2023-04-08 00:09:18 +02:00
|
|
|
#include "ggml.h"
|
2023-04-13 17:04:45 +02:00
|
|
|
|
|
|
|
#define LLAMA_API_INTERNAL
|
2023-04-08 00:09:18 +02:00
|
|
|
#include "llama.h"
|
|
|
|
|
|
|
|
#include <algorithm>
|
|
|
|
#include <cassert>
|
|
|
|
#include <cinttypes>
|
|
|
|
#include <cmath>
|
|
|
|
#include <cstdio>
|
|
|
|
#include <cstring>
|
|
|
|
#include <map>
|
|
|
|
#include <numeric>
|
|
|
|
#include <regex>
|
|
|
|
#include <string>
|
|
|
|
#include <unordered_map>
|
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
struct quantize_stats_params {
|
|
|
|
std::string model = "models/7B/ggml-model-f16.bin";
|
|
|
|
bool verbose = false;
|
|
|
|
bool per_layer_stats = false;
|
|
|
|
bool print_histogram = false;
|
|
|
|
bool reference = false;
|
|
|
|
std::vector<std::string> include_layers;
|
|
|
|
std::vector<std::string> exclude_layers;
|
|
|
|
std::vector<enum ggml_type> include_types;
|
|
|
|
};
|
|
|
|
|
|
|
|
const int64_t SCRATCH_ELEMENTS = 32*32;
|
|
|
|
const size_t HISTOGRAM_BUCKETS = 150;
|
|
|
|
const double HISTOGRAM_RANGE = 0.03;
|
|
|
|
|
|
|
|
struct error_stats {
|
|
|
|
size_t num_samples;
|
|
|
|
double total_error;
|
|
|
|
double max_error;
|
|
|
|
uint64_t error_histogram[HISTOGRAM_BUCKETS];
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
void quantize_stats_print_usage(int /*argc*/, char ** argv) {
|
|
|
|
quantize_stats_params params;
|
|
|
|
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
|
|
|
fprintf(stderr, "\n");
|
|
|
|
fprintf(stderr, "options:\n");
|
|
|
|
fprintf(stderr, " -h, --help show this help message and exit\n");
|
|
|
|
fprintf(stderr, " -m FNAME, --model FNAME\n");
|
|
|
|
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
|
|
|
|
fprintf(stderr, " -r, --reference\n");
|
|
|
|
fprintf(stderr, " use reference implementation (default: false)\n");
|
|
|
|
fprintf(stderr, " -v, --verbose\n");
|
|
|
|
fprintf(stderr, " verbose output (default: false)\n");
|
|
|
|
fprintf(stderr, " -p, --per-layer-stats\n");
|
|
|
|
fprintf(stderr, " print stats per layer (default: false)\n");
|
|
|
|
fprintf(stderr, " --histogram\n");
|
|
|
|
fprintf(stderr, " print error histogram (default: false)\n");
|
|
|
|
fprintf(stderr, " -l LAYER, --include-layer LAYER\n");
|
|
|
|
fprintf(stderr, " only test layers matching pattern\n");
|
|
|
|
fprintf(stderr, " -L LAYER, --exclude-layer LAYER\n");
|
|
|
|
fprintf(stderr, " exclude layers matching pattern\n");
|
|
|
|
fprintf(stderr, " -t TYPE, --type TYPE\n");
|
|
|
|
fprintf(stderr, " only test given type (q4_0, q4_1)\n");
|
|
|
|
fprintf(stderr, "\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check if a layer is included/excluded by command line
|
|
|
|
bool layer_included(const quantize_stats_params params, const std::string & layer) {
|
|
|
|
for (const auto& excluded : params.exclude_layers) {
|
|
|
|
if (std::regex_search(layer, std::regex(excluded))) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (const auto& included : params.include_layers) {
|
|
|
|
if (std::regex_search(layer, std::regex(included))) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return params.include_layers.empty();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Update error statistics given vectors with the before/after result of quantization
|
|
|
|
void update_error_stats(int64_t nelements, const float * input, const float * output, error_stats & stats) {
|
|
|
|
for (int64_t i = 0; i < nelements; i++) {
|
|
|
|
double diff = input[i] - output[i];
|
|
|
|
stats.total_error += diff * diff;
|
|
|
|
stats.max_error = fmax(fabs(diff), stats.max_error);
|
|
|
|
stats.error_histogram[std::max(std::min((size_t) floor(fabs(diff) / HISTOGRAM_RANGE * HISTOGRAM_BUCKETS), HISTOGRAM_BUCKETS-1), (size_t) 0)]++;
|
|
|
|
}
|
|
|
|
stats.num_samples += nelements;
|
|
|
|
}
|
|
|
|
|
|
|
|
double find_quantile(const error_stats & stats, double quantile) {
|
|
|
|
double sum = std::accumulate(std::begin(stats.error_histogram), std::end(stats.error_histogram), 0.0);
|
|
|
|
|
|
|
|
double accum = 0;
|
|
|
|
for (size_t i = 0; i < HISTOGRAM_BUCKETS; i++) {
|
|
|
|
accum += stats.error_histogram[i];
|
|
|
|
if (accum >= sum*quantile) {
|
|
|
|
return (i+1) * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return INFINITY;
|
|
|
|
}
|
|
|
|
|
|
|
|
void print_error_stats(const std::string & name, const error_stats & stats, bool print_histogram) {
|
|
|
|
double rmse = sqrt(stats.total_error / (double) stats.num_samples);
|
|
|
|
double median = find_quantile(stats, .5);
|
|
|
|
double pct95 = find_quantile(stats, .95);
|
|
|
|
printf("%-50s: rmse %.8f, maxerr %.8f, 95pct<%.4f, median<%.4f\n", name.c_str(), rmse, stats.max_error, pct95, median);
|
|
|
|
if (print_histogram) {
|
|
|
|
printf("Error distribution:\n");
|
|
|
|
for (size_t i = 0; i < HISTOGRAM_BUCKETS; i++) {
|
|
|
|
double lower = i * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS;
|
|
|
|
double upper = (i+1) * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS;
|
|
|
|
if (i == HISTOGRAM_BUCKETS -1) upper = INFINITY;
|
|
|
|
printf("[%3.4f, %3.4f): %11" PRIu64 "\n", lower, upper, stats.error_histogram[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// copied from ggml.h - verify that we can access this as a flat array
|
|
|
|
static bool tensor_is_contiguous(const struct ggml_tensor * tensor) {
|
|
|
|
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
|
|
|
|
|
|
|
return
|
|
|
|
tensor->nb[0] == ggml_type_size(tensor->type) &&
|
|
|
|
tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
|
|
|
|
tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
|
|
|
|
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
|
|
|
|
}
|
|
|
|
|
|
|
|
// Run quantization function for a single layer and update error stats
|
|
|
|
void test_roundtrip_on_layer(
|
|
|
|
std::string & name,
|
|
|
|
bool print_layer_stats,
|
|
|
|
const quantize_fns_t & qfns,
|
|
|
|
bool use_reference,
|
|
|
|
const ggml_tensor * layer,
|
|
|
|
float * input_scratch,
|
|
|
|
char *quantized_scratch,
|
|
|
|
float * output_scratch,
|
|
|
|
error_stats & total_error) {
|
|
|
|
|
|
|
|
assert(tensor_is_contiguous(layer));
|
|
|
|
error_stats layer_error {};
|
|
|
|
int64_t nelements = ggml_nelements(layer);
|
|
|
|
|
|
|
|
for (int64_t offset = 0; offset < nelements; offset += SCRATCH_ELEMENTS) {
|
|
|
|
int64_t chunk_size = std::min(SCRATCH_ELEMENTS, nelements - offset);
|
|
|
|
|
|
|
|
if (layer->type == GGML_TYPE_F16) {
|
|
|
|
for (int i = 0; i < chunk_size; i++) {
|
|
|
|
input_scratch[i] = ggml_get_f32_1d(layer, i + offset);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
input_scratch = ggml_get_data_f32(layer) + offset;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (use_reference) {
|
|
|
|
qfns.quantize_row_q_reference(input_scratch, quantized_scratch, chunk_size);
|
|
|
|
} else {
|
|
|
|
qfns.quantize_row_q(input_scratch, quantized_scratch, chunk_size);
|
|
|
|
}
|
|
|
|
qfns.dequantize_row_q(quantized_scratch, output_scratch, chunk_size);
|
|
|
|
|
|
|
|
update_error_stats(chunk_size, input_scratch, output_scratch, total_error);
|
|
|
|
if (print_layer_stats) {
|
|
|
|
update_error_stats(chunk_size, input_scratch, output_scratch, layer_error);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (print_layer_stats) {
|
|
|
|
print_error_stats(name, layer_error, false);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int main(int argc, char ** argv) {
|
|
|
|
ggml_time_init();
|
|
|
|
|
|
|
|
quantize_stats_params params;
|
|
|
|
|
|
|
|
// read command line
|
|
|
|
|
|
|
|
bool invalid_param = false;
|
|
|
|
std::string arg;
|
|
|
|
for (int i = 1; i < argc; i++) {
|
|
|
|
arg = argv[i];
|
|
|
|
|
|
|
|
if (arg == "-h" || arg == "--help") {
|
|
|
|
quantize_stats_print_usage(argc, argv);
|
|
|
|
exit(0);
|
|
|
|
} else if (arg == "-r" || arg == "--reference") {
|
|
|
|
params.reference = true;
|
|
|
|
} else if (arg == "-v") {
|
|
|
|
params.verbose = true;
|
|
|
|
} else if (arg == "-p" || arg == "--per-layer-stats") {
|
|
|
|
params.per_layer_stats = true;
|
|
|
|
} else if (arg == "--histogram") {
|
|
|
|
params.print_histogram = true;
|
|
|
|
} else if (arg == "-m" || arg == "--model") {
|
|
|
|
if (++i >= argc) {
|
|
|
|
invalid_param = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
params.model = argv[i];
|
|
|
|
} else if (arg == "-l" || arg == "--include-layer") {
|
|
|
|
if (++i >= argc) {
|
|
|
|
invalid_param = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
params.include_layers.push_back(argv[i]);
|
|
|
|
} else if (arg == "-L" || arg == "--exclude-layer") {
|
|
|
|
if (++i >= argc) {
|
|
|
|
invalid_param = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
params.exclude_layers.push_back(argv[i]);
|
|
|
|
} else if (arg == "-t" || arg == "--type") {
|
|
|
|
if (++i >= argc) {
|
|
|
|
invalid_param = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
int j;
|
2023-04-17 16:31:06 +02:00
|
|
|
for (j = 0; j < GGML_TYPE_COUNT && strcmp(argv[i], ggml_type_name((ggml_type) j)) != 0; j++) {
|
2023-04-08 00:09:18 +02:00
|
|
|
// find match
|
|
|
|
}
|
|
|
|
if (j < GGML_TYPE_COUNT) {
|
|
|
|
params.include_types.push_back((ggml_type) j);
|
|
|
|
} else {
|
|
|
|
fprintf(stderr, "error: %s not in list of types\n", argv[i]);
|
|
|
|
invalid_param = true;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
|
|
|
quantize_stats_print_usage(argc, argv);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (invalid_param) {
|
|
|
|
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
|
|
|
|
quantize_stats_print_usage(argc, argv);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// load the model
|
|
|
|
fprintf(stderr, "Loading model\n");
|
|
|
|
|
|
|
|
const int64_t t_main_start_us = ggml_time_us();
|
|
|
|
llama_context * ctx;
|
|
|
|
|
|
|
|
{
|
|
|
|
auto lparams = llama_context_default_params();
|
|
|
|
|
|
|
|
lparams.n_ctx = 256;
|
|
|
|
lparams.n_parts = 1;
|
|
|
|
lparams.seed = 1;
|
|
|
|
lparams.f16_kv = false;
|
|
|
|
lparams.use_mlock = false;
|
|
|
|
|
|
|
|
ctx = llama_init_from_file(params.model.c_str(), lparams);
|
|
|
|
|
|
|
|
if (ctx == NULL) {
|
|
|
|
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
Rewrite loading code to try to satisfy everyone:
- Support all three formats (ggml, ggmf, ggjt). (However, I didn't
include the hack needed to support GPT4All files without conversion.
Those can still be used after converting them with convert.py from my
other PR.)
- Support both mmap and read (mmap is used by default, but can be
disabled with `--no-mmap`, and is automatically disabled for pre-ggjt
files or on platforms where mmap is not supported).
- Support multi-file models like before, but automatically determine the
number of parts rather than requiring `--n_parts`.
- Improve validation and error checking.
- Stop using the per-file type field (f16) entirely in favor of just
relying on the per-tensor type/size fields. This has no immediate
benefit, but makes it easier to experiment with different formats, and
should make it easier to support the new GPTQ-for-LLaMa models in the
future (I have some work in progress on that front).
- Support VirtualLock on Windows (using the same `--mlock` option as on
Unix).
- Indicate loading progress when using mmap + mlock. (Which led me
to the interesting observation that on my Linux machine, with a
warm file cache, mlock actually takes some time, whereas mmap
without mlock starts almost instantly...)
- To help implement this, move mlock support from ggml to the
loading code.
- madvise/PrefetchVirtualMemory support (based on #740)
- Switch from ifstream to the `fopen` family of functions to avoid
unnecessary copying and, when mmap is enabled, allow reusing the same
file descriptor for both metadata reads and mmap (whereas the existing
implementation opens the file a second time to mmap).
- Quantization now produces a single-file output even with multi-file
inputs (not really a feature as much as 'it was easier this way').
Implementation notes:
I tried to factor the code into more discrete pieces than before.
Regarding code style: I tried to follow the code style, but I'm naughty
and used a few advanced C++ features repeatedly:
- Destructors to make it easier to ensure everything gets cleaned up.
- Exceptions. I don't even usually use exceptions when writing C++, and
I can remove them if desired... but here they make the loading code
much more succinct while still properly handling a variety of errors,
ranging from API calls failing to integer overflow and allocation
failure. The exceptions are converted to error codes at the
API boundary.)
Co-authored-by: Pavol Rusnak <pavol@rusnak.io> (for the bit I copied from #740)
2023-04-08 21:24:37 +02:00
|
|
|
const auto &tensors = llama_internal_get_tensor_map(ctx);
|
2023-04-08 00:09:18 +02:00
|
|
|
|
|
|
|
// check layer tensors
|
|
|
|
int included_layers = 0;
|
|
|
|
int64_t max_nelements = 0;
|
|
|
|
bool is_f16 = false;
|
Rewrite loading code to try to satisfy everyone:
- Support all three formats (ggml, ggmf, ggjt). (However, I didn't
include the hack needed to support GPT4All files without conversion.
Those can still be used after converting them with convert.py from my
other PR.)
- Support both mmap and read (mmap is used by default, but can be
disabled with `--no-mmap`, and is automatically disabled for pre-ggjt
files or on platforms where mmap is not supported).
- Support multi-file models like before, but automatically determine the
number of parts rather than requiring `--n_parts`.
- Improve validation and error checking.
- Stop using the per-file type field (f16) entirely in favor of just
relying on the per-tensor type/size fields. This has no immediate
benefit, but makes it easier to experiment with different formats, and
should make it easier to support the new GPTQ-for-LLaMa models in the
future (I have some work in progress on that front).
- Support VirtualLock on Windows (using the same `--mlock` option as on
Unix).
- Indicate loading progress when using mmap + mlock. (Which led me
to the interesting observation that on my Linux machine, with a
warm file cache, mlock actually takes some time, whereas mmap
without mlock starts almost instantly...)
- To help implement this, move mlock support from ggml to the
loading code.
- madvise/PrefetchVirtualMemory support (based on #740)
- Switch from ifstream to the `fopen` family of functions to avoid
unnecessary copying and, when mmap is enabled, allow reusing the same
file descriptor for both metadata reads and mmap (whereas the existing
implementation opens the file a second time to mmap).
- Quantization now produces a single-file output even with multi-file
inputs (not really a feature as much as 'it was easier this way').
Implementation notes:
I tried to factor the code into more discrete pieces than before.
Regarding code style: I tried to follow the code style, but I'm naughty
and used a few advanced C++ features repeatedly:
- Destructors to make it easier to ensure everything gets cleaned up.
- Exceptions. I don't even usually use exceptions when writing C++, and
I can remove them if desired... but here they make the loading code
much more succinct while still properly handling a variety of errors,
ranging from API calls failing to integer overflow and allocation
failure. The exceptions are converted to error codes at the
API boundary.)
Co-authored-by: Pavol Rusnak <pavol@rusnak.io> (for the bit I copied from #740)
2023-04-08 21:24:37 +02:00
|
|
|
for (const auto& kv_tensor : tensors) {
|
2023-04-08 00:09:18 +02:00
|
|
|
if (!layer_included(params, kv_tensor.first)) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (params.verbose) {
|
2023-04-14 20:05:37 +02:00
|
|
|
printf("%s: type %s, size %" PRId64 "\n", kv_tensor.first.c_str(), ggml_type_name(kv_tensor.second->type), ggml_nelements(kv_tensor.second));
|
2023-04-08 00:09:18 +02:00
|
|
|
}
|
|
|
|
if (kv_tensor.second->type == GGML_TYPE_F16) {
|
|
|
|
is_f16 = true;
|
|
|
|
} else if (kv_tensor.second->type != GGML_TYPE_F32) {
|
|
|
|
fprintf(stderr, "%s: error: Quantization should be tested with a float model, "
|
|
|
|
"this model contains already quantized layers (%s is type %d)\n", __func__, kv_tensor.first.c_str(), kv_tensor.second->type);
|
|
|
|
llama_free(ctx);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
included_layers++;
|
|
|
|
max_nelements = std::max(max_nelements, ggml_nelements(kv_tensor.second));
|
|
|
|
}
|
|
|
|
|
|
|
|
if (is_f16) {
|
|
|
|
printf("note: source model is f16\n");
|
|
|
|
}
|
|
|
|
printf("testing %d layers with max size %" PRId64 "\n", included_layers, max_nelements);
|
|
|
|
// allocate scratch space
|
|
|
|
std::vector<float> input_scratch(SCRATCH_ELEMENTS);
|
|
|
|
std::vector<char> quantized_scratch(SCRATCH_ELEMENTS*4);
|
|
|
|
std::vector<float> output_scratch(SCRATCH_ELEMENTS);
|
|
|
|
|
|
|
|
// loop throught quantization types
|
|
|
|
for (int i = 0; i < GGML_TYPE_COUNT; i++) {
|
2023-04-14 20:05:37 +02:00
|
|
|
const ggml_type type = (ggml_type) i;
|
2023-04-08 00:09:18 +02:00
|
|
|
if (!params.include_types.empty() && std::find(params.include_types.begin(), params.include_types.end(), i) == params.include_types.end()) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
quantize_fns_t qfns = ggml_internal_get_quantize_fn(i);
|
|
|
|
if (qfns.quantize_row_q && qfns.dequantize_row_q) {
|
|
|
|
if (params.verbose) {
|
2023-04-14 20:05:37 +02:00
|
|
|
printf("testing %s ...\n", ggml_type_name(type));
|
2023-04-08 00:09:18 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
error_stats global_stats {};
|
|
|
|
|
Rewrite loading code to try to satisfy everyone:
- Support all three formats (ggml, ggmf, ggjt). (However, I didn't
include the hack needed to support GPT4All files without conversion.
Those can still be used after converting them with convert.py from my
other PR.)
- Support both mmap and read (mmap is used by default, but can be
disabled with `--no-mmap`, and is automatically disabled for pre-ggjt
files or on platforms where mmap is not supported).
- Support multi-file models like before, but automatically determine the
number of parts rather than requiring `--n_parts`.
- Improve validation and error checking.
- Stop using the per-file type field (f16) entirely in favor of just
relying on the per-tensor type/size fields. This has no immediate
benefit, but makes it easier to experiment with different formats, and
should make it easier to support the new GPTQ-for-LLaMa models in the
future (I have some work in progress on that front).
- Support VirtualLock on Windows (using the same `--mlock` option as on
Unix).
- Indicate loading progress when using mmap + mlock. (Which led me
to the interesting observation that on my Linux machine, with a
warm file cache, mlock actually takes some time, whereas mmap
without mlock starts almost instantly...)
- To help implement this, move mlock support from ggml to the
loading code.
- madvise/PrefetchVirtualMemory support (based on #740)
- Switch from ifstream to the `fopen` family of functions to avoid
unnecessary copying and, when mmap is enabled, allow reusing the same
file descriptor for both metadata reads and mmap (whereas the existing
implementation opens the file a second time to mmap).
- Quantization now produces a single-file output even with multi-file
inputs (not really a feature as much as 'it was easier this way').
Implementation notes:
I tried to factor the code into more discrete pieces than before.
Regarding code style: I tried to follow the code style, but I'm naughty
and used a few advanced C++ features repeatedly:
- Destructors to make it easier to ensure everything gets cleaned up.
- Exceptions. I don't even usually use exceptions when writing C++, and
I can remove them if desired... but here they make the loading code
much more succinct while still properly handling a variety of errors,
ranging from API calls failing to integer overflow and allocation
failure. The exceptions are converted to error codes at the
API boundary.)
Co-authored-by: Pavol Rusnak <pavol@rusnak.io> (for the bit I copied from #740)
2023-04-08 21:24:37 +02:00
|
|
|
for (const auto& kv_tensor : tensors) {
|
2023-04-08 00:09:18 +02:00
|
|
|
if (!layer_included(params, kv_tensor.first)) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (params.verbose) {
|
|
|
|
printf(" %s ...\n", kv_tensor.first.c_str());
|
|
|
|
}
|
2023-04-14 20:05:37 +02:00
|
|
|
std::string layer_name { ggml_type_name(type) };
|
2023-04-08 00:09:18 +02:00
|
|
|
layer_name += "::" + kv_tensor.first;
|
|
|
|
test_roundtrip_on_layer(
|
|
|
|
layer_name,
|
|
|
|
params.per_layer_stats,
|
|
|
|
qfns,
|
|
|
|
params.reference,
|
|
|
|
kv_tensor.second,
|
|
|
|
input_scratch.data(),
|
|
|
|
quantized_scratch.data(),
|
|
|
|
output_scratch.data(),
|
|
|
|
global_stats
|
|
|
|
);
|
|
|
|
}
|
|
|
|
|
2023-04-14 20:05:37 +02:00
|
|
|
print_error_stats(ggml_type_name(type), global_stats, params.print_histogram);
|
2023-04-08 00:09:18 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
llama_free(ctx);
|
|
|
|
// report timing
|
|
|
|
{
|
|
|
|
const int64_t t_main_end_us = ggml_time_us();
|
|
|
|
|
|
|
|
printf("\n");
|
|
|
|
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0);
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|