_strategy numa;
|
2023-08-18 12:44:58 +02:00
|
|
|
int reps;
|
|
|
|
bool verbose;
|
|
|
|
output_formats output_format;
|
|
|
|
};
|
|
|
|
|
|
|
|
static const cmd_params cmd_params_defaults = {
|
2023-08-22 09:56:03 +02:00
|
|
|
/* model */ {"models/7B/ggml-model-q4_0.gguf"},
|
2023-08-18 12:44:58 +02:00
|
|
|
/* n_prompt */ {512},
|
|
|
|
/* n_gen */ {128},
|
2024-05-22 16:10:46 +02:00
|
|
|
/* n_pg */ {},
|
2024-03-13 18:54:21 +01:00
|
|
|
/* n_batch */ {2048},
|
|
|
|
/* n_ubatch */ {512},
|
2023-12-07 13:03:17 +02:00
|
|
|
/* type_k */ {GGML_TYPE_F16},
|
|
|
|
/* type_v */ {GGML_TYPE_F16},
|
2024-05-22 20:04:20 +03:00
|
|
|
/* n_threads */ {cpu_get_num_math()},
|
2023-08-18 12:44:58 +02:00
|
|
|
/* n_gpu_layers */ {99},
|
2024-02-25 12:09:09 +02:00
|
|
|
/* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
|
2023-08-18 12:44:58 +02:00
|
|
|
/* main_gpu */ {0},
|
2024-01-07 17:59:01 +01:00
|
|
|
/* no_kv_offload */ {false},
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 12:16:08 +03:00
|
|
|
/* flash_attn */ {false},
|
2024-01-31 17:30:17 +02:00
|
|
|
/* tensor_split */ {std::vector<float>(llama_max_devices(), 0.0f)},
|
2024-02-02 03:48:53 +08:00
|
|
|
/* use_mmap */ {true},
|
2024-03-07 16:32:38 +02:00
|
|
|
/* embeddings */ {false},
|
2024-05-05 07:17:47 -05:00
|
|
|
/* numa */ GGML_NUMA_STRATEGY_DISABLED,
|
2023-08-18 12:44:58 +02:00
|
|
|
/* reps */ 5,
|
|
|
|
/* verbose */ false,
|
|
|
|
/* output_format */ MARKDOWN
|
|
|
|
};
|
|
|
|
|
|
|
|
static void print_usage(int /* argc */, char ** argv) {
|
2023-09-05 15:10:27 -04:00
|
|
|
printf("usage: %s [options]\n", argv[0]);
|
|
|
|
printf("\n");
|
|
|
|
printf("options:\n");
|
|
|
|
printf(" -h, --help\n");
|
2024-01-12 20:07:38 +01:00
|
|
|
printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
|
|
|
|
printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
|
|
|
|
printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
|
2024-05-10 18:03:54 +02:00
|
|
|
printf(" -pg <pp,tg> (default: %s)\n", join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str());
|
2024-01-12 20:07:38 +01:00
|
|
|
printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
|
2024-05-10 18:03:54 +02:00
|
|
|
printf(" -ub, --ubatch-size <n> (default: %s)\n", join(cmd_params_defaults.n_ubatch, ",").c_str());
|
|
|
|
printf(" -ctk, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
|
|
|
|
printf(" -ctv, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
|
2024-01-12 20:07:38 +01:00
|
|
|
printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
|
|
|
|
printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
|
|
|
|
printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
|
|
|
|
printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
|
|
|
|
printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 12:16:08 +03:00
|
|
|
printf(" -fa, --flash-attn <0|1> (default: %s)\n", join(cmd_params_defaults.flash_attn, ",").c_str());
|
2024-02-02 03:48:53 +08:00
|
|
|
printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
|
2024-05-05 07:17:47 -05:00
|
|
|
printf(" --numa <distribute|isolate|numactl> (default: disabled)\n");
|
2024-03-07 16:32:38 +02:00
|
|
|
printf(" -embd, --embeddings <0|1> (default: %s)\n", join(cmd_params_defaults.embeddings, ",").c_str());
|
2024-03-13 18:54:21 +01:00
|
|
|
printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
|
2024-01-12 20:07:38 +01:00
|
|
|
printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
|
|
|
|
printf(" -o, --output <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
|
|
|
|
printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
|
2023-09-05 15:10:27 -04:00
|
|
|
printf("\n");
|
|
|
|
printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
|
2023-12-07 13:03:17 +02:00
|
|
|
}
|
2023-08-18 12:44:58 +02:00
|
|
|
|
2023-12-07 13:03:17 +02:00
|
|
|
static ggml_type ggml_type_from_name(const std::string & s) {
|
|
|
|
if (s == "f16") {
|
|
|
|
return GGML_TYPE_F16;
|
|
|
|
}
|
|
|
|
if (s == "q8_0") {
|
|
|
|
return GGML_TYPE_Q8_0;
|
|
|
|
}
|
|
|
|
if (s == "q4_0") {
|
|
|
|
return GGML_TYPE_Q4_0;
|
|
|
|
}
|
|
|
|
if (s == "q4_1") {
|
|
|
|
return GGML_TYPE_Q4_1;
|
|
|
|
}
|
|
|
|
if (s == "q5_0") {
|
|
|
|
return GGML_TYPE_Q5_0;
|
|
|
|
}
|
|
|
|
if (s == "q5_1") {
|
|
|
|
return GGML_TYPE_Q5_1;
|
|
|
|
}
|
2024-03-21 08:27:57 +01:00
|
|
|
if (s == "iq4_nl") {
|
|
|
|
return GGML_TYPE_IQ4_NL;
|
|
|
|
}
|
2023-12-07 13:03:17 +02:00
|
|
|
|
|
|
|
return GGML_TYPE_COUNT;
|
2023-08-18 12:44:58 +02:00
|
|
|
}
|
|
|
|
|
2023-12-07 13:03:17 +02:00
|
|
|
|
2023-08-18 12:44:58 +02:00
|
|
|
static cmd_params parse_cmd_params(int argc, char ** argv) {
|
|
|
|
cmd_params params;
|
|
|
|
std::string arg;
|
|
|
|
bool invalid_param = false;
|
|
|
|
const std::string arg_prefix = "--";
|
|
|
|
const char split_delim = ',';
|
|
|
|
|
|
|
|
params.verbose = cmd_params_defaults.verbose;
|
|
|
|
params.output_format = cmd_params_defaults.output_format;
|
|
|
|
params.reps = cmd_params_defaults.reps;
|
|
|
|
|
|
|
|
for (int i = 1; i < argc; i++) {
|
|
|
|
arg = argv[i];
|
|
|
|
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
|
|
|
|
std::replace(arg.begin(), arg.end(), '_', '-');
|
|
|
|
}
|
|
|
|
|
|
|
|
if (arg == "-h" || arg == "--help") {
|
|
|
|
print_usage(argc, argv);
|
|
|
|
exit(0);
|
|
|
|
} else if (arg == "-m" || arg == "--model") {
|
|
|
|
if (++i >= argc) {
|
|
|
|
invalid_param = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
auto p = split<std::string>(argv[i], split_delim);
|
|
|
|
params.model.insert(params.model.end(), p.begin(), p.end());
|
|
|
|
} else if (arg == "-p" || arg == "--n-prompt") {
|
|
|
|
if (++i >= argc) {
|
|
|
|
invalid_param = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
auto p = split<int>(argv[i], split_delim);
|
|
|
|
params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
|
|
|
|
} else if (arg == "-n" || arg == "--n-gen") {
|
|
|
|
if (++i >= argc) {
|
|
|
|
invalid_param = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
auto p = split<int>(argv[i], split_delim);
|
|
|
|
params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
|
2024-05-10 18:03:54 +02:00
|
|
|
} else if (arg == "-pg") {
|
|
|
|
if (++i >= argc) {
|
|
|
|
invalid_param = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
auto p = split<std::string>(argv[i], ',');
|
|
|
|
if (p.size() != 2) {
|
|
|
|
invalid_param = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
params.n_pg.push_back({std::stoi(p[0]), std::stoi(p[1])});
|
2023-08-18 12:44:58 +02:00
|
|
|
} else if (arg == "-b" || arg == "--batch-size") {
|
|
|
|
if (++i >= argc) {
|
|
|
|
invalid_param = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
auto p = split<int>(argv[i], split_delim);
|
|
|
|
params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
|
2024-03-13 18:54:21 +01:00
|
|
|
} else if (arg == "-ub" || arg == "--ubatch-size") {
|
|
|
|
if (++i >= argc) {
|
|
|
|
invalid_param = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
auto p = split<int>(argv[i], split_delim);
|
|
|
|
params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end());
|
2023-12-07 13:03:17 +02:00
|
|
|
} else if (arg == "-ctk" || arg == "--cache-type-k") {
|
2023-08-18 12:44:58 +02:00
|
|
|
if (++i >= argc) {
|
|
|
|
invalid_param = true;
|
|
|
|
break;
|
|
|
|
}
|
2023-12-07 13:03:17 +02:00
|
|
|
auto p = split<std::string>(argv[i], split_delim);
|
|
|
|
std::vector<ggml_type> types;
|
|
|
|
for (const auto & t : p) {
|
|
|
|
ggml_type gt = ggml_type_from_name(t);
|
|
|
|
if (gt == GGML_TYPE_COUNT) {
|
|
|
|
invalid_param = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
types.push_back(gt);
|
|
|
|
}
|
|
|
|
params.type_k.insert(params.type_k.end(), types.begin(), types.end());
|
|
|
|
} else if (arg == "-ctv" || arg == "--cache-type-v") {
|
|
|
|
if (++i >= argc) {
|
|
|
|
invalid_param = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
auto p = split<std::string>(argv[i], split_delim);
|
|
|
|
std::vector<ggml_type> types;
|
|
|
|
for (const auto & t : p) {
|
|
|
|
ggml_type gt = ggml_type_from_name(t);
|
|
|
|
if (gt == GGML_TYPE_COUNT) {
|
|
|
|
invalid_param = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
types.push_back(gt);
|
|
|
|
}
|
|
|
|
params.type_v.insert(params.type_v.end(), types.begin(), types.end());
|
2023-08-18 12:44:58 +02:00
|
|
|
} else if (arg == "-t" || arg == "--threads") {
|
|
|
|
if (++i >= argc) {
|
|
|
|
invalid_param = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
auto p = split<int>(argv[i], split_delim);
|
|
|
|
params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
|
|
|
|
} else if (arg == "-ngl" || arg == "--n-gpu-layers") {
|
|
|
|
if (++i >= argc) {
|
|
|
|
invalid_param = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
auto p = split<int>(argv[i], split_delim);
|
|
|
|
params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
|
2024-01-12 20:07:38 +01:00
|
|
|
} else if (arg == "-sm" || arg == "--split-mode") {
|
|
|
|
if (++i >= argc) {
|
|
|
|
invalid_param = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
auto p = split<std::string>(argv[i], split_delim);
|
|
|
|
std::vector<llama_split_mode> modes;
|
|
|
|
for (const auto & m : p) {
|
|
|
|
llama_split_mode mode;
|
|
|
|
if (m == "none") {
|
2024-02-25 12:09:09 +02:00
|
|
|
mode = LLAMA_SPLIT_MODE_NONE;
|
2024-01-12 20:07:38 +01:00
|
|
|
} else if (m == "layer") {
|
2024-02-25 12:09:09 +02:00
|
|
|
mode = LLAMA_SPLIT_MODE_LAYER;
|
2024-01-12 20:07:38 +01:00
|
|
|
} else if (m == "row") {
|
2024-02-25 12:09:09 +02:00
|
|
|
mode = LLAMA_SPLIT_MODE_ROW;
|
2024-01-12 20:07:38 +01:00
|
|
|
} else {
|
|
|
|
invalid_param = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
modes.push_back(mode);
|
|
|
|
}
|
|
|
|
params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
|
2023-08-18 12:44:58 +02:00
|
|
|
} else if (arg == "-mg" || arg == "--main-gpu") {
|
|
|
|
if (++i >= argc) {
|
|
|
|
invalid_param = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
params.main_gpu = split<int>(argv[i], split_delim);
|
2024-01-07 17:59:01 +01:00
|
|
|
} else if (arg == "-nkvo" || arg == "--no-kv-offload") {
|
|
|
|
if (++i >= argc) {
|
|
|
|
invalid_param = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
auto p = split<bool>(argv[i], split_delim);
|
|
|
|
params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
|
2024-05-05 07:17:47 -05:00
|
|
|
} else if (arg == "--numa") {
|
|
|
|
if (++i >= argc) {
|
|
|
|
invalid_param = true;
|
|
|
|
break;
|
|
|
|
} else {
|
|
|
|
std::string value(argv[i]);
|
|
|
|
/**/ if (value == "distribute" || value == "" ) { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
|
|
|
|
else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
|
|
|
|
else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
|
|
|
|
else { invalid_param = true; break; }
|
|
|
|
}
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 12:16:08 +03:00
|
|
|
} else if (arg == "-fa" || arg == "--flash-attn") {
|
|
|
|
if (++i >= argc) {
|
|
|
|
invalid_param = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
auto p = split<bool>(argv[i], split_delim);
|
|
|
|
params.flash_attn.insert(params.flash_attn.end(), p.begin(), p.end());
|
2024-02-02 03:48:53 +08:00
|
|
|
} else if (arg == "-mmp" || arg == "--mmap") {
|
|
|
|
if (++i >= argc) {
|
|
|
|
invalid_param = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
auto p = split<bool>(argv[i], split_delim);
|
|
|
|
params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
|
2024-03-07 16:32:38 +02:00
|
|
|
} else if (arg == "-embd" || arg == "--embeddings") {
|
|
|
|
if (++i >= argc) {
|
|
|
|
invalid_param = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
auto p = split<bool>(argv[i], split_delim);
|
|
|
|
params.embeddings.insert(params.embeddings.end(), p.begin(), p.end());
|
2023-08-18 12:44:58 +02:00
|
|
|
} else if (arg == "-ts" || arg == "--tensor-split") {
|
|
|
|
if (++i >= argc) {
|
|
|
|
invalid_param = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
for (auto ts : split<std::string>(argv[i], split_delim)) {
|
|
|
|
// split string by ; and /
|
|
|
|
const std::regex regex{R"([;/]+)"};
|
|
|
|
std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
|
|
|
|
std::vector<std::string> split_arg{it, {}};
|
2024-01-31 17:30:17 +02:00
|
|
|
GGML_ASSERT(split_arg.size() <= llama_max_devices());
|
2023-08-18 12:44:58 +02:00
|
|
|
|
2024-01-31 17:30:17 +02:00
|
|
|
std::vector<float> tensor_split(llama_max_devices());
|
|
|
|
for (size_t i = 0; i < llama_max_devices(); ++i) {
|
2023-08-18 12:44:58 +02:00
|
|
|
if (i < split_arg.size()) {
|
|
|
|
tensor_split[i] = std::stof(split_arg[i]);
|
|
|
|
} else {
|
|
|
|
tensor_split[i] = 0.0f;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
params.tensor_split.push_back(tensor_split);
|
|
|
|
}
|
|
|
|
} else if (arg == "-r" || arg == "--repetitions") {
|
|
|
|
if (++i >= argc) {
|
|
|
|
invalid_param = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
params.reps = std::stoi(argv[i]);
|
|
|
|
} else if (arg == "-o" || arg == "--output") {
|
|
|
|
if (++i >= argc) {
|
|
|
|
invalid_param = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (argv[i] == std::string("csv")) {
|
|
|
|
params.output_format = CSV;
|
|
|
|
} else if (argv[i] == std::string("json")) {
|
|
|
|
params.output_format = JSON;
|
|
|
|
} else if (argv[i] == std::string("md")) {
|
|
|
|
params.output_format = MARKDOWN;
|
|
|
|
} else if (argv[i] == std::string("sql")) {
|
|
|
|
params.output_format = SQL;
|
|
|
|
} else {
|
|
|
|
invalid_param = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} else if (arg == "-v" || arg == "--verbose") {
|
|
|
|
params.verbose = true;
|
|
|
|
} else {
|
|
|
|
invalid_param = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (invalid_param) {
|
|
|
|
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
|
|
|
|
print_usage(argc, argv);
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
|
|
|
|
// set defaults
|
|
|
|
if (params.model.empty()) { params.model = cmd_params_defaults.model; }
|
|
|
|
if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
|
|
|
|
if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
|
2024-05-10 18:03:54 +02:00
|
|
|
if (params.n_pg.empty()) { params.n_pg = cmd_params_defaults.n_pg; }
|
2023-08-18 12:44:58 +02:00
|
|
|
if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
|
2024-03-13 18:54:21 +01:00
|
|
|
if (params.n_ubatch.empty()) { params.n_ubatch = cmd_params_defaults.n_ubatch; }
|
2023-12-07 13:03:17 +02:00
|
|
|
if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
|
|
|
|
if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
|
2023-08-18 12:44:58 +02:00
|
|
|
if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
|
2024-01-12 20:07:38 +01:00
|
|
|
if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; }
|
2023-08-18 12:44:58 +02:00
|
|
|
if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
|
2024-01-07 17:59:01 +01:00
|
|
|
if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 12:16:08 +03:00
|
|
|
if (params.flash_attn.empty()) { params.flash_attn = cmd_params_defaults.flash_attn; }
|
2023-08-18 12:44:58 +02:00
|
|
|
if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
|
2024-02-02 03:48:53 +08:00
|
|
|
if (params.use_mmap.empty()) { params.use_mmap = cmd_params_defaults.use_mmap; }
|
2024-03-07 16:32:38 +02:00
|
|
|
if (params.embeddings.empty()) { params.embeddings = cmd_params_defaults.embeddings; }
|
2023-08-18 12:44:58 +02:00
|
|
|
if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
|
|
|
|
|
|
|
|
return params;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct cmd_params_instance {
|
|
|
|
std::string model;
|
|
|
|
int n_prompt;
|
|
|
|
int n_gen;
|
|
|
|
int n_batch;
|
2024-03-13 18:54:21 +01:00
|
|
|
int n_ubatch;
|
2023-12-07 13:03:17 +02:00
|
|
|
ggml_type type_k;
|
|
|
|
ggml_type type_v;
|
2023-08-18 12:44:58 +02:00
|
|
|
int n_threads;
|
|
|
|
int n_gpu_layers;
|
2024-01-12 20:07:38 +01:00
|
|
|
llama_split_mode split_mode;
|
2023-08-18 12:44:58 +02:00
|
|
|
int main_gpu;
|
2024-01-07 17:59:01 +01:00
|
|
|
bool no_kv_offload;
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 12:16:08 +03:00
|
|
|
bool flash_attn;
|
2024-01-31 17:30:17 +02:00
|
|
|
std::vector<float> tensor_split;
|
2024-02-02 03:48:53 +08:00
|
|
|
bool use_mmap;
|
2024-03-07 16:32:38 +02:00
|
|
|
bool embeddings;
|
2023-08-18 12:44:58 +02:00
|
|
|
|
2023-09-28 21:42:38 +02:00
|
|
|
llama_model_params to_llama_mparams() const {
|
|
|
|
llama_model_params mparams = llama_model_default_params();
|
|
|
|
|
|
|
|
mparams.n_gpu_layers = n_gpu_layers;
|
2024-01-12 20:07:38 +01:00
|
|
|
mparams.split_mode = split_mode;
|
2023-09-28 21:42:38 +02:00
|
|
|
mparams.main_gpu = main_gpu;
|
|
|
|
mparams.tensor_split = tensor_split.data();
|
2024-02-02 03:48:53 +08:00
|
|
|
mparams.use_mmap = use_mmap;
|
2023-09-28 21:42:38 +02:00
|
|
|
|
|
|
|
return mparams;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool equal_mparams(const cmd_params_instance & other) const {
|
|
|
|
return model == other.model &&
|
|
|
|
n_gpu_layers == other.n_gpu_layers &&
|
2024-01-12 20:07:38 +01:00
|
|
|
split_mode == other.split_mode &&
|
2023-09-28 21:42:38 +02:00
|
|
|
main_gpu == other.main_gpu &&
|
2024-02-02 03:48:53 +08:00
|
|
|
use_mmap == other.use_mmap &&
|
2023-09-28 21:42:38 +02:00
|
|
|
tensor_split == other.tensor_split;
|
|
|
|
}
|
|
|
|
|
|
|
|
llama_context_params to_llama_cparams() const {
|
|
|
|
llama_context_params cparams = llama_context_default_params();
|
2023-08-18 12:44:58 +02:00
|
|
|
|
2023-09-28 21:42:38 +02:00
|
|
|
cparams.n_ctx = n_prompt + n_gen;
|
|
|
|
cparams.n_batch = n_batch;
|
2024-03-13 18:54:21 +01:00
|
|
|
cparams.n_ubatch = n_ubatch;
|
2023-12-07 13:03:17 +02:00
|
|
|
cparams.type_k = type_k;
|
|
|
|
cparams.type_v = type_v;
|
2024-01-07 17:59:01 +01:00
|
|
|
cparams.offload_kqv = !no_kv_offload;
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 12:16:08 +03:00
|
|
|
cparams.flash_attn = flash_attn;
|
2024-03-07 16:32:38 +02:00
|
|
|
cparams.embeddings = embeddings;
|
2023-09-28 21:42:38 +02:00
|
|
|
|
|
|
|
return cparams;
|
2023-08-18 12:44:58 +02:00
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
|
|
|
|
std::vector<cmd_params_instance> instances;
|
|
|
|
|
2023-09-28 21:42:38 +02:00
|
|
|
// this ordering minimizes the number of times that each model needs to be reloaded
|
|
|
|
for (const auto & m : params.model)
|
|
|
|
for (const auto & nl : params.n_gpu_layers)
|
2024-01-12 20:07:38 +01:00
|
|
|
for (const auto & sm : params.split_mode)
|
2023-09-28 21:42:38 +02:00
|
|
|
for (const auto & mg : params.main_gpu)
|
|
|
|
for (const auto & ts : params.tensor_split)
|
2024-02-02 03:48:53 +08:00
|
|
|
for (const auto & mmp : params.use_mmap)
|
2024-03-07 16:32:38 +02:00
|
|
|
for (const auto & embd : params.embeddings)
|
2023-09-28 21:42:38 +02:00
|
|
|
for (const auto & nb : params.n_batch)
|
2024-03-13 18:54:21 +01:00
|
|
|
for (const auto & nub : params.n_ubatch)
|
2023-12-07 13:03:17 +02:00
|
|
|
for (const auto & tk : params.type_k)
|
|
|
|
for (const auto & tv : params.type_v)
|
2024-01-07 17:59:01 +01:00
|
|
|
for (const auto & nkvo : params.no_kv_offload)
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 12:16:08 +03:00
|
|
|
for (const auto & fa : params.flash_attn)
|
2023-09-28 21:42:38 +02:00
|
|
|
for (const auto & nt : params.n_threads) {
|
|
|
|
for (const auto & n_prompt : params.n_prompt) {
|
|
|
|
if (n_prompt == 0) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
cmd_params_instance instance = {
|
|
|
|
/* .model = */ m,
|
|
|
|
/* .n_prompt = */ n_prompt,
|
|
|
|
/* .n_gen = */ 0,
|
|
|
|
/* .n_batch = */ nb,
|
2024-03-13 18:54:21 +01:00
|
|
|
/* .n_ubatch = */ nub,
|
2023-12-07 13:03:17 +02:00
|
|
|
/* .type_k = */ tk,
|
|
|
|
/* .type_v = */ tv,
|
2023-09-28 21:42:38 +02:00
|
|
|
/* .n_threads = */ nt,
|
|
|
|
/* .n_gpu_layers = */ nl,
|
2024-01-12 20:07:38 +01:00
|
|
|
/* .split_mode = */ sm,
|
2023-09-28 21:42:38 +02:00
|
|
|
/* .main_gpu = */ mg,
|
2024-01-07 17:59:01 +01:00
|
|
|
/* .no_kv_offload= */ nkvo,
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 12:16:08 +03:00
|
|
|
/* .flash_attn = */ fa,
|
2023-09-28 21:42:38 +02:00
|
|
|
/* .tensor_split = */ ts,
|
2024-02-02 03:48:53 +08:00
|
|
|
/* .use_mmap = */ mmp,
|
2024-03-07 16:32:38 +02:00
|
|
|
/* .embeddings = */ embd,
|
2023-09-28 21:42:38 +02:00
|
|
|
};
|
|
|
|
instances.push_back(instance);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (const auto & n_gen : params.n_gen) {
|
|
|
|
if (n_gen == 0) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
cmd_params_instance instance = {
|
|
|
|
/* .model = */ m,
|
|
|
|
/* .n_prompt = */ 0,
|
|
|
|
/* .n_gen = */ n_gen,
|
|
|
|
/* .n_batch = */ nb,
|
2024-03-13 18:54:21 +01:00
|
|
|
/* .n_ubatch = */ nub,
|
2023-12-07 13:03:17 +02:00
|
|
|
/* .type_k = */ tk,
|
|
|
|
/* .type_v = */ tv,
|
2023-09-28 21:42:38 +02:00
|
|
|
/* .n_threads = */ nt,
|
|
|
|
/* .n_gpu_layers = */ nl,
|
2024-01-12 20:07:38 +01:00
|
|
|
/* .split_mode = */ sm,
|
2023-09-28 21:42:38 +02:00
|
|
|
/* .main_gpu = */ mg,
|
2024-01-07 17:59:01 +01:00
|
|
|
/* .no_kv_offload= */ nkvo,
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 12:16:08 +03:00
|
|
|
/* .flash_attn = */ fa,
|
2023-09-28 21:42:38 +02:00
|
|
|
/* .tensor_split = */ ts,
|
2024-02-02 03:48:53 +08:00
|
|
|
/* .use_mmap = */ mmp,
|
2024-03-07 16:32:38 +02:00
|
|
|
/* .embeddings = */ embd,
|
2023-09-28 21:42:38 +02:00
|
|
|
};
|
|
|
|
instances.push_back(instance);
|
|
|
|
}
|
2024-05-10 18:03:54 +02:00
|
|
|
|
|
|
|
for (const auto & n_pg : params.n_pg) {
|
|
|
|
if (n_pg.first == 0 && n_pg.second == 0) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
cmd_params_instance instance = {
|
|
|
|
/* .model = */ m,
|
|
|
|
/* .n_prompt = */ n_pg.first,
|
|
|
|
/* .n_gen = */ n_pg.second,
|
|
|
|
/* .n_batch = */ nb,
|
|
|
|
/* .n_ubatch = */ nub,
|
|
|
|
/* .type_k = */ tk,
|
|
|
|
/* .type_v = */ tv,
|
|
|
|
/* .n_threads = */ nt,
|
|
|
|
/* .n_gpu_layers = */ nl,
|
|
|
|
/* .split_mode = */ sm,
|
|
|
|
/* .main_gpu = */ mg,
|
|
|
|
/* .no_kv_offload= */ nkvo,
|
|
|
|
/* .flash_attn = */ fa,
|
|
|
|
/* .tensor_split = */ ts,
|
|
|
|
/* .use_mmap = */ mmp,
|
|
|
|
/* .embeddings = */ embd,
|
|
|
|
};
|
|
|
|
instances.push_back(instance);
|
|
|
|
}
|
2023-09-28 21:42:38 +02:00
|
|
|
}
|
2023-08-18 12:44:58 +02:00
|
|
|
|
|
|
|
return instances;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct test {
|
|
|
|
static const std::string build_commit;
|
|
|
|
static const int build_number;
|
|
|
|
static const bool cuda;
|
|
|
|
static const bool opencl;
|
ggml : add Vulkan backend (#2059)
* Vulkan loader code
* Fix matmul kernel, continue implementation
* Continue implementation
* Vulkan memory management
* Vulkan development
* Matmul call
* Add aligned malloc and free for VMA
* Continue implementation
* First matmul success
* GEMM Kernel optimization
* 1D Blocktiling
* 2D Blocktiling
* Write coalescing
* Continue vulkan implementation and optimization
* First FP16 attempt, disabled for now
* Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel
* Enable device extensions properly, restore fp16 matmul op
* Fix mulmat_f16
* Output FP32 in fp16 matmul shader
* Fix f16_to_f32 kernel
* dequant_q4_0 kernel
* Add VMA library
* Avoid requesting dedicated memory, VMA can decide that by itself
* Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly
* add cmake commands
* Add 2d write operation, profiling code
* Fix 2d write
* Fix queue selection for AMD RADV
* Fix trailing whitespace in vk_mem_alloc.h
* Add WIP warp tile mat mul shaders
* Disable glslc optimization
* Disable glslc optimization for CMake
* Optimize warptile matmul shader, replace blocktile with it
* Add split-k optimization for small matrix multiplication
Use semaphores for synchronization instead of fences or waitidle
Rework async write/read for synchronization
* Fix validation errors, improve compatibility with AMD GPUs
* Rework command buffer handling
* Variable matmul kernel using specialization constants
* Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints
* Reuse semaphores
* Handle stage flags during command buffer submission properly
* Increase matmul test runs for consistent results
* Fix F32 matmul
* Add vectorized loading and zeropadding for matrix multiplication
* Use pinned memory for f16 preprocessing
* Don't force aligned matmul
* Don't free before queue done
* Replace VMA library with native Vulkan buffer management
* Basic offloading support with mul_f32 and dmmv for q4_0
* Run glslc commands in parallel
* Unroll loops in dmmv shader
* Reduce usage of waitIdle
* Reuse pinned allocation for f16 conversion
* Handle devices with only a single queue
* Fix trailing whitespace in CMakeLists.txt
* Allow parallel execution of kernels, parallelize third and fourth dimension calls
* Add fallback for devices only supporting one DescriptorSet per DescriptorPool
* Move to graph function similar to CUDA implementation
* Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function
* Add F32 dmmv shaders
* Batch submissions
* Add .spv to gitignore
* Split off matrix vector multiplication for separate optimization
* Use single command buffer for matrix vector multiplication ops
* Reduce overhead of mul_f32 calls by using a single command buffer
* Add submission batching to mul_f32
* Fix tests
* Add missing barrier
* Add further missing barrier
* Add further ops
* Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions
* Remove unnecessary cblas link
* Fix descriptor set pre-allocation assert
* Add runtime shader compilation, start transferring shaders to this approach
* Transfer remaining shaders to header and compile on runtime
* Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16
* Add support for q4_1, q5_0, q5_1 and q8_0
* Remove unnecessary scalar layout extension
* Parse graph early to pre-record command buffers
* Add q6_k support
* Add multi-submit for command buffers
* Fix q6_k dequant shader for AMD
* Fix q6_k for GPUs without fp16 support
* Simplify q6_k fp16 fix
* Minor fixes
* Fix wg_denom of m-mulmat shaders
* Add Python-based Vulkan shader generator
* Replace shaderc dependency with precompiled shaders
Fix python script to generate shaders
* Clean up code
* Fix shader generator script Windows compatibility
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
* Close file before deletion
* Fix vulkan shader fp32 name
* Add q2_k and q3_k support
Add validation check to compare shader results to cpu results
* Add q4_k support
* Add q5_k support
* Bake SPIR-V bytecode into the library instead of loading shaders from file
* Switch to signal semaphores for flexibility
Prepare broadcasting support for mul mat
* Finish broadcasting mul mat support for GQA
* Clean up unused functions
Add repeat op
* Add further ops, not yet enabled. Improve semaphore code
* Reduce number of used semaphores by utilizing timelines more properly
* Remove queue information
* Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations
* Add Vulkan to llama-bench
* Remove cblas dependency
* Fix matmul k-split bug
* Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader
* Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug
* Fix issues with float16 overflows in shaders
* Fix issues with older Vulkan headers on Ubuntu 22.04
* Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers
* Implement further ops, rework op_f32 calls, fix bugs
* Finish full offloading support, add last remaining ops, fix bugs, remove redundant code
* Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders
* Merge upstream changes, fix conflicts, adapt soft_max op
* Fix Python and shader header format
* Free model gpu buffers on exit
* Use single queue per device to simplify code
* Add matmul shader support for running multiple calculations in parallel
* Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible
* Fix missing event cast
* Replace uint64_t(-1) with UINT64_MAX, rename function for clarity
* Fix warning about empty C function parameters
* Fix compiler warnings
* Properly implement Vulkan backend buffer handling
* Fix oversized host staging buffers
* Simplify barrier synchronization calls
* Fix gcc warnings
* Implement max_size for backend buffer types to limit the size of a single allocation
* Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size
* refactor multi buf
* Disable unsupported ops to fix tests
* Check for maintenance4 support before using it
* Handle devices with only a single queue
* Fix single queue logic
* propagate buffer usage in multi buffers
* Implement rope_neox op
* Cleanup header and other files
* Simplify gpu_extras by removing events and putting staging memcpys into contexts
* Move queue into context
Add not-yet-enabled async backend ops
* Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization
* Add get_max_size to SYCL backend.
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : fix trailing whitespace
---------
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 18:03:59 +01:00
|
|
|
static const bool vulkan;
|
2024-01-30 19:04:37 -05:00
|
|
|
static const bool kompute;
|
2023-08-18 12:44:58 +02:00
|
|
|
static const bool metal;
|
2024-02-02 03:48:53 +08:00
|
|
|
static const bool sycl;
|
2023-08-18 12:44:58 +02:00
|
|
|
static const bool gpu_blas;
|
|
|
|
static const bool blas;
|
|
|
|
static const std::string cpu_info;
|
|
|
|
static const std::string gpu_info;
|
|
|
|
std::string model_filename;
|
|
|
|
std::string model_type;
|
2023-08-25 15:16:19 +02:00
|
|
|
uint64_t model_size;
|
|
|
|
uint64_t model_n_params;
|
2023-08-18 12:44:58 +02:00
|
|
|
int n_batch;
|
2024-03-13 18:54:21 +01:00
|
|
|
int n_ubatch;
|
2023-08-18 12:44:58 +02:00
|
|
|
int n_threads;
|
2023-12-07 13:03:17 +02:00
|
|
|
ggml_type type_k;
|
|
|
|
ggml_type type_v;
|
2023-08-18 12:44:58 +02:00
|
|
|
int n_gpu_layers;
|
2024-01-12 20:07:38 +01:00
|
|
|
llama_split_mode split_mode;
|
2023-08-18 12:44:58 +02:00
|
|
|
int main_gpu;
|
2024-01-07 17:59:01 +01:00
|
|
|
bool no_kv_offload;
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 12:16:08 +03:00
|
|
|
bool flash_attn;
|
2024-01-31 17:30:17 +02:00
|
|
|
std::vector<float> tensor_split;
|
2024-02-02 03:48:53 +08:00
|
|
|
bool use_mmap;
|
2024-03-07 16:32:38 +02:00
|
|
|
bool embeddings;
|
2023-08-18 12:44:58 +02:00
|
|
|
int n_prompt;
|
|
|
|
int n_gen;
|
|
|
|
std::string test_time;
|
|
|
|
std::vector<uint64_t> samples_ns;
|
|
|
|
|
|
|
|
test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
|
|
|
|
model_filename = inst.model;
|
|
|
|
char buf[128];
|
2023-08-25 15:16:19 +02:00
|
|
|
llama_model_desc(lmodel, buf, sizeof(buf));
|
2023-08-18 12:44:58 +02:00
|
|
|
model_type = buf;
|
2023-08-25 15:16:19 +02:00
|
|
|
model_size = llama_model_size(lmodel);
|
|
|
|
model_n_params = llama_model_n_params(lmodel);
|
2023-08-18 12:44:58 +02:00
|
|
|
n_batch = inst.n_batch;
|
2024-03-13 18:54:21 +01:00
|
|
|
n_ubatch = inst.n_ubatch;
|
2023-08-18 12:44:58 +02:00
|
|
|
n_threads = inst.n_threads;
|
2023-12-07 13:03:17 +02:00
|
|
|
type_k = inst.type_k;
|
|
|
|
type_v = inst.type_v;
|
2023-08-18 12:44:58 +02:00
|
|
|
n_gpu_layers = inst.n_gpu_layers;
|
2024-01-12 20:07:38 +01:00
|
|
|
split_mode = inst.split_mode;
|
2023-08-18 12:44:58 +02:00
|
|
|
main_gpu = inst.main_gpu;
|
2024-01-07 17:59:01 +01:00
|
|
|
no_kv_offload = inst.no_kv_offload;
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 12:16:08 +03:00
|
|
|
flash_attn = inst.flash_attn;
|
2023-08-18 12:44:58 +02:00
|
|
|
tensor_split = inst.tensor_split;
|
2024-02-02 03:48:53 +08:00
|
|
|
use_mmap = inst.use_mmap;
|
2024-03-07 16:32:38 +02:00
|
|
|
embeddings = inst.embeddings;
|
2023-08-18 12:44:58 +02:00
|
|
|
n_prompt = inst.n_prompt;
|
|
|
|
n_gen = inst.n_gen;
|
|
|
|
// RFC 3339 date-time format
|
|
|
|
time_t t = time(NULL);
|
|
|
|
std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
|
|
|
|
test_time = buf;
|
|
|
|
|
|
|
|
(void) ctx;
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t avg_ns() const {
|
|
|
|
return ::avg(samples_ns);
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t stdev_ns() const {
|
|
|
|
return ::stdev(samples_ns);
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<double> get_ts() const {
|
|
|
|
int n_tokens = n_prompt + n_gen;
|
|
|
|
std::vector<double> ts;
|
|
|
|
std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
|
|
|
|
return ts;
|
|
|
|
}
|
|
|
|
|
|
|
|
double avg_ts() const {
|
|
|
|
return ::avg(get_ts());
|
|
|
|
}
|
|
|
|
|
|
|
|
double stdev_ts() const {
|
|
|
|
return ::stdev(get_ts());
|
|
|
|
}
|
|
|
|
|
|
|
|
static std::string get_backend() {
|
|
|
|
if (cuda) {
|
2023-08-25 12:09:42 +03:00
|
|
|
return GGML_CUDA_NAME;
|
2023-08-18 12:44:58 +02:00
|
|
|
}
|
|
|
|
if (opencl) {
|
|
|
|
return "OpenCL";
|
|
|
|
}
|
ggml : add Vulkan backend (#2059)
* Vulkan loader code
* Fix matmul kernel, continue implementation
* Continue implementation
* Vulkan memory management
* Vulkan development
* Matmul call
* Add aligned malloc and free for VMA
* Continue implementation
* First matmul success
* GEMM Kernel optimization
* 1D Blocktiling
* 2D Blocktiling
* Write coalescing
* Continue vulkan implementation and optimization
* First FP16 attempt, disabled for now
* Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel
* Enable device extensions properly, restore fp16 matmul op
* Fix mulmat_f16
* Output FP32 in fp16 matmul shader
* Fix f16_to_f32 kernel
* dequant_q4_0 kernel
* Add VMA library
* Avoid requesting dedicated memory, VMA can decide that by itself
* Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly
* add cmake commands
* Add 2d write operation, profiling code
* Fix 2d write
* Fix queue selection for AMD RADV
* Fix trailing whitespace in vk_mem_alloc.h
* Add WIP warp tile mat mul shaders
* Disable glslc optimization
* Disable glslc optimization for CMake
* Optimize warptile matmul shader, replace blocktile with it
* Add split-k optimization for small matrix multiplication
Use semaphores for synchronization instead of fences or waitidle
Rework async write/read for synchronization
* Fix validation errors, improve compatibility with AMD GPUs
* Rework command buffer handling
* Variable matmul kernel using specialization constants
* Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints
* Reuse semaphores
* Handle stage flags during command buffer submission properly
* Increase matmul test runs for consistent results
* Fix F32 matmul
* Add vectorized loading and zeropadding for matrix multiplication
* Use pinned memory for f16 preprocessing
* Don't force aligned matmul
* Don't free before queue done
* Replace VMA library with native Vulkan buffer management
* Basic offloading support with mul_f32 and dmmv for q4_0
* Run glslc commands in parallel
* Unroll loops in dmmv shader
* Reduce usage of waitIdle
* Reuse pinned allocation for f16 conversion
* Handle devices with only a single queue
* Fix trailing whitespace in CMakeLists.txt
* Allow parallel execution of kernels, parallelize third and fourth dimension calls
* Add fallback for devices only supporting one DescriptorSet per DescriptorPool
* Move to graph function similar to CUDA implementation
* Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function
* Add F32 dmmv shaders
* Batch submissions
* Add .spv to gitignore
* Split off matrix vector multiplication for separate optimization
* Use single command buffer for matrix vector multiplication ops
* Reduce overhead of mul_f32 calls by using a single command buffer
* Add submission batching to mul_f32
* Fix tests
* Add missing barrier
* Add further missing barrier
* Add further ops
* Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions
* Remove unnecessary cblas link
* Fix descriptor set pre-allocation assert
* Add runtime shader compilation, start transferring shaders to this approach
* Transfer remaining shaders to header and compile on runtime
* Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16
* Add support for q4_1, q5_0, q5_1 and q8_0
* Remove unnecessary scalar layout extension
* Parse graph early to pre-record command buffers
* Add q6_k support
* Add multi-submit for command buffers
* Fix q6_k dequant shader for AMD
* Fix q6_k for GPUs without fp16 support
* Simplify q6_k fp16 fix
* Minor fixes
* Fix wg_denom of m-mulmat shaders
* Add Python-based Vulkan shader generator
* Replace shaderc dependency with precompiled shaders
Fix python script to generate shaders
* Clean up code
* Fix shader generator script Windows compatibility
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
* Close file before deletion
* Fix vulkan shader fp32 name
* Add q2_k and q3_k support
Add validation check to compare shader results to cpu results
* Add q4_k support
* Add q5_k support
* Bake SPIR-V bytecode into the library instead of loading shaders from file
* Switch to signal semaphores for flexibility
Prepare broadcasting support for mul mat
* Finish broadcasting mul mat support for GQA
* Clean up unused functions
Add repeat op
* Add further ops, not yet enabled. Improve semaphore code
* Reduce number of used semaphores by utilizing timelines more properly
* Remove queue information
* Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations
* Add Vulkan to llama-bench
* Remove cblas dependency
* Fix matmul k-split bug
* Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader
* Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug
* Fix issues with float16 overflows in shaders
* Fix issues with older Vulkan headers on Ubuntu 22.04
* Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers
* Implement further ops, rework op_f32 calls, fix bugs
* Finish full offloading support, add last remaining ops, fix bugs, remove redundant code
* Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders
* Merge upstream changes, fix conflicts, adapt soft_max op
* Fix Python and shader header format
* Free model gpu buffers on exit
* Use single queue per device to simplify code
* Add matmul shader support for running multiple calculations in parallel
* Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible
* Fix missing event cast
* Replace uint64_t(-1) with UINT64_MAX, rename function for clarity
* Fix warning about empty C function parameters
* Fix compiler warnings
* Properly implement Vulkan backend buffer handling
* Fix oversized host staging buffers
* Simplify barrier synchronization calls
* Fix gcc warnings
* Implement max_size for backend buffer types to limit the size of a single allocation
* Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size
* refactor multi buf
* Disable unsupported ops to fix tests
* Check for maintenance4 support before using it
* Handle devices with only a single queue
* Fix single queue logic
* propagate buffer usage in multi buffers
* Implement rope_neox op
* Cleanup header and other files
* Simplify gpu_extras by removing events and putting staging memcpys into contexts
* Move queue into context
Add not-yet-enabled async backend ops
* Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization
* Add get_max_size to SYCL backend.
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : fix trailing whitespace
---------
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 18:03:59 +01:00
|
|
|
if (vulkan) {
|
|
|
|
return "Vulkan";
|
|
|
|
}
|
2024-01-30 19:04:37 -05:00
|
|
|
if (kompute) {
|
|
|
|
return "Kompute";
|
|
|
|
}
|
2023-08-18 12:44:58 +02:00
|
|
|
if (metal) {
|
|
|
|
return "Metal";
|
|
|
|
}
|
2024-02-02 03:48:53 +08:00
|
|
|
if (sycl) {
|
|
|
|
return GGML_SYCL_NAME;
|
|
|
|
}
|
2023-08-18 12:44:58 +02:00
|
|
|
if (gpu_blas) {
|
|
|
|
return "GPU BLAS";
|
|
|
|
}
|
|
|
|
if (blas) {
|
|
|
|
return "BLAS";
|
|
|
|
}
|
2024-02-02 03:48:53 +08:00
|
|
|
|
2023-08-18 12:44:58 +02:00
|
|
|
return "CPU";
|
|
|
|
}
|
|
|
|
|
|
|
|
static const std::vector<std::string> & get_fields() {
|
|
|
|
static const std::vector<std::string> fields = {
|
|
|
|
"build_commit", "build_number",
|
2024-02-02 03:48:53 +08:00
|
|
|
"cuda", "opencl", "vulkan", "kompute", "metal", "sycl", "gpu_blas", "blas",
|
2023-08-18 12:44:58 +02:00
|
|
|
"cpu_info", "gpu_info",
|
2023-08-25 15:16:19 +02:00
|
|
|
"model_filename", "model_type", "model_size", "model_n_params",
|
2024-03-13 18:54:21 +01:00
|
|
|
"n_batch", "n_ubatch",
|
|
|
|
"n_threads", "type_k", "type_v",
|
2024-01-12 20:07:38 +01:00
|
|
|
"n_gpu_layers", "split_mode",
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 12:16:08 +03:00
|
|
|
"main_gpu", "no_kv_offload", "flash_attn",
|
2024-03-07 16:32:38 +02:00
|
|
|
"tensor_split", "use_mmap", "embeddings",
|
2023-08-18 12:44:58 +02:00
|
|
|
"n_prompt", "n_gen", "test_time",
|
|
|
|
"avg_ns", "stddev_ns",
|
|
|
|
"avg_ts", "stddev_ts"
|
|
|
|
};
|
|
|
|
return fields;
|
|
|
|
}
|
|
|
|
|
|
|
|
enum field_type {STRING, BOOL, INT, FLOAT};
|
|
|
|
|
|
|
|
static field_type get_field_type(const std::string & field) {
|
2024-03-13 18:54:21 +01:00
|
|
|
if (field == "build_number" || field == "n_batch" || field == "n_ubatch" ||
|
|
|
|
field == "n_threads" ||
|
2023-08-25 15:16:19 +02:00
|
|
|
field == "model_size" || field == "model_n_params" ||
|
2023-08-18 12:44:58 +02:00
|
|
|
field == "n_gpu_layers" || field == "main_gpu" ||
|
|
|
|
field == "n_prompt" || field == "n_gen" ||
|
|
|
|
field == "avg_ns" || field == "stddev_ns") {
|
|
|
|
return INT;
|
|
|
|
}
|
2024-01-30 19:04:37 -05:00
|
|
|
if (field == "cuda" || field == "opencl" || field == "vulkan" || field == "kompute" || field == "metal" ||
|
2024-02-02 03:48:53 +08:00
|
|
|
field == "gpu_blas" || field == "blas" || field == "sycl" ||field == "f16_kv" || field == "no_kv_offload" ||
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 12:16:08 +03:00
|
|
|
field == "flash_attn" || field == "use_mmap" || field == "embeddings") {
|
2023-08-18 12:44:58 +02:00
|
|
|
return BOOL;
|
|
|
|
}
|
|
|
|
if (field == "avg_ts" || field == "stddev_ts") {
|
|
|
|
return FLOAT;
|
|
|
|
}
|
|
|
|
return STRING;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<std::string> get_values() const {
|
|
|
|
std::string tensor_split_str;
|
|
|
|
int max_nonzero = 0;
|
2024-01-31 17:30:17 +02:00
|
|
|
for (size_t i = 0; i < llama_max_devices(); i++) {
|
2023-08-18 12:44:58 +02:00
|
|
|
if (tensor_split[i] > 0) {
|
|
|
|
max_nonzero = i;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (int i = 0; i <= max_nonzero; i++) {
|
|
|
|
char buf[32];
|
|
|
|
snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
|
|
|
|
tensor_split_str += buf;
|
|
|
|
if (i < max_nonzero) {
|
|
|
|
tensor_split_str += "/";
|
|
|
|
}
|
|
|
|
}
|
|
|
|
std::vector<std::string> values = {
|
|
|
|
build_commit, std::to_string(build_number),
|
2024-01-30 19:04:37 -05:00
|
|
|
std::to_string(cuda), std::to_string(opencl), std::to_string(vulkan), std::to_string(vulkan),
|
2024-02-02 03:48:53 +08:00
|
|
|
std::to_string(metal), std::to_string(sycl), std::to_string(gpu_blas), std::to_string(blas),
|
2023-08-18 12:44:58 +02:00
|
|
|
cpu_info, gpu_info,
|
2023-08-25 15:16:19 +02:00
|
|
|
model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
|
2024-03-13 18:54:21 +01:00
|
|
|
std::to_string(n_batch), std::to_string(n_ubatch),
|
|
|
|
std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
|
2024-01-12 20:07:38 +01:00
|
|
|
std::to_string(n_gpu_layers), split_mode_str(split_mode),
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 12:16:08 +03:00
|
|
|
std::to_string(main_gpu), std::to_string(no_kv_offload), std::to_string(flash_attn),
|
2024-03-07 16:32:38 +02:00
|
|
|
tensor_split_str, std::to_string(use_mmap), std::to_string(embeddings),
|
2023-08-18 12:44:58 +02:00
|
|
|
std::to_string(n_prompt), std::to_string(n_gen), test_time,
|
|
|
|
std::to_string(avg_ns()), std::to_string(stdev_ns()),
|
|
|
|
std::to_string(avg_ts()), std::to_string(stdev_ts())
|
|
|
|
};
|
|
|
|
return values;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::map<std::string, std::string> get_map() const {
|
|
|
|
std::map<std::string, std::string> map;
|
|
|
|
auto fields = get_fields();
|
|
|
|
auto values = get_values();
|
|
|
|
std::transform(fields.begin(), fields.end(), values.begin(),
|
|
|
|
std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
|
|
|
|
return map;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2023-11-02 02:50:16 -04:00
|
|
|
const std::string test::build_commit = LLAMA_COMMIT;
|
|
|
|
const int test::build_number = LLAMA_BUILD_NUMBER;
|
2024-03-26 01:16:01 +01:00
|
|
|
const bool test::cuda = !!ggml_cpu_has_cuda();
|
2023-08-18 12:44:58 +02:00
|
|
|
const bool test::opencl = !!ggml_cpu_has_clblast();
|
ggml : add Vulkan backend (#2059)
* Vulkan loader code
* Fix matmul kernel, continue implementation
* Continue implementation
* Vulkan memory management
* Vulkan development
* Matmul call
* Add aligned malloc and free for VMA
* Continue implementation
* First matmul success
* GEMM Kernel optimization
* 1D Blocktiling
* 2D Blocktiling
* Write coalescing
* Continue vulkan implementation and optimization
* First FP16 attempt, disabled for now
* Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel
* Enable device extensions properly, restore fp16 matmul op
* Fix mulmat_f16
* Output FP32 in fp16 matmul shader
* Fix f16_to_f32 kernel
* dequant_q4_0 kernel
* Add VMA library
* Avoid requesting dedicated memory, VMA can decide that by itself
* Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly
* add cmake commands
* Add 2d write operation, profiling code
* Fix 2d write
* Fix queue selection for AMD RADV
* Fix trailing whitespace in vk_mem_alloc.h
* Add WIP warp tile mat mul shaders
* Disable glslc optimization
* Disable glslc optimization for CMake
* Optimize warptile matmul shader, replace blocktile with it
* Add split-k optimization for small matrix multiplication
Use semaphores for synchronization instead of fences or waitidle
Rework async write/read for synchronization
* Fix validation errors, improve compatibility with AMD GPUs
* Rework command buffer handling
* Variable matmul kernel using specialization constants
* Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints
* Reuse semaphores
* Handle stage flags during command buffer submission properly
* Increase matmul test runs for consistent results
* Fix F32 matmul
* Add vectorized loading and zeropadding for matrix multiplication
* Use pinned memory for f16 preprocessing
* Don't force aligned matmul
* Don't free before queue done
* Replace VMA library with native Vulkan buffer management
* Basic offloading support with mul_f32 and dmmv for q4_0
* Run glslc commands in parallel
* Unroll loops in dmmv shader
* Reduce usage of waitIdle
* Reuse pinned allocation for f16 conversion
* Handle devices with only a single queue
* Fix trailing whitespace in CMakeLists.txt
* Allow parallel execution of kernels, parallelize third and fourth dimension calls
* Add fallback for devices only supporting one DescriptorSet per DescriptorPool
* Move to graph function similar to CUDA implementation
* Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function
* Add F32 dmmv shaders
* Batch submissions
* Add .spv to gitignore
* Split off matrix vector multiplication for separate optimization
* Use single command buffer for matrix vector multiplication ops
* Reduce overhead of mul_f32 calls by using a single command buffer
* Add submission batching to mul_f32
* Fix tests
* Add missing barrier
* Add further missing barrier
* Add further ops
* Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions
* Remove unnecessary cblas link
* Fix descriptor set pre-allocation assert
* Add runtime shader compilation, start transferring shaders to this approach
* Transfer remaining shaders to header and compile on runtime
* Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16
* Add support for q4_1, q5_0, q5_1 and q8_0
* Remove unnecessary scalar layout extension
* Parse graph early to pre-record command buffers
* Add q6_k support
* Add multi-submit for command buffers
* Fix q6_k dequant shader for AMD
* Fix q6_k for GPUs without fp16 support
* Simplify q6_k fp16 fix
* Minor fixes
* Fix wg_denom of m-mulmat shaders
* Add Python-based Vulkan shader generator
* Replace shaderc dependency with precompiled shaders
Fix python script to generate shaders
* Clean up code
* Fix shader generator script Windows compatibility
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
* Close file before deletion
* Fix vulkan shader fp32 name
* Add q2_k and q3_k support
Add validation check to compare shader results to cpu results
* Add q4_k support
* Add q5_k support
* Bake SPIR-V bytecode into the library instead of loading shaders from file
* Switch to signal semaphores for flexibility
Prepare broadcasting support for mul mat
* Finish broadcasting mul mat support for GQA
* Clean up unused functions
Add repeat op
* Add further ops, not yet enabled. Improve semaphore code
* Reduce number of used semaphores by utilizing timelines more properly
* Remove queue information
* Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations
* Add Vulkan to llama-bench
* Remove cblas dependency
* Fix matmul k-split bug
* Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader
* Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug
* Fix issues with float16 overflows in shaders
* Fix issues with older Vulkan headers on Ubuntu 22.04
* Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers
* Implement further ops, rework op_f32 calls, fix bugs
* Finish full offloading support, add last remaining ops, fix bugs, remove redundant code
* Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders
* Merge upstream changes, fix conflicts, adapt soft_max op
* Fix Python and shader header format
* Free model gpu buffers on exit
* Use single queue per device to simplify code
* Add matmul shader support for running multiple calculations in parallel
* Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible
* Fix missing event cast
* Replace uint64_t(-1) with UINT64_MAX, rename function for clarity
* Fix warning about empty C function parameters
* Fix compiler warnings
* Properly implement Vulkan backend buffer handling
* Fix oversized host staging buffers
* Simplify barrier synchronization calls
* Fix gcc warnings
* Implement max_size for backend buffer types to limit the size of a single allocation
* Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size
* refactor multi buf
* Disable unsupported ops to fix tests
* Check for maintenance4 support before using it
* Handle devices with only a single queue
* Fix single queue logic
* propagate buffer usage in multi buffers
* Implement rope_neox op
* Cleanup header and other files
* Simplify gpu_extras by removing events and putting staging memcpys into contexts
* Move queue into context
Add not-yet-enabled async backend ops
* Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization
* Add get_max_size to SYCL backend.
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : fix trailing whitespace
---------
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 18:03:59 +01:00
|
|
|
const bool test::vulkan = !!ggml_cpu_has_vulkan();
|
2024-01-30 19:04:37 -05:00
|
|
|
const bool test::kompute = !!ggml_cpu_has_kompute();
|
2023-08-18 12:44:58 +02:00
|
|
|
const bool test::metal = !!ggml_cpu_has_metal();
|
|
|
|
const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
|
|
|
|
const bool test::blas = !!ggml_cpu_has_blas();
|
2024-02-02 03:48:53 +08:00
|
|
|
const bool test::sycl = !!ggml_cpu_has_sycl();
|
2023-08-18 12:44:58 +02:00
|
|
|
const std::string test::cpu_info = get_cpu_info();
|
|
|
|
const std::string test::gpu_info = get_gpu_info();
|
|
|
|
|
|
|
|
struct printer {
|
2023-08-21 23:07:43 +03:00
|
|
|
virtual ~printer() {}
|
|
|
|
|
2023-08-18 12:44:58 +02:00
|
|
|
FILE * fout;
|
2023-09-28 17:41:44 -04:00
|
|
|
virtual void print_header(const cmd_params & params) { (void) params; }
|
2023-08-18 12:44:58 +02:00
|
|
|
virtual void print_test(const test & t) = 0;
|
2023-09-28 17:41:44 -04:00
|
|
|
virtual void print_footer() { }
|
2023-08-18 12:44:58 +02:00
|
|
|
};
|
|
|
|
|
|
|
|
struct csv_printer : public printer {
|
|
|
|
static std::string escape_csv(const std::string & field) {
|
|
|
|
std::string escaped = "\"";
|
|
|
|
for (auto c : field) {
|
|
|
|
if (c == '"') {
|
|
|
|
escaped += "\"";
|
|
|
|
}
|
|
|
|
escaped += c;
|
|
|
|
}
|
|
|
|
escaped += "\"";
|
|
|
|
return escaped;
|
|
|
|
}
|
|
|
|
|
|
|
|
void print_header(const cmd_params & params) override {
|
|
|
|
std::vector<std::string> fields = test::get_fields();
|
|
|
|
fprintf(fout, "%s\n", join(fields, ",").c_str());
|
|
|
|
(void) params;
|
|
|
|
}
|
|
|
|
|
|
|
|
void print_test(const test & t) override {
|
|
|
|
std::vector<std::string> values = t.get_values();
|
|
|
|
std::transform(values.begin(), values.end(), values.begin(), escape_csv);
|
|
|
|
fprintf(fout, "%s\n", join(values, ",").c_str());
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
struct json_printer : public printer {
|
|
|
|
bool first = true;
|
|
|
|
|
|
|
|
static std::string escape_json(const std::string & value) {
|
|
|
|
std::string escaped;
|
|
|
|
for (auto c : value) {
|
|
|
|
if (c == '"') {
|
|
|
|
escaped += "\\\"";
|
|
|
|
} else if (c == '\\') {
|
|
|
|
escaped += "\\\\";
|
|
|
|
} else if (c <= 0x1f) {
|
|
|
|
char buf[8];
|
|
|
|
snprintf(buf, sizeof(buf), "\\u%04x", c);
|
|
|
|
escaped += buf;
|
|
|
|
} else {
|
|
|
|
escaped += c;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return escaped;
|
|
|
|
}
|
|
|
|
|
|
|
|
static std::string format_value(const std::string & field, const std::string & value) {
|
|
|
|
switch (test::get_field_type(field)) {
|
|
|
|
case test::STRING:
|
|
|
|
return "\"" + escape_json(value) + "\"";
|
|
|
|
case test::BOOL:
|
|
|
|
return value == "0" ? "false" : "true";
|
|
|
|
default:
|
|
|
|
return value;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void print_header(const cmd_params & params) override {
|
|
|
|
fprintf(fout, "[\n");
|
|
|
|
(void) params;
|
|
|
|
}
|
|
|
|
|
|
|
|
void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
|
|
|
|
assert(fields.size() == values.size());
|
|
|
|
for (size_t i = 0; i < fields.size(); i++) {
|
|
|
|
fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_value(fields.at(i), values.at(i)).c_str());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void print_test(const test & t) override {
|
|
|
|
if (first) {
|
|
|
|
first = false;
|
|
|
|
} else {
|
|
|
|
fprintf(fout, ",\n");
|
|
|
|
}
|
|
|
|
fprintf(fout, " {\n");
|
|
|
|
print_fields(test::get_fields(), t.get_values());
|
|
|
|
fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
|
|
|
|
fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
|
|
|
|
fprintf(fout, " }");
|
|
|
|
fflush(fout);
|
|
|
|
}
|
|
|
|
|
|
|
|
void print_footer() override {
|
|
|
|
fprintf(fout, "\n]\n");
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
struct markdown_printer : public printer {
|
|
|
|
std::vector<std::string> fields;
|
|
|
|
|
|
|
|
static int get_field_width(const std::string & field) {
|
|
|
|
if (field == "model") {
|
|
|
|
return -30;
|
|
|
|
}
|
|
|
|
if (field == "t/s") {
|
2023-08-25 15:16:19 +02:00
|
|
|
return 16;
|
2023-08-18 12:44:58 +02:00
|
|
|
}
|
2023-08-25 15:16:19 +02:00
|
|
|
if (field == "size" || field == "params") {
|
|
|
|
return 10;
|
|
|
|
}
|
|
|
|
if (field == "n_gpu_layers") {
|
|
|
|
return 3;
|
|
|
|
}
|
2024-05-10 18:03:54 +02:00
|
|
|
if (field == "test") {
|
|
|
|
return 13;
|
|
|
|
}
|
2023-08-25 15:16:19 +02:00
|
|
|
|
2023-08-18 12:44:58 +02:00
|
|
|
int width = std::max((int)field.length(), 10);
|
|
|
|
|
|
|
|
if (test::get_field_type(field) == test::STRING) {
|
|
|
|
return -width;
|
|
|
|
}
|
|
|
|
return width;
|
|
|
|
}
|
|
|
|
|
2023-08-25 15:16:19 +02:00
|
|
|
static std::string get_field_display_name(const std::string & field) {
|
|
|
|
if (field == "n_gpu_layers") {
|
|
|
|
return "ngl";
|
|
|
|
}
|
2024-01-12 20:07:38 +01:00
|
|
|
if (field == "split_mode") {
|
|
|
|
return "sm";
|
|
|
|
}
|
2023-08-25 15:16:19 +02:00
|
|
|
if (field == "n_threads") {
|
|
|
|
return "threads";
|
|
|
|
}
|
2024-01-07 17:59:01 +01:00
|
|
|
if (field == "no_kv_offload") {
|
|
|
|
return "nkvo";
|
|
|
|
}
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 12:16:08 +03:00
|
|
|
if (field == "flash_attn") {
|
|
|
|
return "fa";
|
|
|
|
}
|
2024-02-02 03:48:53 +08:00
|
|
|
if (field == "use_mmap") {
|
|
|
|
return "mmap";
|
|
|
|
}
|
2024-03-07 16:32:38 +02:00
|
|
|
if (field == "embeddings") {
|
|
|
|
return "embd";
|
|
|
|
}
|
2023-08-25 15:16:19 +02:00
|
|
|
if (field == "tensor_split") {
|
|
|
|
return "ts";
|
|
|
|
}
|
|
|
|
return field;
|
|
|
|
}
|
|
|
|
|
2023-08-18 12:44:58 +02:00
|
|
|
void print_header(const cmd_params & params) override {
|
|
|
|
// select fields to print
|
2024-02-03 12:23:37 +01:00
|
|
|
fields.emplace_back("model");
|
|
|
|
fields.emplace_back("size");
|
|
|
|
fields.emplace_back("params");
|
|
|
|
fields.emplace_back("backend");
|
2023-08-18 12:44:58 +02:00
|
|
|
bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
|
|
|
|
if (!is_cpu_backend) {
|
2024-02-03 12:23:37 +01:00
|
|
|
fields.emplace_back("n_gpu_layers");
|
2023-08-18 12:44:58 +02:00
|
|
|
}
|
2023-08-22 09:56:03 +02:00
|
|
|
if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
|
2024-02-03 12:23:37 +01:00
|
|
|
fields.emplace_back("n_threads");
|
2023-08-18 12:44:58 +02:00
|
|
|
}
|
|
|
|
if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
|
2024-02-03 12:23:37 +01:00
|
|
|
fields.emplace_back("n_batch");
|
2023-08-18 12:44:58 +02:00
|
|
|
}
|
2024-03-13 18:54:21 +01:00
|
|
|
if (params.n_ubatch.size() > 1 || params.n_ubatch != cmd_params_defaults.n_ubatch) {
|
|
|
|
fields.emplace_back("n_ubatch");
|
|
|
|
}
|
2023-12-07 13:03:17 +02:00
|
|
|
if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
|
2024-02-03 12:23:37 +01:00
|
|
|
fields.emplace_back("type_k");
|
2023-12-07 13:03:17 +02:00
|
|
|
}
|
|
|
|
if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
|
2024-02-03 12:23:37 +01:00
|
|
|
fields.emplace_back("type_v");
|
2023-08-18 12:44:58 +02:00
|
|
|
}
|
|
|
|
if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
|
2024-02-03 12:23:37 +01:00
|
|
|
fields.emplace_back("main_gpu");
|
2023-08-18 12:44:58 +02:00
|
|
|
}
|
2024-01-12 20:07:38 +01:00
|
|
|
if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
|
2024-02-03 12:23:37 +01:00
|
|
|
fields.emplace_back("split_mode");
|
2024-01-12 20:07:38 +01:00
|
|
|
}
|
2024-01-07 17:59:01 +01:00
|
|
|
if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
|
2024-02-03 12:23:37 +01:00
|
|
|
fields.emplace_back("no_kv_offload");
|
2024-01-07 17:59:01 +01:00
|
|
|
}
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 12:16:08 +03:00
|
|
|
if (params.flash_attn.size() > 1 || params.flash_attn != cmd_params_defaults.flash_attn) {
|
|
|
|
fields.emplace_back("flash_attn");
|
|
|
|
}
|
2023-08-18 12:44:58 +02:00
|
|
|
if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
|
2024-02-03 12:23:37 +01:00
|
|
|
fields.emplace_back("tensor_split");
|
2023-08-18 12:44:58 +02:00
|
|
|
}
|
2024-02-02 03:48:53 +08:00
|
|
|
if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
|
2024-02-03 12:23:37 +01:00
|
|
|
fields.emplace_back("use_mmap");
|
2024-02-02 03:48:53 +08:00
|
|
|
}
|
2024-03-07 16:32:38 +02:00
|
|
|
if (params.embeddings.size() > 1 || params.embeddings != cmd_params_defaults.embeddings) {
|
|
|
|
fields.emplace_back("embeddings");
|
|
|
|
}
|
2024-02-03 12:23:37 +01:00
|
|
|
fields.emplace_back("test");
|
|
|
|
fields.emplace_back("t/s");
|
2023-08-18 12:44:58 +02:00
|
|
|
|
|
|
|
fprintf(fout, "|");
|
|
|
|
for (const auto & field : fields) {
|
2023-08-25 15:16:19 +02:00
|
|
|
fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
|
2023-08-18 12:44:58 +02:00
|
|
|
}
|
|
|
|
fprintf(fout, "\n");
|
|
|
|
fprintf(fout, "|");
|
|
|
|
for (const auto & field : fields) {
|
|
|
|
int width = get_field_width(field);
|
|
|
|
fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
|
|
|
|
}
|
|
|
|
fprintf(fout, "\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
void print_test(const test & t) override {
|
|
|
|
std::map<std::string, std::string> vmap = t.get_map();
|
|
|
|
|
|
|
|
fprintf(fout, "|");
|
|
|
|
for (const auto & field : fields) {
|
|
|
|
std::string value;
|
2023-08-25 15:16:19 +02:00
|
|
|
char buf[128];
|
2023-08-18 12:44:58 +02:00
|
|
|
if (field == "model") {
|
|
|
|
value = t.model_type;
|
2023-08-25 15:16:19 +02:00
|
|
|
} else if (field == "size") {
|
|
|
|
if (t.model_size < 1024*1024*1024) {
|
|
|
|
snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
|
|
|
|
} else {
|
|
|
|
snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
|
|
|
|
}
|
|
|
|
value = buf;
|
|
|
|
} else if (field == "params") {
|
|
|
|
if (t.model_n_params < 1000*1000*1000) {
|
|
|
|
snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
|
|
|
|
} else {
|
|
|
|
snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
|
|
|
|
}
|
|
|
|
value = buf;
|
2023-08-18 12:44:58 +02:00
|
|
|
} else if (field == "backend") {
|
|
|
|
value = test::get_backend();
|
|
|
|
} else if (field == "test") {
|
|
|
|
if (t.n_prompt > 0 && t.n_gen == 0) {
|
2024-05-10 18:03:54 +02:00
|
|
|
snprintf(buf, sizeof(buf), "pp%d", t.n_prompt);
|
2023-08-18 12:44:58 +02:00
|
|
|
} else if (t.n_gen > 0 && t.n_prompt == 0) {
|
2024-05-10 18:03:54 +02:00
|
|
|
snprintf(buf, sizeof(buf), "tg%d", t.n_gen);
|
2023-08-18 12:44:58 +02:00
|
|
|
} else {
|
2024-05-10 18:03:54 +02:00
|
|
|
snprintf(buf, sizeof(buf), "pp%d+tg%d", t.n_prompt, t.n_gen);
|
2023-08-18 12:44:58 +02:00
|
|
|
}
|
|
|
|
value = buf;
|
|
|
|
} else if (field == "t/s") {
|
|
|
|
snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
|
|
|
|
value = buf;
|
|
|
|
} else if (vmap.find(field) != vmap.end()) {
|
|
|
|
value = vmap.at(field);
|
|
|
|
} else {
|
|
|
|
assert(false);
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
|
|
|
|
int width = get_field_width(field);
|
|
|
|
if (field == "t/s") {
|
|
|
|
// HACK: the utf-8 character is 2 bytes
|
|
|
|
width += 1;
|
|
|
|
}
|
|
|
|
fprintf(fout, " %*s |", width, value.c_str());
|
|
|
|
}
|
|
|
|
fprintf(fout, "\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
void print_footer() override {
|
|
|
|
fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
struct sql_printer : public printer {
|
|
|
|
static std::string get_sql_field_type(const std::string & field) {
|
|
|
|
switch (test::get_field_type(field)) {
|
|
|
|
case test::STRING:
|
|
|
|
return "TEXT";
|
|
|
|
case test::BOOL:
|
|
|
|
case test::INT:
|
|
|
|
return "INTEGER";
|
|
|
|
case test::FLOAT:
|
|
|
|
return "REAL";
|
|
|
|
default:
|
|
|
|
assert(false);
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void print_header(const cmd_params & params) override {
|
|
|
|
std::vector<std::string> fields = test::get_fields();
|
|
|
|
fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
|
|
|
|
for (size_t i = 0; i < fields.size(); i++) {
|
|
|
|
fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : "");
|
|
|
|
}
|
|
|
|
fprintf(fout, ");\n");
|
|
|
|
fprintf(fout, "\n");
|
|
|
|
(void) params;
|
|
|
|
}
|
|
|
|
|
|
|
|
void print_test(const test & t) override {
|
|
|
|
fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
|
|
|
|
fprintf(fout, "VALUES (");
|
|
|
|
std::vector<std::string> values = t.get_values();
|
|
|
|
for (size_t i = 0; i < values.size(); i++) {
|
|
|
|
fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
|
|
|
|
}
|
|
|
|
fprintf(fout, ");\n");
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
|
2024-03-13 18:54:21 +01:00
|
|
|
llama_set_n_threads(ctx, n_threads, n_threads);
|
|
|
|
|
2024-03-15 09:22:24 +01:00
|
|
|
const llama_model * model = llama_get_model(ctx);
|
|
|
|
const int32_t n_vocab = llama_n_vocab(model);
|
|
|
|
|
|
|
|
std::vector<llama_token> tokens(n_batch);
|
2024-03-13 18:54:21 +01:00
|
|
|
|
2023-08-18 12:44:58 +02:00
|
|
|
int n_processed = 0;
|
2023-09-28 21:42:38 +02:00
|
|
|
|
2023-08-18 12:44:58 +02:00
|
|
|
while (n_processed < n_prompt) {
|
|
|
|
int n_tokens = std::min(n_prompt - n_processed, n_batch);
|
2024-03-15 09:22:24 +01:00
|
|
|
tokens[0] = n_processed == 0 && llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
|
|
|
|
for (int i = 1; i < n_tokens; i++) {
|
|
|
|
tokens[i] = std::rand() % n_vocab;
|
|
|
|
}
|
2023-09-28 21:42:38 +02:00
|
|
|
llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0));
|
2023-08-18 12:44:58 +02:00
|
|
|
n_processed += n_tokens;
|
|
|
|
}
|
2024-03-13 18:54:21 +01:00
|
|
|
|
|
|
|
llama_synchronize(ctx);
|
2023-08-18 12:44:58 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
|
2023-09-28 21:42:38 +02:00
|
|
|
llama_set_n_threads(ctx, n_threads, n_threads);
|
|
|
|
|
2024-03-15 09:22:24 +01:00
|
|
|
const llama_model * model = llama_get_model(ctx);
|
|
|
|
const int32_t n_vocab = llama_n_vocab(model);
|
|
|
|
|
|
|
|
llama_token token = llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
|
2024-03-13 18:54:21 +01:00
|
|
|
|
2023-08-18 12:44:58 +02:00
|
|
|
for (int i = 0; i < n_gen; i++) {
|
2023-09-28 21:42:38 +02:00
|
|
|
llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0));
|
2024-03-13 18:54:21 +01:00
|
|
|
llama_synchronize(ctx);
|
2024-03-15 09:22:24 +01:00
|
|
|
token = std::rand() % n_vocab;
|
2023-08-18 12:44:58 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-09-27 17:48:33 +02:00
|
|
|
static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
|
2023-08-18 12:44:58 +02:00
|
|
|
(void) level;
|
|
|
|
(void) text;
|
|
|
|
(void) user_data;
|
|
|
|
}
|
|
|
|
|
|
|
|
int main(int argc, char ** argv) {
|
2023-08-28 19:19:18 +02:00
|
|
|
// try to set locale for unicode characters in markdown
|
|
|
|
setlocale(LC_CTYPE, ".UTF-8");
|
|
|
|
|
2023-08-18 12:44:58 +02:00
|
|
|
#if !defined(NDEBUG)
|
|
|
|
fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
|
|
|
|
fprintf(stderr, "warning: debug build, performance may be affected\n");
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
|
|
|
|
fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
|
|
|
|
#endif
|
|
|
|
|
|
|
|
cmd_params params = parse_cmd_params(argc, argv);
|
|
|
|
|
|
|
|
// initialize llama.cpp
|
|
|
|
if (!params.verbose) {
|
|
|
|
llama_log_set(llama_null_log_callback, NULL);
|
|
|
|
}
|
2024-02-16 01:31:07 -08:00
|
|
|
llama_backend_init();
|
2024-05-05 07:17:47 -05:00
|
|
|
llama_numa_init(params.numa);
|
2023-08-18 12:44:58 +02:00
|
|
|
|
|
|
|
// initialize printer
|
|
|
|
std::unique_ptr<printer> p;
|
|
|
|
switch (params.output_format) {
|
|
|
|
case CSV:
|
|
|
|
p.reset(new csv_printer());
|
|
|
|
break;
|
|
|
|
case JSON:
|
|
|
|
p.reset(new json_printer());
|
|
|
|
break;
|
|
|
|
case MARKDOWN:
|
|
|
|
p.reset(new markdown_printer());
|
|
|
|
break;
|
|
|
|
case SQL:
|
|
|
|
p.reset(new sql_printer());
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
assert(false);
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
p->fout = stdout;
|
|
|
|
p->print_header(params);
|
|
|
|
|
|
|
|
std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
|
|
|
|
|
2023-09-28 21:42:38 +02:00
|
|
|
llama_model * lmodel = nullptr;
|
|
|
|
const cmd_params_instance * prev_inst = nullptr;
|
|
|
|
|
2023-08-18 12:44:58 +02:00
|
|
|
for (const auto & inst : params_instances) {
|
2023-09-28 21:42:38 +02:00
|
|
|
// keep the same model between tests when possible
|
|
|
|
if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
|
|
|
|
if (lmodel) {
|
|
|
|
llama_free_model(lmodel);
|
|
|
|
}
|
2023-08-18 12:44:58 +02:00
|
|
|
|
2023-09-28 21:42:38 +02:00
|
|
|
lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams());
|
|
|
|
if (lmodel == NULL) {
|
|
|
|
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
prev_inst = &inst;
|
2023-08-18 12:44:58 +02:00
|
|
|
}
|
|
|
|
|
2023-09-28 21:42:38 +02:00
|
|
|
llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams());
|
2023-08-18 12:44:58 +02:00
|
|
|
if (ctx == NULL) {
|
|
|
|
fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
|
|
|
|
llama_free_model(lmodel);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
test t(inst, lmodel, ctx);
|
|
|
|
|
2023-10-29 11:31:40 -06:00
|
|
|
llama_kv_cache_clear(ctx);
|
2023-09-28 19:04:36 +03:00
|
|
|
|
2023-08-18 12:44:58 +02:00
|
|
|
// warmup run
|
2023-09-07 15:52:34 +02:00
|
|
|
if (t.n_prompt > 0) {
|
2024-03-13 18:54:21 +01:00
|
|
|
//test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
|
|
|
|
test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
|
2023-09-07 15:52:34 +02:00
|
|
|
}
|
|
|
|
if (t.n_gen > 0) {
|
|
|
|
test_gen(ctx, 1, 0, t.n_threads);
|
|
|
|
}
|
2023-08-18 12:44:58 +02:00
|
|
|
|
|
|
|
for (int i = 0; i < params.reps; i++) {
|
2023-10-29 11:31:40 -06:00
|
|
|
llama_kv_cache_clear(ctx);
|
2023-09-28 19:04:36 +03:00
|
|
|
|
2023-08-18 12:44:58 +02:00
|
|
|
uint64_t t_start = get_time_ns();
|
2024-05-10 18:03:54 +02:00
|
|
|
|
2023-08-18 12:44:58 +02:00
|
|
|
if (t.n_prompt > 0) {
|
|
|
|
test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
|
|
|
|
}
|
|
|
|
if (t.n_gen > 0) {
|
|
|
|
test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
|
|
|
|
}
|
2024-03-13 18:54:21 +01:00
|
|
|
|
2023-08-18 12:44:58 +02:00
|
|
|
uint64_t t_ns = get_time_ns() - t_start;
|
|
|
|
t.samples_ns.push_back(t_ns);
|
|
|
|
}
|
|
|
|
|
|
|
|
p->print_test(t);
|
|
|
|
|
|
|
|
llama_print_timings(ctx);
|
|
|
|
|
|
|
|
llama_free(ctx);
|
|
|
|
}
|
|
|
|
|
2023-09-28 21:42:38 +02:00
|
|
|
llama_free_model(lmodel);
|
|
|
|
|
2023-08-18 12:44:58 +02:00
|
|
|
p->print_footer();
|
|
|
|
|
|
|
|
llama_backend_free();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|