llama.cpp/tests/test-grammar-integration.cpp

483 lines
12 KiB
C++
Raw Normal View History

#ifdef NDEBUG
#undef NDEBUG
#endif
#define LLAMA_API_INTERNAL
#include "ggml.h"
#include "llama.h"
#include "grammar-parser.h"
#include "unicode.h"
#include <cassert>
#include <string>
#include <vector>
static llama_grammar* build_grammar(const std::string & grammar_str) {
auto parsed_grammar = grammar_parser::parse(grammar_str.c_str());
// Ensure we parsed correctly
assert(!parsed_grammar.rules.empty());
// Ensure we have a root node
assert(!(parsed_grammar.symbol_ids.find("root") == parsed_grammar.symbol_ids.end()));
std::vector<const llama_grammar_element*> grammar_rules(parsed_grammar.c_rules());
llama_grammar* grammar = llama_grammar_init(
grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
return grammar;
}
static bool test_build_grammar_fails(const std::string & grammar_str) {
fprintf(stderr, "⚫ Testing failure for grammar: %s\n", grammar_str.c_str());
bool grammar_fails = false;
try {
build_grammar(grammar_str);
fprintf(stderr, " ❌ Expected build failure, but succeeded\n");
} catch (const std::exception & err) {
grammar_fails = true;
fprintf(stdout, " ✅︎\n");
}
return grammar_fails;
}
static bool match_string(const std::string & input, llama_grammar* grammar) {
auto decoded = decode_utf8(input, {});
const auto & code_points = decoded.first;
for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
auto prev_stacks = grammar->stacks;
llama_grammar_accept(grammar->rules, prev_stacks, *it, grammar->stacks);
if (grammar->stacks.empty()) {
// no stacks means that the grammar failed to match at this point
return false;
}
}
for (const auto & stack : grammar->stacks) {
if (stack.empty()) {
// An empty stack means that the grammar has been completed
return true;
}
}
return false;
}
static void test_grammar(const std::string & test_desc, const std::string & grammar_str, const std::vector<std::string> & passing_strings, const std::vector<std::string> & failing_strings) {
fprintf(stderr, "⚫ Testing %s. Grammar: %s\n", test_desc.c_str(), grammar_str.c_str());
fflush(stderr);
auto grammar = build_grammar(grammar_str);
// Save the original grammar stacks so that we can reset after every new string we want to test
auto original_stacks = grammar->stacks;
fprintf(stderr, " 🔵 Valid strings:\n");
// Passing strings
for (const auto & test_string : passing_strings) {
fprintf(stderr, " \"%s\" ", test_string.c_str());
fflush(stderr);
bool matched = match_string(test_string, grammar);
if (!matched) {
fprintf(stderr, "❌ (failed to match)\n");
} else {
fprintf(stdout, "✅︎\n");
}
assert(matched);
// Reset the grammar stacks
grammar->stacks = original_stacks;
}
fprintf(stderr, " 🟠 Invalid strings:\n");
// Failing strings
for (const auto & test_string : failing_strings) {
fprintf(stderr, " \"%s\" ", test_string.c_str());
fflush(stderr);
bool matched = match_string(test_string, grammar);
if (matched) {
fprintf(stderr, "❌ (incorrectly matched)\n");
} else {
fprintf(stdout, "✅︎\n");
}
assert(!matched);
// Reset the grammar stacks
grammar->stacks = original_stacks;
}
// Clean up allocated memory
llama_grammar_free(grammar);
}
static void test_simple_grammar() {
// Test case for a simple grammar
test_grammar(
"simple grammar",
R"""(
root ::= expr
expr ::= term ("+" term)*
term ::= number
number ::= [0-9]+)""",
// Passing strings
{
"42",
"1+2+3+4+5",
"123+456",
},
// Failing strings
{
"+",
"/ 3",
"1+2+3+4+5+",
"12a45",
}
);
}
static void test_complex_grammar() {
// Test case for a more complex grammar, with both failure strings and success strings
test_grammar(
"medium complexity grammar",
// Grammar
R"""(
root ::= expression
expression ::= term ws (("+"|"-") ws term)*
term ::= factor ws (("*"|"/") ws factor)*
factor ::= number | variable | "(" expression ")" | function-call
number ::= [0-9]+
variable ::= [a-zA-Z_][a-zA-Z0-9_]*
function-call ::= variable ws "(" (expression ("," ws expression)*)? ")"
ws ::= [ \t\n\r]?)""",
// Passing strings
{
"42",
"1*2*3*4*5",
"x",
"x+10",
"x1+y2",
"(a+b)*(c-d)",
"func()",
"func(x,y+2)",
"a*(b+c)-d/e",
"f(g(x),h(y,z))",
"x + 10",
"x1 + y2",
"(a + b) * (c - d)",
"func()",
"func(x, y + 2)",
"a * (b + c) - d / e",
"f(g(x), h(y, z))",
"123+456",
"123*456*789-123/456+789*123",
"123+456*789-123/456+789*123-456/789+123*456-789/123+456*789-123/456+789*123-456"
},
// Failing strings
{
"+",
"/ 3x",
"x + + y",
"a * / b",
"func(,)",
"func(x y)",
"(a + b",
"x + y)",
"a + b * (c - d",
"42 +",
"x +",
"x + 10 +",
"(a + b) * (c - d",
"func(",
"func(x, y + 2",
"a * (b + c) - d /",
"f(g(x), h(y, z)",
"123+456*789-123/456+789*123-456/789+123*456-789/123+456*789-123/456+789*123-456/",
}
);
}
static void test_special_chars() {
// A collection of tests to exercise special characters such as "."
test_grammar(
"special characters",
// Grammar
R"""(
root ::= ... "abc" ...
)""",
// Passing strings
{
"abcabcabc",
"aaaabcccc",
// NOTE: Also ensures that multi-byte characters still count as a single character
"🔵🟠✅abc❌🟠🔵"
},
// Failing strings
{
"aaabcccc",
"aaaaabcccc",
"aaaabccc",
"aaaabccccc",
"🔵🟠✅❌abc❌✅🟠🔵"
"🔵🟠abc🟠🔵"
}
);
}
static void test_quantifiers() {
// A collection of tests to exercise * + and ? quantifiers
test_grammar(
"* quantifier",
// Grammar
R"""(root ::= "a"*)""",
// Passing strings
{
"",
"a",
"aaaaa",
"aaaaaaaaaaaaaaaaaa",
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
},
// Failing strings
{
"b",
"ab",
"aab",
"ba",
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaab"
}
);
test_grammar(
"+ quantifier",
// Grammar
R"""(root ::= "a"+)""",
// Passing strings
{
"a",
"aaaaa",
"aaaaaaaaaaaaaaaaaa",
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
},
// Failing strings
{
"",
"b",
"ab",
"aab",
"ba",
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaab"
}
);
test_grammar(
"? quantifier",
// Grammar
R"""(root ::= "a"?)""",
// Passing strings
{
"",
"a"
},
// Failing strings
{
"b",
"ab",
"aa",
"ba",
}
);
test_grammar(
"mixed quantifiers",
// Grammar
R"""(
root ::= cons+ vowel* cons? (vowel cons)*
vowel ::= [aeiouy]
cons ::= [bcdfghjklmnpqrstvwxyz]
)""",
// Passing strings
{
"yes",
"no",
"noyes",
"crwth",
"four",
"bryyyy",
},
// Failing strings
{
"yess",
"yesno",
"forty",
"catyyy",
}
);
grammars: x{min,max} repetition operator (#6640) * grammars: x{min,max} repetition operator + tweak +/*/? to avoid duplication of original over alternates * grammars: handle `x{n}` and fix `x{n,n}` * grammars: document new repetition operators * grammars: uniform use of int for min & max * grammars: refactor parser test * grammar: parsing tests w/ natural pretty print of updated expectations * grammars: much prettier print of expectations (+ TEST_GRAMMAR_PARSER_PRINT_ALL=1 to force all) * grammars: improve test pretty print again * grammars: pretty print rules and chars * grammars: fix copy rule skipping * grammars: disallow `a{,}` (not allowed in regexps) * Update common/grammar-parser.cpp Co-authored-by: Clint Herron <hanclinto@gmail.com> * grammars: fix copy rule skipping (again) & display of expectations * grammars: more test cases * grammars: update reps parsing to bring ? / * / + closer to before * json: use new GBNF repetitions{m,n} syntax * grammars: update performance gotchas w/ repetition advice * Update examples/json_schema_to_grammar.py Co-authored-by: Clint Herron <hanclinto@gmail.com> * Update examples/server/public/json-schema-to-grammar.mjs Co-authored-by: Clint Herron <hanclinto@gmail.com> * grammars: comment on rule repetitions * grammars: ensure unambiguous number alternatives * grammar: nit typo switched error msgs * grammar: nit numbering in comment * json: update numeric rule to be unambiguous * Apply suggestions from code review Co-authored-by: Clint Herron <hanclinto@gmail.com> * Update examples/server/public/json-schema-to-grammar.mjs Co-authored-by: Clint Herron <hanclinto@gmail.com> * json: fix integral-part * grammar: add repetition tests --------- Co-authored-by: Clint Herron <hanclinto@gmail.com>
2024-06-06 11:07:06 +02:00
test_grammar(
"simple exact repetition",
// Grammar
R"""(
root ::= [ab]{4}
)""",
// Passing strings
{
"aaaa",
"bbbb",
"abab",
},
// Failing strings
{
"a",
"b",
"aaaaa",
}
);
test_grammar(
"simple min repetition",
// Grammar
R"""(
root ::= [ab]{4,}
)""",
// Passing strings
{
"aaaa",
"aaaaab",
"bbbb",
"ababab",
},
// Failing strings
{
"",
"aba",
}
);
test_grammar(
"simple max repetition",
// Grammar
R"""(
root ::= [ab]{0,4}
)""",
// Passing strings
{
"",
"a",
"aa",
"aaa",
"aaab",
},
// Failing strings
{
"aaaaa",
}
);
test_grammar(
"min / max repetition",
// Grammar
R"""(
root ::= ("0x" [A-F0-9]{2} " "?){3,5}
)""",
// Passing strings
{
"0xFF 0x12 0xAB",
"0xFF 0x12 0xAB 0x00 0x00",
},
// Failing strings
{
"",
"0xFF",
"0xFF 0x12",
"0xFF 0x12 0xAB 0x00 0x00 0x00",
}
);
}
static void test_failure_missing_root() {
fprintf(stderr, "⚫ Testing missing root node:\n");
// Test case for a grammar that is missing a root rule
const std::string grammar_str = R"""(rot ::= expr
expr ::= term ("+" term)*
term ::= number
number ::= [0-9]+)""";
grammar_parser::parse_state parsed_grammar = grammar_parser::parse(grammar_str.c_str());
// Ensure we parsed correctly
assert(!parsed_grammar.rules.empty());
// Ensure we do NOT have a root node
assert(parsed_grammar.symbol_ids.find("root") == parsed_grammar.symbol_ids.end());
fprintf(stderr, " ✅︎ Passed\n");
}
static void test_failure_missing_reference() {
fprintf(stderr, "⚫ Testing missing reference node:\n");
// Test case for a grammar that is missing a referenced rule
const std::string grammar_str =
R"""(root ::= expr
expr ::= term ("+" term)*
term ::= numero
number ::= [0-9]+)""";
fprintf(stderr, " Expected error: ");
grammar_parser::parse_state parsed_grammar = grammar_parser::parse(grammar_str.c_str());
// Ensure we did NOT parsed correctly
assert(parsed_grammar.rules.empty());
fprintf(stderr, " End of expected error.\n");
fprintf(stderr, " ✅︎ Passed\n");
}
static void test_failure_left_recursion() {
fprintf(stderr, "⚫ Testing left recursion detection:\n");
// Test simple left recursion detection
const std::string simple_str = R"""(root ::= "a" | root "a")""";
assert(test_build_grammar_fails(simple_str));
// Test more complicated left recursion detection
const std::string medium_str = R"""(
root ::= asdf
asdf ::= "a" | asdf "a"
)""";
assert(test_build_grammar_fails(medium_str));
// Test even more complicated left recursion detection
const std::string hard_str = R"""(
root ::= asdf
asdf ::= "a" | foo "b"
foo ::= "c" | asdf "d" | "e")""";
assert(test_build_grammar_fails(hard_str));
// Test yet even more complicated left recursion detection
const std::string hardest_str = R"""(
root ::= asdf
asdf ::= "a" | foo "b"
foo ::= "c" | empty asdf "d" | "e"
empty ::= "blah" | )""";
assert(test_build_grammar_fails(hardest_str));
fprintf(stderr, " ✅︎ Passed\n");
}
int main() {
fprintf(stdout, "Running grammar integration tests...\n");
test_simple_grammar();
test_complex_grammar();
test_special_chars();
test_quantifiers();
test_failure_missing_root();
test_failure_missing_reference();
test_failure_left_recursion();
fprintf(stdout, "All tests passed.\n");
return 0;
}