llama.cpp/examples/server/tests/features/embeddings.feature

97 lines
2.4 KiB
Gherkin
Raw Normal View History

2024-03-07 10:41:53 +01:00
@llama.cpp
@embeddings
Feature: llama.cpp server
Background: Server startup
Given a server listening on localhost:8080
And a model url https://huggingface.co/ggml-org/models/resolve/main/bert-bge-small/ggml-model-f16.gguf
And a model file ggml-model-f16.gguf
2024-03-07 10:41:53 +01:00
And a model alias bert-bge-small
And 42 as server seed
And 2 slots
And 1024 as batch size
And 1024 as ubatch size
2024-03-07 10:41:53 +01:00
And 2048 KV cache size
And embeddings extraction
Then the server is starting
Then the server is healthy
Scenario: Embedding
When embeddings are computed for:
"""
What is the capital of Bulgaria ?
"""
Then embeddings are generated
Scenario: OAI Embeddings compatibility
Given a model bert-bge-small
When an OAI compatible embeddings computation request for:
"""
What is the capital of Spain ?
"""
Then embeddings are generated
Scenario: OAI Embeddings compatibility with multiple inputs
Given a model bert-bge-small
Given a prompt:
"""
In which country Paris is located ?
"""
And a prompt:
"""
Is Madrid the capital of Spain ?
"""
When an OAI compatible embeddings computation request for multiple inputs
Then embeddings are generated
Scenario: Multi users embeddings
Given a prompt:
"""
Write a very long story about AI.
"""
And a prompt:
"""
Write another very long music lyrics.
"""
And a prompt:
"""
Write a very long poem.
"""
And a prompt:
"""
Write a very long joke.
"""
Given concurrent embedding requests
Then the server is busy
Then the server is idle
Then all embeddings are generated
Scenario: Multi users OAI compatibility embeddings
Given a prompt:
"""
In which country Paris is located ?
"""
And a prompt:
"""
Is Madrid the capital of Spain ?
"""
And a prompt:
"""
What is the biggest US city ?
"""
And a prompt:
"""
What is the capital of Bulgaria ?
"""
And a model bert-bge-small
Given concurrent OAI embedding requests
Then the server is busy
Then the server is idle
Then all embeddings are generated
Scenario: All embeddings should be the same
Given 10 fixed prompts
And a model bert-bge-small
Given concurrent OAI embedding requests
Then all embeddings are the same