2023-08-23 11:31:09 +02:00
import sys , struct , math , argparse
2023-08-21 22:07:43 +02:00
from pathlib import Path
import numpy as np
import gguf
# Note: Does not support GGML_QKK_64
QK_K = 256
# Items here are (block size, type size)
GGML_QUANT_SIZES = {
gguf . GGMLQuantizationType . F32 : ( 1 , 4 ) ,
gguf . GGMLQuantizationType . F16 : ( 1 , 2 ) ,
gguf . GGMLQuantizationType . Q4_0 : ( 32 , 2 + 16 ) ,
gguf . GGMLQuantizationType . Q4_1 : ( 32 , 2 + 2 + 16 ) ,
gguf . GGMLQuantizationType . Q5_0 : ( 32 , 2 + 4 + 16 ) ,
gguf . GGMLQuantizationType . Q5_1 : ( 32 , 2 + 2 + 4 + 16 ) ,
gguf . GGMLQuantizationType . Q8_0 : ( 32 , 2 + 32 ) ,
gguf . GGMLQuantizationType . Q8_1 : ( 32 , 4 + 4 + 32 ) ,
gguf . GGMLQuantizationType . Q2_K : ( 256 , 2 + 2 + QK_K / / 16 + QK_K / / 4 ) ,
gguf . GGMLQuantizationType . Q3_K : ( 256 , 2 + QK_K / / 4 + QK_K / / 8 + 12 ) ,
gguf . GGMLQuantizationType . Q4_K : ( 256 , 2 + 2 + QK_K / / 2 + 12 ) ,
gguf . GGMLQuantizationType . Q5_K : ( 256 , 2 + 2 + QK_K / / 2 + QK_K / / 8 + 12 ) ,
gguf . GGMLQuantizationType . Q6_K : ( 256 , 2 + QK_K / / 2 + QK_K / / 4 + QK_K / / 16 ) ,
gguf . GGMLQuantizationType . Q8_K : ( 256 , 4 + QK_K + QK_K / / 8 ) ,
}
class Hyperparameters :
def __init__ ( self ) :
self . n_vocab = self . n_embd = self . n_mult = self . n_head = self . n_layer = self . n_rot = self . ftype = 0
self . n_ff = 0
def set_n_ff ( self , model ) :
ff_tensor_idx = model . tensor_map . get ( b ' layers.0.feed_forward.w1.weight ' )
assert ff_tensor_idx is not None , ' Missing layer 0 FF tensor '
ff_tensor = model . tensors [ ff_tensor_idx ]
self . n_ff = ff_tensor . dims [ 1 ]
def load ( self , data , offset ) :
(
self . n_vocab ,
self . n_embd ,
self . n_mult ,
self . n_head ,
self . n_layer ,
self . n_rot ,
self . ftype ,
) = struct . unpack ( ' <7I ' , data [ offset : offset + ( 4 * 7 ) ] )
return 4 * 7
def __str__ ( self ) :
return f ' <Hyperparameters: n_vocab= { self . n_vocab } , n_embd= { self . n_embd } , n_mult= { self . n_mult } , n_head= { self . n_head } , n_layer= { self . n_layer } , n_rot= { self . n_rot } , n_ff= { self . n_ff } , ftype= { self . ftype } > '
class Vocab :
def __init__ ( self ) :
self . items = [ ]
def load ( self , data , offset , n_vocab ) :
orig_offset = offset
for _ in range ( n_vocab ) :
itemlen = struct . unpack ( ' <I ' , data [ offset : offset + 4 ] ) [ 0 ]
assert itemlen < 4096 , ' Absurd vocab item length '
offset + = 4
vocab = bytes ( data [ offset : offset + itemlen ] )
offset + = itemlen
score = struct . unpack ( ' <f ' , data [ offset : offset + 4 ] ) [ 0 ]
offset + = 4
self . items . append ( ( vocab , score ) )
return offset - orig_offset
class Tensor :
def __init__ ( self ) :
self . name = None
self . dims = ( )
self . dtype = None
self . start_offset = 0
self . len_bytes = 0
def load ( self , data , offset ) :
orig_offset = offset
( n_dims , name_len , dtype ) = struct . unpack ( ' <3I ' , data [ offset : offset + 12 ] )
assert n_dims > = 0 and n_dims < = 4 , f ' Invalid tensor dimensions { n_dims } '
assert name_len < 4096 , ' Absurd tensor name length '
quant = GGML_QUANT_SIZES . get ( dtype )
assert quant is not None , ' Unknown tensor type '
( blksize , tysize ) = quant
offset + = 12
self . dtype = dtype
self . dims = struct . unpack ( f ' < { n_dims } I ' , data [ offset : offset + ( 4 * n_dims ) ] )
offset + = 4 * n_dims
self . name = bytes ( data [ offset : offset + name_len ] )
offset + = name_len
pad = ( ( offset + 31 ) & ~ 31 ) - offset
offset + = pad
n_elems = np . prod ( self . dims )
2023-08-23 11:31:09 +02:00
n_bytes = np . int64 ( np . int64 ( n_elems ) * np . int64 ( tysize ) ) / / np . int64 ( blksize )
2023-08-21 22:07:43 +02:00
self . start_offset = offset
self . len_bytes = n_bytes
offset + = n_bytes
# print(n_dims, name_len, dtype, self.dims, self.name, pad)
return offset - orig_offset
class GGMLV3Model :
def __init__ ( self ) :
self . hyperparameters = None
self . vocab = None
self . tensor_map = { }
self . tensors = [ ]
def validate_header ( self , data , offset ) :
if bytes ( data [ offset : offset + 4 ] ) != b ' tjgg ' or struct . unpack ( ' <I ' , data [ offset + 4 : offset + 8 ] ) [ 0 ] != 3 :
raise ValueError ( ' Only GGJTv3 supported ' )
return 8
def load ( self , data , offset ) :
offset + = self . validate_header ( data , offset )
hp = Hyperparameters ( )
offset + = hp . load ( data , offset )
vocab = Vocab ( )
offset + = vocab . load ( data , offset , hp . n_vocab )
tensors = [ ]
tensor_map = { }
while offset < len ( data ) :
tensor = Tensor ( )
offset + = tensor . load ( data , offset )
tensor_map [ tensor . name ] = len ( tensors )
tensors . append ( tensor )
self . hyperparameters = hp
self . vocab = vocab
self . tensors = tensors
self . tensor_map = tensor_map
hp . set_n_ff ( self )
return offset
class GGMLToGGUF :
def __init__ ( self , ggml_model , data , cfg , params_override = None , vocab_override = None ) :
hp = ggml_model . hyperparameters
self . model = ggml_model
self . data = data
self . cfg = cfg
self . params_override = params_override
self . vocab_override = vocab_override
if params_override is not None :
n_kv_head = params_override . n_head_kv
else :
if cfg . gqa == 1 :
n_kv_head = hp . n_head
else :
gqa = float ( cfg . gqa )
n_kv_head = None
for x in range ( 1 , 256 ) :
if float ( hp . n_head ) / float ( x ) == gqa :
n_kv_head = x
assert n_kv_head is not None , " Couldn ' t determine n_kv_head from GQA param "
print ( f ' - Guessed n_kv_head = { n_kv_head } based on GQA { cfg . gqa } ' )
self . n_kv_head = n_kv_head
self . name_map = gguf . get_tensor_name_map ( gguf . MODEL_ARCH . LLAMA , ggml_model . hyperparameters . n_layer )
def save ( self ) :
print ( ' * Preparing to save GGUF file ' )
gguf_writer = gguf . GGUFWriter ( self . cfg . output , gguf . MODEL_ARCH_NAMES [ gguf . MODEL_ARCH . LLAMA ] , use_temp_file = False )
self . add_params ( gguf_writer )
self . add_vocab ( gguf_writer )
self . add_tensors ( gguf_writer )
print ( " gguf: write header " )
gguf_writer . write_header_to_file ( )
print ( " gguf: write metadata " )
gguf_writer . write_kv_data_to_file ( )
print ( " gguf: write tensors " )
gguf_writer . write_tensors_to_file ( )
gguf_writer . close ( )
def add_params ( self , gguf_writer ) :
hp = self . model . hyperparameters
cfg = self . cfg
desc = cfg . desc if cfg . desc is not None else ' converted from legacy GGJTv3 format '
try :
# Filenames aren't necessarily valid UTF8.
name = cfg . name if cfg . name is not None else cfg . input . name
except UnicodeDecodeError :
name = None
print ( ' * Adding model parameters and KV items ' )
if name is not None :
gguf_writer . add_name ( name )
gguf_writer . add_description ( desc )
if self . params_override is not None :
po = self . params_override
assert po . n_embd == hp . n_embd , ' Model hyperparams mismatch '
assert po . n_layer == hp . n_layer , ' Model hyperparams mismatch '
assert po . n_head == hp . n_head , ' Model hyperparams mismatch '
gguf_writer . add_context_length ( po . n_ctx )
gguf_writer . add_embedding_length ( po . n_embd )
gguf_writer . add_block_count ( po . n_layer )
gguf_writer . add_feed_forward_length ( po . n_ff )
gguf_writer . add_rope_dimension_count ( po . n_embd / / po . n_head )
gguf_writer . add_head_count ( po . n_head )
gguf_writer . add_head_count_kv ( po . n_head_kv )
gguf_writer . add_layer_norm_rms_eps ( po . f_norm_eps )
return
gguf_writer . add_context_length ( cfg . context_length )
gguf_writer . add_embedding_length ( hp . n_embd )
gguf_writer . add_block_count ( hp . n_layer )
gguf_writer . add_feed_forward_length ( hp . n_ff )
gguf_writer . add_rope_dimension_count ( hp . n_embd / / hp . n_head )
gguf_writer . add_head_count ( hp . n_head )
gguf_writer . add_head_count_kv ( self . n_kv_head )
gguf_writer . add_layer_norm_rms_eps ( float ( cfg . eps ) )
def add_vocab ( self , gguf_writer ) :
hp = self . model . hyperparameters
gguf_writer . add_tokenizer_model ( ' llama ' )
tokens = [ ]
scores = [ ]
toktypes = [ ]
if self . vocab_override is not None :
vo = self . vocab_override
print ( ' * Adding vocab item(s) ' )
2023-08-23 01:39:39 +02:00
for ( idx , ( vbytes , score , ttype ) ) in enumerate ( vo . all_tokens ( ) ) :
tokens . append ( vbytes )
scores . append ( score )
toktypes . append ( ttype )
2023-08-21 22:07:43 +02:00
assert len ( tokens ) == hp . n_vocab , f ' Override vocab has a different number of items than hyperparameters - override = { len ( tokens ) } but n_vocab= { hp . n_vocab } '
gguf_writer . add_token_list ( tokens )
gguf_writer . add_token_scores ( scores )
if len ( toktypes ) > 0 :
gguf_writer . add_token_types ( toktypes )
return
print ( f ' * Adding { hp . n_vocab } vocab item(s) ' )
2023-08-23 01:39:39 +02:00
assert len ( self . model . vocab . items ) > = 3 , ' Cannot handle unexpectedly short model vocab '
2023-08-21 22:07:43 +02:00
for ( tokid , ( vbytes , vscore ) ) in enumerate ( self . model . vocab . items ) :
tt = 1 # Normal
2023-08-23 01:39:39 +02:00
# Special handling for UNK, BOS, EOS tokens.
if tokid < = 2 :
if tokid == 0 :
vbytes = b ' <unk> '
tt = 2
elif tokid == 1 :
vbytes = b ' <s> '
tt = 3
else :
vbytes = b ' </s> '
tt = 3
elif len ( vbytes ) == 0 :
2023-08-21 22:07:43 +02:00
tt = 3 # Control
elif tokid > = 3 and tokid < = 258 and len ( vbytes ) == 1 :
2023-08-22 02:01:34 +02:00
vbytes = bytes ( f ' <0x { vbytes [ 0 ] : 02X } > ' , encoding = ' UTF-8 ' )
2023-08-21 22:07:43 +02:00
tt = 6 # Byte
else :
vbytes = vbytes . replace ( b ' ' , b ' \xe2 \x96 \x81 ' )
toktypes . append ( tt )
tokens . append ( vbytes )
scores . append ( vscore )
gguf_writer . add_token_list ( tokens )
gguf_writer . add_token_scores ( scores )
gguf_writer . add_token_types ( toktypes )
2023-08-23 01:39:39 +02:00
gguf_writer . add_unk_token_id ( 0 )
gguf_writer . add_bos_token_id ( 1 )
gguf_writer . add_eos_token_id ( 2 )
2023-08-21 22:07:43 +02:00
def add_tensors ( self , gguf_writer ) :
nm = self . name_map
data = self . data
print ( f ' * Adding { len ( self . model . tensors ) } tensor(s) ' )
for tensor in self . model . tensors :
name = str ( tensor . name , ' UTF-8 ' )
if name . endswith ( ' .weight ' ) :
name = name [ : - 7 ]
suffix = ' .weight '
elif name . endswith ( ' .bias ' ) :
name = name [ : - 5 ]
suffix = ' .bias '
mapped_name = nm . get ( name )
assert mapped_name is not None , f ' Bad name { name } '
mapped_name + = suffix
tempdims = list ( tensor . dims [ : ] )
if len ( tempdims ) > 1 :
temp = tempdims [ 1 ]
tempdims [ 1 ] = tempdims [ 0 ]
tempdims [ 0 ] = temp
# print(f'+ {tensor.name} | {mapped_name} {tensor.dims} :: {tempdims}')
gguf_writer . add_tensor ( mapped_name , data [ tensor . start_offset : tensor . start_offset + tensor . len_bytes ] , raw_shape = tempdims , raw_dtype = tensor . dtype )
def handle_metadata ( cfg , hp ) :
import convert
assert cfg . model_metadata_dir . is_dir ( ) , ' Metadata dir is not a directory '
hf_config_path = cfg . model_metadata_dir / " config.json "
orig_config_path = cfg . model_metadata_dir / " params.json "
# We pass a fake model here. "original" mode will check the shapes of some
# tensors if information is missing in the .json file: other than that, the
# model data isn't used so this should be safe (at least for now).
fakemodel = {
' tok_embeddings.weight ' : convert . LazyTensor . __new__ ( convert . LazyTensor ) ,
' layers.0.feed_forward.w1.weight ' : convert . LazyTensor . __new__ ( convert . LazyTensor ) ,
}
fakemodel [ ' tok_embeddings.weight ' ] . shape = [ hp . n_vocab ]
fakemodel [ ' layers.0.feed_forward.w1.weight ' ] . shape = [ hp . n_ff ]
if hf_config_path . exists ( ) :
params = convert . Params . loadHFTransformerJson ( fakemodel , hf_config_path )
elif orig_config_path . exists ( ) :
params = convert . Params . loadOriginalParamsJson ( fakemodel , orig_config_path )
else :
raise ValueError ( ' Unable to load metadata ' )
vocab = convert . load_vocab ( cfg . vocab_dir if cfg . vocab_dir is not None else cfg . model_metadata_dir , cfg . vocabtype )
convert . check_vocab_size ( params , vocab )
return ( params , vocab )
def handle_args ( ) :
parser = argparse . ArgumentParser ( description = ' Convert GGMLv3 models to GGUF ' )
parser . add_argument ( ' --input ' , ' -i ' , type = Path , help = ' Input GGMLv3 filename ' )
parser . add_argument ( ' --output ' , ' -o ' , type = Path , help = ' Output GGUF filename ' )
parser . add_argument ( ' --name ' , help = ' Set model name ' )
parser . add_argument ( ' --desc ' , help = ' Set model description ' )
parser . add_argument ( ' --gqa ' , type = int , default = 1 , help = ' grouped-query attention factor (use 8 for LLaMA2 70B) ' )
parser . add_argument ( ' --eps ' , default = ' 5.0e-06 ' , help = ' RMS norm eps: Use 1e-6 for LLaMA1 and OpenLLaMA, use 1e-5 for LLaMA2 ' )
parser . add_argument ( ' --context-length ' , ' -c ' , type = int , default = 2048 , help = ' Default max context length: LLaMA1 is typically 2048, LLaMA2 is typically 4096 ' )
parser . add_argument ( ' --model-metadata-dir ' , ' -m ' , type = Path , help = ' Load HuggingFace/.pth vocab and metadata from the specified directory ' )
parser . add_argument ( " --vocab-dir " , type = Path , help = " directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir " )
parser . add_argument ( " --vocabtype " , choices = [ " spm " , " bpe " ] , help = " vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm) " , default = " spm " )
return parser . parse_args ( )
def main ( ) :
cfg = handle_args ( )
print ( f ' * Using config: { cfg } ' )
print ( ' \n === WARNING === Be aware that this conversion script is best-effort. Use a native GGUF model if possible. === WARNING === \n ' )
data = np . memmap ( cfg . input , mode = ' r ' )
model = GGMLV3Model ( )
print ( ' * Scanning GGML input file ' )
2023-08-23 11:31:09 +02:00
offset = model . load ( data , 0 )
2023-08-21 22:07:43 +02:00
print ( f ' * GGML model hyperparameters: { model . hyperparameters } ' )
vocab_override = None
params_override = None
if cfg . model_metadata_dir is not None :
( params_override , vocab_override ) = handle_metadata ( cfg , model . hyperparameters )
print ( ' !! Note: When overriding params the --gqa, --eps and --context-length options are ignored. ' )
print ( f ' * Overriding params: { params_override } ' )
print ( f ' * Overriding vocab: { vocab_override } ' )
else :
print ( ' \n === WARNING === Special tokens may not be converted correctly. Use --model-metadata-dir if possible === WARNING === \n ' )
converter = GGMLToGGUF ( model , data , cfg , params_override = params_override , vocab_override = vocab_override )
converter . save ( )
print ( f ' * Successful completion. Output saved to: { cfg . output } ' )
2023-08-23 01:39:39 +02:00
if __name__ == ' __main__ ' :
main ( )