llama.cpp/ggml/src/ggml-cann/aclnn_ops.cpp

3083 lines
123 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2023-2024 The ggml authors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "aclnn_ops.h"
#include <aclnnop/aclnn_avgpool2d.h>
#include <aclnnop/aclnn_cast.h>
#include <aclnnop/aclnn_constant_pad_nd.h>
#include <aclnnop/aclnn_copy.h>
#include <aclnnop/aclnn_cos.h>
#include <aclnnop/aclnn_exp.h>
#include <aclnnop/aclnn_fill_scalar.h>
#include <aclnnop/aclnn_group_norm.h>
#include <aclnnop/aclnn_index_fill_tensor.h>
#include <aclnnop/aclnn_layer_norm.h>
#include <aclnnop/aclnn_matmul.h>
#include <aclnnop/aclnn_max_pool.h>
#include <aclnnop/aclnn_permute.h>
#include <aclnnop/aclnn_pow_tensor_tensor.h>
#include <aclnnop/aclnn_reduce_sum.h>
#include <aclnnop/aclnn_repeat.h>
#include <aclnnop/aclnn_repeat_interleave.h>
#include <aclnnop/aclnn_roll.h>
#include <aclnnop/aclnn_sin.h>
#include <aclnnop/aclnn_softmax.h>
#include <aclnnop/aclnn_tril.h>
#include <aclnnop/aclnn_triu.h>
#include <aclnnop/aclnn_upsample_nearest_2d.h>
#include <aclnnop/aclnn_weight_quant_batch_matmul_v2.h>
#include <float.h>
#include <cmath>
#include <cstring>
#include <exception>
#include <vector>
#include "kernels/ascendc_kernels.h"
#define GGML_COMMON_DECL_C
#include "../ggml-common.h"
/**
* @brief Repeats elements of a tensor along each dimension according to the
* specified repeat array.
*
* @param ctx The context for the CANN backend operations.
* @param acl_src The source tensor to be repeated.
* @param acl_dst The destination tensor after repeating.
* @param repeat_array The array specifying the number of repetitions along each
* dimension.
*/
static void aclnn_repeat(ggml_backend_cann_context& ctx, aclTensor* acl_src,
aclTensor* acl_dst, int64_t* repeat_array) {
// repeat tensor along each dim with repeat_array
aclIntArray* repeats = aclCreateIntArray(repeat_array, GGML_MAX_DIMS);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnRepeatGetWorkspaceSize(acl_src, repeats, acl_dst,
&workspaceSize, &executor));
if (workspaceSize > 0) {
// Memory from allocator will "free" immediately, and this memory
// will be alloced to other pointers, but it won't access before
// this async task end because all tasks in same stream will execute
// in queue.
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnRepeat(workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclDestroyIntArray(repeats));
}
void ggml_cann_repeat(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
GGML_ASSERT(ggml_can_repeat(src, dst));
aclTensor* acl_src = ggml_cann_create_tensor(src);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
int64_t repeatsArray[] = {dst->ne[3] / src->ne[3], dst->ne[2] / src->ne[2],
dst->ne[1] / src->ne[1], dst->ne[0] / src->ne[0]};
aclnn_repeat(ctx, acl_src, acl_dst, repeatsArray);
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
/**
* @brief Adds two tensors element-wise and stores the result in a destination
* tensor.
*
* This function performs the operation:
* \f[
* dst = acl\_src0 + alpha \times acl\_src1
* \f]
* where alpha is a scalar value and defaults to 1.0f.
*
* @param ctx The context for the CANN backend operations.
* @param acl_src0 The first source tensor.
* @param acl_src1 The second source tensor.
* @param acl_dst The destination tensor where the result will be stored.
*/
static void aclnn_add(ggml_backend_cann_context& ctx, aclTensor* acl_src0,
aclTensor* acl_src1, aclTensor* acl_dst) {
aclScalar* alpha = nullptr;
float alphaValue = 1.0f;
alpha = aclCreateScalar(&alphaValue, aclDataType::ACL_FLOAT);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnAddGetWorkspaceSize(acl_src0, acl_src1, alpha, acl_dst,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnAdd(workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclDestroyScalar(alpha));
}
void ggml_cann_add(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src0 = dst->src[0];
ggml_tensor* src1 = dst->src[1];
GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
aclTensor* acl_src0;
aclTensor* acl_src1;
aclTensor* acl_dst;
// Need bcast
if (!ggml_are_same_shape(src0, src1) && ggml_cann_need_bcast(src0, src1)) {
BCAST_SHAPE(src0, src1)
acl_src0 = ggml_cann_create_tensor(src0, BCAST_PARAM(src0));
acl_src1 = ggml_cann_create_tensor(src1, BCAST_PARAM(src1));
acl_dst = ggml_cann_create_tensor(dst, BCAST_PARAM(src0));
} else {
acl_src0 = ggml_cann_create_tensor(src0);
acl_src1 = ggml_cann_create_tensor(src1);
acl_dst = ggml_cann_create_tensor(dst);
}
aclnn_add(ctx, acl_src0, acl_src1, acl_dst);
ACL_CHECK(aclDestroyTensor(acl_src0));
ACL_CHECK(aclDestroyTensor(acl_src1));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
void ggml_cann_leaky_relu(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
GGML_ASSERT(src->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
aclTensor* acl_src = ggml_cann_create_tensor(src);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
float negative_slope;
memcpy(&negative_slope, dst->op_params, sizeof(float));
aclScalar* acl_negative_slope =
aclCreateScalar(&negative_slope, aclDataType::ACL_FLOAT);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnLeakyReluGetWorkspaceSize(
acl_src, acl_negative_slope, acl_dst, &workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnLeakyRelu(workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclDestroyScalar(acl_negative_slope));
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
/**
* @brief Concatenates a list of tensors along a specified dimension and stores
* the result in a destination tensor.
*
* @param ctx The context for the CANN backend operations.
* @param tensorList The list of tensors to be concatenated.
* @param acl_dst The destination tensor where the concatenated result will be
* stored.
* @param concat_dim The dimension along which the tensors will be concatenated.
*/
static void aclnn_concat(ggml_backend_cann_context& ctx,
aclTensorList* tensorList, aclTensor* acl_dst,
int64_t concat_dim) {
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnCatGetWorkspaceSize(tensorList, concat_dim, acl_dst,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnCat(workspaceAddr, workspaceSize, executor, ctx.stream()));
}
void ggml_cann_concat(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src0 = dst->src[0];
ggml_tensor* src1 = dst->src[1];
aclTensor* acl_src0 = ggml_cann_create_tensor(src0);
aclTensor* acl_src1 = ggml_cann_create_tensor(src1);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
int64_t concat_dim = 1;
aclTensor* tensors[] = {acl_src0, acl_src1};
aclTensorList* tensorList = aclCreateTensorList(tensors, 2);
aclnn_concat(ctx, tensorList, acl_dst, concat_dim);
ACL_CHECK(aclDestroyTensorList(tensorList));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
/**
* @brief Creates a tensor with values starting from `start`, incremented by
* `step`, and ending before `stop`.
*
* This function performs the operation:
* \f[
* \text {out }_{i+1}=\text {out }_i+\text {step}
* \f]
* the range is [start, stop).
*
* @param ctx The context for the CANN backend operations.
* @param acl_dst The destination tensor where the values will be stored.
* @param start The starting value of the range.
* @param stop The ending value of the range (exclusive).
* @param step The step size between consecutive values.
* @param n_elements The number of elements in the destination tensor.
*/
static void aclnn_arange(ggml_backend_cann_context& ctx, aclTensor* acl_dst,
float start, float stop, float step,
int64_t n_elements) {
int64_t steps = (int64_t)std::ceil((stop - start) / step);
GGML_ASSERT(n_elements == steps);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
aclScalar* acl_start = aclCreateScalar(&start, aclDataType::ACL_FLOAT);
aclScalar* acl_end = aclCreateScalar(&stop, aclDataType::ACL_FLOAT);
aclScalar* acl_step = aclCreateScalar(&step, aclDataType::ACL_FLOAT);
ACL_CHECK(aclnnArangeGetWorkspaceSize(acl_start, acl_end, acl_step, acl_dst,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnArange(workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclDestroyScalar(acl_start));
ACL_CHECK(aclDestroyScalar(acl_end));
ACL_CHECK(aclDestroyScalar(acl_step));
}
void ggml_cann_arange(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
GGML_ASSERT(dst->type == GGML_TYPE_F32);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
int64_t n_elements = ggml_nelements(dst);
float start;
float stop;
float step;
memcpy(&start, (float*)dst->op_params + 0, sizeof(float));
memcpy(&stop, (float*)dst->op_params + 1, sizeof(float));
memcpy(&step, (float*)dst->op_params + 2, sizeof(float));
aclnn_arange(ctx, acl_dst, start, stop, step, n_elements);
ACL_CHECK(aclDestroyTensor(acl_dst));
}
void ggml_cann_sqr(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
dst->src[1] = dst->src[0];
ggml_cann_mul_div<aclnnMulGetWorkspaceSize, aclnnMul>(ctx, dst);
}
void ggml_cann_clamp(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
GGML_ASSERT(src->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
float min;
float max;
memcpy(&min, dst->op_params, sizeof(float));
memcpy(&max, (float*)dst->op_params + 1, sizeof(float));
aclTensor* acl_src = ggml_cann_create_tensor(src);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
aclScalar* acl_min = aclCreateScalar(&min, aclDataType::ACL_FLOAT);
aclScalar* acl_max = aclCreateScalar(&max, aclDataType::ACL_FLOAT);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnClampGetWorkspaceSize(acl_src, acl_min, acl_max, acl_dst,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnClamp(workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclDestroyScalar(acl_min));
ACL_CHECK(aclDestroyScalar(acl_max));
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
void ggml_cann_scale(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
// scale factor
float v;
memcpy(&v, dst->op_params, sizeof(float));
aclScalar* scale = aclCreateScalar(&v, aclDataType::ACL_FLOAT);
aclTensor* acl_src = ggml_cann_create_tensor(src);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnMulsGetWorkspaceSize(acl_src, scale, acl_dst, &workspaceSize,
&executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnMuls(workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclDestroyScalar(scale));
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
void ggml_cann_argsort(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
enum ggml_sort_order order = (enum ggml_sort_order)dst->op_params[0];
aclTensor* acl_src = ggml_cann_create_tensor(src);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
ggml_cann_pool_alloc temp_buffer_allocator(
ctx.pool(), ggml_nelements(dst) * sizeof(int64_t));
void* buffer = temp_buffer_allocator.get();
aclTensor* tmp_tensor =
ggml_cann_create_tensor(buffer, ACL_INT64, ggml_type_size(dst->type),
dst->ne, dst->nb, GGML_MAX_DIMS);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnArgsortGetWorkspaceSize(
acl_src, -1, (order == GGML_SORT_ORDER_DESC ? true : false), tmp_tensor,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnArgsort(workspaceAddr, workspaceSize, executor, ctx.stream()));
workspaceSize = 0;
ACL_CHECK(aclnnCastGetWorkspaceSize(tmp_tensor,
ggml_cann_type_mapping(dst->type),
acl_dst, &workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnCast(workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(tmp_tensor));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
void ggml_cann_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
aclTensor* acl_src = ggml_cann_create_tensor(src);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
std::vector<int64_t> normData = {dst->ne[0]};
aclIntArray* norm = aclCreateIntArray(normData.data(), normData.size());
ACL_CHECK(aclnnLayerNormGetWorkspaceSize(acl_src, norm, nullptr, nullptr,
eps, acl_dst, nullptr, nullptr,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnLayerNorm(workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclDestroyIntArray(norm));
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
void ggml_cann_group_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
aclTensor* acl_src = ggml_cann_create_tensor(src);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
int n_groups = dst->op_params[0];
float eps;
memcpy(&eps, dst->op_params + 1, sizeof(float));
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
int64_t N = src->ne[3];
int64_t C = src->ne[2];
int64_t HxW = src->ne[1] * src->ne[0];
size_t type_size = ggml_type_size(src->type);
int64_t ne[] = {n_groups, N};
size_t nb[] = {type_size, type_size * n_groups};
size_t n_bytes = N * n_groups;
ggml_cann_pool_alloc temp_buffer_allocator(ctx.pool(), n_bytes * 2);
void* buffer = temp_buffer_allocator.get();
aclTensor* acl_mean_out = ggml_cann_create_tensor(
buffer, ACL_FLOAT, type_size, ne, nb, ACL_FORMAT_ND);
aclTensor* acl_rstd_out = ggml_cann_create_tensor(
(char*)buffer + n_bytes, ACL_FLOAT, type_size, ne, nb, ACL_FORMAT_ND);
ACL_CHECK(aclnnGroupNormGetWorkspaceSize(
acl_src, nullptr, nullptr, N, C, HxW, n_groups, eps, acl_dst,
acl_mean_out, acl_rstd_out, &workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnGroupNorm(workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
ACL_CHECK(aclDestroyTensor(acl_mean_out));
ACL_CHECK(aclDestroyTensor(acl_rstd_out));
}
void ggml_cann_acc(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src0 = dst->src[0];
ggml_tensor* src1 = dst->src[1];
size_t nb1 = ((int32_t*)dst->op_params)[0];
size_t nb2 = ((int32_t*)dst->op_params)[1];
size_t nb3 = ((int32_t*)dst->op_params)[2];
size_t offset = ((int32_t*)dst->op_params)[3];
bool inplace = (bool)((int32_t*)dst->op_params)[4];
size_t param_nb[] = {ggml_element_size(src0), nb1, nb2, nb3};
aclTensor* acl_dst = ggml_cann_create_tensor(
dst, src1->ne, param_nb, GGML_MAX_DIMS, ACL_FORMAT_ND, offset);
aclTensor* acl_src1 = ggml_cann_create_tensor(src1);
aclScalar* alpha = nullptr;
float alphaValue = 1.0f;
alpha = aclCreateScalar(&alphaValue, aclDataType::ACL_FLOAT);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
if (!inplace) {
size_t cpy_size = ggml_nbytes(dst);
ACL_CHECK(aclrtMemcpyAsync(dst->data, cpy_size, src0->data, cpy_size,
ACL_MEMCPY_DEVICE_TO_DEVICE, ctx.stream()));
aclTensor* acl_src0 = ggml_cann_create_tensor(
src0, src1->ne, src0->nb, GGML_MAX_DIMS, ACL_FORMAT_ND, offset);
ACL_CHECK(aclnnAddGetWorkspaceSize(acl_src0, acl_src1, alpha, acl_dst,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnAdd(workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclDestroyTensor(acl_src0));
} else {
ACL_CHECK(aclnnInplaceAddGetWorkspaceSize(acl_dst, acl_src1, alpha,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnInplaceAdd(workspaceAddr, workspaceSize, executor,
ctx.stream()));
}
ACL_CHECK(aclDestroyTensor(acl_src1));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
void ggml_cann_sum_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
aclTensor* acl_src = ggml_cann_create_tensor(src);
GGML_ASSERT(dst->ne[0] == 1);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
int64_t reduce_dims_host[] = {3};
aclIntArray* reduce_dims = aclCreateIntArray(reduce_dims_host, 1);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnReduceSumGetWorkspaceSize(
acl_src, reduce_dims, true, ggml_cann_type_mapping(src->type), acl_dst,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnReduceSum(workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
void ggml_cann_upsample_nearest2d(ggml_backend_cann_context& ctx,
ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
aclTensor* acl_src =
ggml_cann_create_tensor(src, nullptr, nullptr, 0, ACL_FORMAT_NCHW);
aclTensor* acl_dst =
ggml_cann_create_tensor(dst, nullptr, nullptr, 0, ACL_FORMAT_NCHW);
std::vector<int64_t> output_size{dst->ne[1], dst->ne[0]};
auto output_size_array = aclCreateIntArray(output_size.data(), 2);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnUpsampleNearest2dGetWorkspaceSize(
acl_src, output_size_array, acl_dst, &workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnUpsampleNearest2d(workspaceAddr, workspaceSize, executor,
ctx.stream()));
ACL_CHECK(aclDestroyIntArray(output_size_array));
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
/**
* @brief Pads a tensor with a specified value along each dimension.
*
* This function performs padding of the source tensor `acl_src` and stores the
* result in the destination tensor `acl_dst`. The padding values for each
* dimension are specified in the `paddings` array.
*
* @param ctx The context for the CANN backend operations.
* @param acl_src The source tensor to be padded.
* @param acl_dst The destination tensor where the padded result will be stored.
* @param paddings An array specifying the padding values for each dimension.
* The size of the array should be twice the number of dimensions of the tensor.
* @param value The value to be used for padding. The default value is 0.0.
*/
static void aclnn_pad(ggml_backend_cann_context& ctx, aclTensor* acl_src,
aclTensor* acl_dst, int64_t* paddings,
float value = 0.0f) {
aclIntArray* acl_pad = aclCreateIntArray(paddings, GGML_MAX_DIMS * 2);
aclScalar* acl_value = aclCreateScalar(&value, aclDataType::ACL_FLOAT);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnConstantPadNdGetWorkspaceSize(
acl_src, acl_pad, acl_value, acl_dst, &workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnConstantPadNd(workspaceAddr, workspaceSize, executor,
ctx.stream()));
ACL_CHECK(aclDestroyIntArray(acl_pad));
ACL_CHECK(aclDestroyScalar(acl_value));
}
void ggml_cann_pad(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
aclTensor* acl_src = ggml_cann_create_tensor(src);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
// padding: value in the array means how much distance will be padding.
// the position of elements in the array means which dirction to padding,
// each position means: [dim0.front, dim0.behind, dim1.front, dim1.behind,
// dim2.front, dim2.behind, dim3.front, dim3.behind]
int64_t paddings[] = {
0, dst->ne[0] - src->ne[0], 0, dst->ne[1] - src->ne[1],
0, dst->ne[2] - src->ne[2], 0, dst->ne[3] - src->ne[3]};
aclnn_pad(ctx, acl_src, acl_dst, paddings);
ACL_CHECK(aclDestroyTensor(acl_dst));
ACL_CHECK(aclDestroyTensor(acl_src));
}
/**
* @brief Performs 2D average pooling on the input tensor and stores the result
* in the destination tensor.
*
* This function performs average pooling on the source tensor and stores the
* result in the destination tensor. The pooling parameters (kernel size,
* strides, padding) are specified in the `op_params` of the destination tensor.
*
* @param ctx The context for the CANN backend operations.
* @param dst The destination tensor where the result will be stored. The source
* tensor is referenced by `dst->src[0]`.
*/
static void ggml_cann_avg_pool2d(ggml_backend_cann_context& ctx,
ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
GGML_ASSERT(src->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
aclTensor* acl_src =
ggml_cann_create_tensor(src, nullptr, nullptr, 0, ACL_FORMAT_NCHW);
aclTensor* acl_dst =
ggml_cann_create_tensor(dst, nullptr, nullptr, 0, ACL_FORMAT_NCHW);
const int32_t* opts = (const int32_t*)dst->op_params;
const int k0 = opts[1];
const int k1 = opts[2];
const int s0 = opts[3];
const int s1 = opts[4];
const int p0 = opts[5];
const int p1 = opts[6];
std::vector<int64_t> kernel_dims = {k1, k0};
std::vector<int64_t> stride_dims = {s1, s0};
std::vector<int64_t> padding_avg_dims = {p1, p0}; // (padH, padW)
auto* kernel_size = aclCreateIntArray(kernel_dims.data(), 2);
auto* strides = aclCreateIntArray(stride_dims.data(), 2);
auto* paddings_avg = aclCreateIntArray(padding_avg_dims.data(), 2);
bool ceil_mode = false;
bool count_include_pad = true;
int64_t divisor_override = 0;
int8_t cube_math_type = 0;
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnAvgPool2dGetWorkspaceSize(
acl_src, kernel_size, strides, paddings_avg, ceil_mode,
count_include_pad, divisor_override, cube_math_type, acl_dst,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnAvgPool2d(workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
ACL_CHECK(aclDestroyIntArray(kernel_size));
ACL_CHECK(aclDestroyIntArray(strides));
ACL_CHECK(aclDestroyIntArray(paddings_avg));
}
/**
* @brief Performs 2D max pooling on the input tensor and stores the result in
* the destination tensor.
*
* This function performs max pooling on the source tensor and stores the result
* in the destination tensor. The pooling parameters (kernel size, strides,
* padding) are specified in the `op_params` of the destination tensor.
*
* @param ctx The context for the CANN backend operations.
* @param dst The destination tensor where the result will be stored. The source
* tensor is referenced by `dst->src[0]`.
*/
static void ggml_cann_max_pool2d(ggml_backend_cann_context& ctx,
ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
GGML_ASSERT(src->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
aclTensor* acl_src =
ggml_cann_create_tensor(src, nullptr, nullptr, 0, ACL_FORMAT_NCHW);
aclTensor* acl_dst =
ggml_cann_create_tensor(dst, nullptr, nullptr, 0, ACL_FORMAT_NCHW);
const int32_t* opts = (const int32_t*)dst->op_params;
const int k0 = opts[1];
const int k1 = opts[2];
const int s0 = opts[3];
const int s1 = opts[4];
const int p0 = opts[5];
const int p1 = opts[6];
int64_t temp_ne[] = {src->ne[0] + p0 * 2, src->ne[1] + p1 * 2, src->ne[2],
src->ne[3]};
size_t temp_nb[GGML_MAX_DIMS];
temp_nb[0] = ggml_element_size(src);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
temp_nb[i] = temp_nb[i - 1] * temp_ne[i - 1];
}
ggml_cann_pool_alloc temp_buffer_allocator(
ctx.pool(), ggml_nbytes(src) + p0 * 2 + p1 * 2 * src->nb[1]);
void* buffer = temp_buffer_allocator.get();
aclTensor* tmp_tensor = ggml_cann_create_tensor(
buffer, ACL_FLOAT, ggml_element_size(src), temp_ne, temp_nb,
GGML_MAX_DIMS, ACL_FORMAT_NCHW);
// pad: see padding in ggml_cann_pad()
int64_t paddings[] = {p0, p0, p1, p1, 0, 0, 0, 0};
float value = -FLT_MAX;
aclnn_pad(ctx, acl_src, tmp_tensor, paddings, value);
// max_pool
std::vector<int64_t> kernel_dims = {k1, k0};
std::vector<int64_t> stride_dims = {s1, s0};
// padding_max_dims: [dim0_start, dim0_end, dim1_start, dim1_end]
std::vector<int64_t> padding_max_dims = {0, 0, 0, 0};
std::vector<int64_t> dilation_size = {1, 1};
auto* kernel_size = aclCreateIntArray(kernel_dims.data(), 2);
auto* strides = aclCreateIntArray(stride_dims.data(), 2);
auto* paddings_max = aclCreateIntArray(padding_max_dims.data(), 4);
auto* dilations = aclCreateIntArray(dilation_size.data(), 2);
bool ceil_mode = false;
int64_t auto_pads = 0;
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnMaxPoolGetWorkspaceSize(
tmp_tensor, kernel_size, strides, auto_pads, paddings_max, dilations,
ceil_mode, acl_dst, &workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnMaxPool(workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
ACL_CHECK(aclDestroyTensor(tmp_tensor));
ACL_CHECK(aclDestroyIntArray(kernel_size));
ACL_CHECK(aclDestroyIntArray(strides));
ACL_CHECK(aclDestroyIntArray(paddings_max));
ACL_CHECK(aclDestroyIntArray(dilations));
}
void ggml_cann_pool2d(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
const int32_t* opts = (const int32_t*)dst->op_params;
enum ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
switch (op) {
case GGML_OP_POOL_AVG:
ggml_cann_avg_pool2d(ctx, dst);
break;
case GGML_OP_POOL_MAX:
ggml_cann_max_pool2d(ctx, dst);
break;
case GGML_OP_POOL_COUNT:
GGML_ABORT("fatal error");
break;
}
}
/**
* @brief Copies data from the source tensor to the destination tensor.
*
* This function copies data from the source tensor `acl_src` to the destination
* tensor `acl_dst`.
*
* @param ctx The context for the CANN backend operations.
* @param acl_src The source tensor from which data will be copied.
* @param acl_dst The destination tensor where the data will be copied to.
*/
static void cann_copy(ggml_backend_cann_context& ctx, aclTensor* acl_src,
aclTensor* acl_dst) {
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnInplaceCopyGetWorkspaceSize(acl_dst, acl_src, &workspaceSize,
&executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnInplaceCopy(workspaceAddr, workspaceSize, executor, ctx.stream()));
}
void ggml_cann_dup(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
aclTensor* acl_src = ggml_cann_create_tensor(src);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
ggml_cann_pool_alloc src_extra_allocator(ctx.pool(), sizeof(ggml_tensor));
ggml_cann_pool_alloc dst_extra_allocator(ctx.pool(), sizeof(ggml_tensor));
src->extra = src_extra_allocator.get();
dst->extra = dst_extra_allocator.get();
ACL_CHECK(aclrtMemcpyAsync(src->extra, sizeof(ggml_tensor), src,
sizeof(ggml_tensor), ACL_MEMCPY_HOST_TO_DEVICE,
ctx.stream()));
ACL_CHECK(aclrtMemcpyAsync(dst->extra, sizeof(ggml_tensor), dst,
sizeof(ggml_tensor), ACL_MEMCPY_HOST_TO_DEVICE,
ctx.stream()));
if ((dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32) &&
ggml_are_same_shape(src, dst)) {
cann_copy(ctx, acl_src, acl_dst);
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
return;
}
// TODO: simplify
if (src->type == GGML_TYPE_F16) {
if (dst->type == GGML_TYPE_Q8_0) {
aclrtlaunch_ascendc_quantize_f16_q8_0(
24, ctx.stream(), src->data, dst->data,
((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb,
((ggml_tensor*)dst->extra)->ne);
return;
}
2024-08-05 06:22:30 +02:00
if (dst->type == GGML_TYPE_Q4_0) {
aclrtlaunch_ascendc_quantize_f16_to_q4_0(
24, ctx.stream(), src->data, dst->data,
((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb,
((ggml_tensor*)dst->extra)->ne);
return;
}
if (dst->type == GGML_TYPE_F16) {
if (ggml_are_same_shape(src, dst)) {
cann_copy(ctx, acl_src, acl_dst);
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
return;
}
if (ggml_is_contiguous(dst)) {
const size_t src_type_size = ggml_type_size(src->type);
if (src->nb[0] == src_type_size) {
// src0 is contigous on first dimension, copy by rows
int64_t rows_num = ggml_nrows(src);
aclrtlaunch_ascendc_dup_by_rows_fp16(
rows_num, ctx.stream(), src->data, dst->data,
((ggml_tensor*)src->extra)->ne,
((ggml_tensor*)src->extra)->nb,
((ggml_tensor*)dst->extra)->ne,
((ggml_tensor*)dst->extra)->nb);
return;
}
GGML_ABORT("fatal error");
}
GGML_ABORT("fatal error");
}
if (dst->type == GGML_TYPE_F32) {
if (ggml_are_same_shape(src, dst)) {
cann_copy(ctx, acl_src, acl_dst);
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
return;
}
if (ggml_is_contiguous(dst)) {
const size_t src_type_size = ggml_type_size(src->type);
if (src->nb[0] == src_type_size) {
// src0 is contigous on first dimension, copy by rows
int64_t rows_num = ggml_nrows(src);
aclrtlaunch_ascendc_dup_by_rows_fp16_to_fp32(
rows_num, ctx.stream(), src->data, dst->data,
((ggml_tensor*)src->extra)->ne,
((ggml_tensor*)src->extra)->nb,
((ggml_tensor*)dst->extra)->ne,
((ggml_tensor*)dst->extra)->nb);
return;
}
GGML_ABORT("fatal error");
}
GGML_ABORT("fatal error");
}
// TODO
GGML_ABORT("fatal error");
} else if (src->type == GGML_TYPE_F32) {
// TODO: if (src0->type == dst->type && ne00 == ne0 && nb00 == type_size
// && nb0 == type_size)
if (dst->type == GGML_TYPE_Q8_0) {
aclrtlaunch_ascendc_quantize_f32_q8_0(
24, ctx.stream(), src->data, dst->data,
((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb,
((ggml_tensor*)dst->extra)->ne);
return;
}
2024-08-05 06:22:30 +02:00
if (dst->type == GGML_TYPE_Q4_0) {
aclrtlaunch_ascendc_quantize_f32_to_q4_0(
24, ctx.stream(), src->data, dst->data,
((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb,
((ggml_tensor*)dst->extra)->ne);
return;
}
if (dst->type == GGML_TYPE_F32) {
if (ggml_are_same_shape(src, dst)) {
cann_copy(ctx, acl_src, acl_dst);
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
return;
}
if (ggml_is_contiguous(dst)) {
const size_t src_type_size = ggml_type_size(src->type);
if (src->nb[0] == src_type_size) {
// src0 is contigous on first dimension, copy by rows
int64_t rows_num = ggml_nrows(src);
aclrtlaunch_ascendc_dup_by_rows_fp32(
rows_num, ctx.stream(), src->data, dst->data,
((ggml_tensor*)src->extra)->ne,
((ggml_tensor*)src->extra)->nb,
((ggml_tensor*)dst->extra)->ne,
((ggml_tensor*)dst->extra)->nb);
return;
}
GGML_ABORT("fatal error");
} else {
// TODO: dst not contiguous
GGML_ABORT("fatal error");
}
}
if (dst->type == GGML_TYPE_F16) {
if (ggml_are_same_shape(src, dst)) {
cann_copy(ctx, acl_src, acl_dst);
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
return;
}
if (ggml_is_contiguous(dst)) {
const size_t src_type_size = ggml_type_size(src->type);
if (src->nb[0] == src_type_size) {
// src0 is contigous on first dimension, copy by rows
int64_t rows_num = ggml_nrows(src);
aclrtlaunch_ascendc_dup_by_rows_fp32_to_fp16(
rows_num, ctx.stream(), src->data, dst->data,
((ggml_tensor*)src->extra)->ne,
((ggml_tensor*)src->extra)->nb,
((ggml_tensor*)dst->extra)->ne,
((ggml_tensor*)dst->extra)->nb);
return;
}
GGML_ABORT("fatal error");
}
}
// TODO
GGML_ABORT("fatal error");
} else {
if (ggml_are_same_shape(src, dst)) {
cann_copy(ctx, acl_src, acl_dst);
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
return;
}
GGML_ABORT("fatal error");
}
}
#ifdef __cplusplus
extern "C" {
#endif
aclnnStatus aclnnRmsNormGetWorkspaceSize(const aclTensor* x,
const aclTensor* gamma, double epsilon,
const aclTensor* yOut,
const aclTensor* rstdOout,
uint64_t* workspaceSize,
aclOpExecutor** executor);
aclnnStatus aclnnRmsNorm(void* workspace, uint64_t workspaceSize,
aclOpExecutor* executor, aclrtStream stream);
#ifdef __cplusplus
}
#endif
/**
* @brief Creates an ACL tensor initialized with zeros using a provided buffer.
*
* This function initializes a tensor with zeros using the specified buffer and
* tensor parameters.
*
* @param ctx The context for the CANN backend operations.
* @param buffer The buffer to be used for the tensor data.
* @param n_bytes The size of the buffer in bytes.
* @param ne An array specifying the extents (sizes) of each dimension of the
* tensor.
* @param dims The number of dimensions of the tensor.
* @param type The data type of the tensor.
* @param type_size The size of each element in the tensor data type.
* @return An ACL tensor initialized with zeros.
*/
static aclTensor* aclnn_zero(ggml_backend_cann_context& ctx, void* buffer,
size_t n_bytes, int64_t* ne, int64_t dims,
aclDataType type, size_t type_size) {
size_t nb[GGML_MAX_DIMS];
nb[0] = type_size;
for (int i = 1; i < dims; i++) {
nb[i] = nb[i - 1] * ne[i - 1];
}
ACL_CHECK(aclrtMemsetAsync(buffer, n_bytes, 0, n_bytes, ctx.stream()));
aclTensor* zero =
ggml_cann_create_tensor(buffer, type, type_size, ne, nb, dims);
return zero;
}
/**
* @brief Creates an ACL tensor initialized with ones using a provided buffer.
*
* This function initializes a tensor with ones using the specified buffer and
* tensor parameters.
*
* @param ctx The context for the CANN backend operations.
* @param buffer The buffer to be used for the tensor data.
* @param n_bytes The size of the buffer in bytes.
* @param ne An array specifying the extents (sizes) of each dimension of the
* tensor.
* @param dims The number of dimensions of the tensor.
* @param type The data type of the tensor.
* @param type_size The size of each element in the tensor data type.
* @param value The value to be used for initializing the tensor (default
* is 1.0).
* @return An ACL tensor initialized with ones.
*/
static aclTensor* aclnn_ones(ggml_backend_cann_context& ctx, void* buffer,
size_t n_bytes, int64_t* ne, int64_t dims,
aclDataType type, size_t type_size,
float value = 1.0f) {
aclTensor* acl_tensor =
aclnn_zero(ctx, buffer, n_bytes, ne, dims, type, type_size);
float alpha_host = 1.0f;
aclScalar* alpha = aclCreateScalar(&alpha_host, aclDataType::ACL_FLOAT);
aclScalar* other = aclCreateScalar(&value, aclDataType::ACL_FLOAT);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnInplaceAddsGetWorkspaceSize(acl_tensor, other, alpha,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnInplaceAdds(workspaceAddr, workspaceSize, executor, ctx.stream()));
return acl_tensor;
}
void ggml_cann_rms_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
aclTensor* acl_src = ggml_cann_create_tensor(src);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
GGML_ASSERT(eps > 0.0f);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
size_t one_tensor_n_bytes = src->ne[0] * ggml_element_size(src);
ggml_cann_pool_alloc one_tensor_allocator(ctx.pool(), one_tensor_n_bytes);
aclTensor* acl_gamma = aclnn_ones(
ctx, one_tensor_allocator.get(), one_tensor_n_bytes, src->ne, 1,
ggml_cann_type_mapping(src->type), ggml_element_size(src));
size_t zero_tensor_n_bytes =
src->ne[1] * src->ne[2] * src->ne[3] * ggml_element_size(src);
ggml_cann_pool_alloc zero_tensor_allocator(ctx.pool(), zero_tensor_n_bytes);
aclTensor* acl_rstd =
aclnn_zero(ctx, zero_tensor_allocator.get(), zero_tensor_n_bytes,
src->ne, GGML_MAX_DIMS, ggml_cann_type_mapping(src->type),
ggml_element_size(src));
ACL_CHECK(aclnnRmsNormGetWorkspaceSize(
acl_src, acl_gamma, eps, acl_dst, acl_rstd, &workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnRmsNorm(workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
ACL_CHECK(aclDestroyTensor(acl_gamma));
ACL_CHECK(aclDestroyTensor(acl_rstd));
}
// TODO: performace is low.
void ggml_cann_diag_mask(ggml_backend_cann_context& ctx, ggml_tensor* dst,
float value) {
ggml_tensor* src = dst->src[0];
aclTensor* acl_src = ggml_cann_create_tensor(src);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
const int n_past = ((int32_t*)dst->op_params)[0];
size_t one_tensor_n_bytes = src->ne[0] * src->ne[1] * src->ne[2] *
src->ne[3] * ggml_element_size(src);
ggml_cann_pool_alloc one_tensor_allocator(ctx.pool(), one_tensor_n_bytes);
aclTensor* mask_tensor =
aclnn_ones(ctx, one_tensor_allocator.get(), one_tensor_n_bytes, src->ne,
GGML_MAX_DIMS, ggml_cann_type_mapping(src->type),
ggml_element_size(src), value);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnInplaceTriuGetWorkspaceSize(mask_tensor, n_past + 1,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnInplaceTriu(workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclnnTrilGetWorkspaceSize(acl_src, n_past + 1, acl_dst,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnTril(workspaceAddr, workspaceSize, executor, ctx.stream()));
aclScalar* alpha = nullptr;
float alphaValue = 1.0f;
alpha = aclCreateScalar(&alphaValue, aclDataType::ACL_FLOAT);
ACL_CHECK(aclnnInplaceAddGetWorkspaceSize(acl_dst, mask_tensor, alpha,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnInplaceAdd(workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclDestroyScalar(alpha));
ACL_CHECK(aclDestroyTensor(mask_tensor));
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
/**
* @brief Casts the data type of a source tensor to a destination tensor.
*
* This function casts the data type of the source tensor `acl_src` to the
* specified data type `cast_data_type` and stores the result in the destination
* tensor `acl_dst`.
*
* @param ctx The context for the CANN backend operations.
* @param acl_src The source tensor whose data type will be casted.
* @param acl_dst The destination tensor where the casted result will be stored.
* @param cast_data_type The target data type to which the source tensor will be
* casted.
*/
static void aclnn_cast(ggml_backend_cann_context& ctx, aclTensor* acl_src,
aclTensor* acl_dst, aclDataType cast_data_type) {
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnCastGetWorkspaceSize(acl_src, cast_data_type, acl_dst,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnCast(workspaceAddr, workspaceSize, executor, ctx.stream()));
}
/**
* @brief Permutes the dimensions of a tensor according to a specified order.
*
* This function permutes the dimensions of the source tensor `acl_src`
* according to the order specified in the `new_dim` array and stores the result
* in the destination tensor `acl_dst`.
*
* @param ctx The context for the CANN backend operations.
* @param acl_src The source tensor whose dimensions will be permuted.
* @param acl_dst The destination tensor where the permuted result will be
* stored.
* @param new_dim An array specifying the new order of dimensions for the
* tensor.
* @param dims The number of dimensions in the tensor.
*/
static void aclnn_permute(ggml_backend_cann_context& ctx, aclTensor* acl_src,
aclTensor* acl_dst, int64_t* new_dim, uint64_t dims) {
aclIntArray* acl_dims = aclCreateIntArray(new_dim, dims);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnPermuteGetWorkspaceSize(acl_src, acl_dims, acl_dst,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnPermute(workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclDestroyIntArray(acl_dims));
}
#ifdef __cplusplus
extern "C" {
#endif
aclnnStatus aclnnIm2colGetWorkspaceSize(const aclTensor* self,
const aclIntArray* kernelSize,
const aclIntArray* dilation,
const aclIntArray* padding,
const aclIntArray* stride,
aclTensor* out, uint64_t* workspaceSize,
aclOpExecutor** executor);
aclnnStatus aclnnIm2col(void* workspace, uint64_t workspaceSize,
aclOpExecutor* executor, aclrtStream stream);
#ifdef __cplusplus
}
#endif
static void ggml_cann_im2col_2d_post_process(ggml_backend_cann_context& ctx,
ggml_tensor* dst,
ggml_tensor* src1,
aclTensor* tmp_cast_tensor,
aclTensor* tmp_im2col_tensor) {
// Permute: [N, IC * KH * KW, OW * OH] -> [N, OW * OH, IC * KH * KW]
int64_t dst_ne[] = {dst->ne[0], dst->ne[1] * dst->ne[2], dst->ne[3]};
size_t dst_nb[] = {dst->nb[0], dst->nb[1], dst->nb[3]};
aclTensor* acl_dst =
ggml_cann_create_tensor(dst, dst_ne, dst_nb, GGML_MAX_DIMS - 1);
int64_t permute_dim[] = {0, 2, 1};
if (src1->type != dst->type) {
aclnn_permute(ctx, tmp_cast_tensor, acl_dst, permute_dim, 3);
} else {
aclnn_permute(ctx, tmp_im2col_tensor, acl_dst, permute_dim, 3);
}
// release
ACL_CHECK(aclDestroyTensor(acl_dst));
}
static void ggml_cann_im2col_1d_post_process(
ggml_backend_cann_context& ctx, ggml_tensor* dst, ggml_tensor* src1,
aclTensor* tmp_cast_tensor, aclTensor* tmp_im2col_tensor,
const std::vector<int64_t>& im2col_op_params) {
// get params
const int64_t KH = im2col_op_params[0];
const int64_t KW = im2col_op_params[1];
const int64_t IW = im2col_op_params[2];
const int64_t IC = im2col_op_params[3];
const int64_t N = im2col_op_params[4];
const int64_t OH = im2col_op_params[5];
const int64_t OW = im2col_op_params[6];
const int64_t s0 = im2col_op_params[7];
const int64_t p0 = im2col_op_params[8];
const int64_t d0 = im2col_op_params[9];
const int64_t n_bytes_factor = im2col_op_params[10];
// Permute: [N, IC * KH * KW, OW * OH] ->
// [N, OW * OH * n_bytes_factor, IC * KH * KW]
aclTensor* tmp_permute_tensor = nullptr;
ggml_cann_pool_alloc tmp_permute_allocator(ctx.pool());
tmp_permute_allocator.alloc(ggml_nbytes(dst) * n_bytes_factor);
void* tmp_permute_buffer = tmp_permute_allocator.get();
int64_t tmp_permute_ne[] = {IC * KH * KW, OW * OH * n_bytes_factor, N};
size_t tmp_permute_nb[GGML_MAX_DIMS - 1];
tmp_permute_nb[0] = ggml_type_size(dst->type);
for (int i = 1; i < GGML_MAX_DIMS - 1; i++) {
tmp_permute_nb[i] = tmp_permute_nb[i - 1] * tmp_permute_ne[i - 1];
}
tmp_permute_tensor = ggml_cann_create_tensor(
tmp_permute_buffer, ggml_cann_type_mapping(dst->type),
ggml_type_size(dst->type), tmp_permute_ne, tmp_permute_nb,
GGML_MAX_DIMS - 1, ACL_FORMAT_ND);
int64_t permute_dim[] = {0, 2, 1};
if (src1->type != dst->type) {
aclnn_permute(ctx, tmp_cast_tensor, tmp_permute_tensor, permute_dim, 3);
} else {
aclnn_permute(ctx, tmp_im2col_tensor, tmp_permute_tensor, permute_dim,
3);
}
// number of times the kernel moves in W dimension
const int n_step_w = (IW + 2 * p0 - d0 * (KW - 1) - 1) / s0 + 1;
size_t offset;
void *cur_dst_buffer = dst->data, *cur_permute_buffer = tmp_permute_buffer;
// memory copy with offset to restore 1D im2col from 2d
if (IC > 1) {
offset = IC * KH * KW * n_step_w * ggml_type_size(dst->type);
size_t size_cpy = KH * KW * ggml_type_size(dst->type);
for (int c = 0; c < IC; c++) {
cur_permute_buffer = (char*)tmp_permute_buffer + offset +
KH * KW * c * ggml_type_size(dst->type);
cur_dst_buffer = (char*)dst->data +
c * KH * KW * n_step_w * ggml_type_size(dst->type);
for (int i = 0; i < n_step_w; i++) {
ACL_CHECK(aclrtMemcpyAsync(
cur_dst_buffer, size_cpy, cur_permute_buffer, size_cpy,
ACL_MEMCPY_DEVICE_TO_DEVICE, ctx.stream()));
cur_dst_buffer =
(char*)cur_dst_buffer + KH * KW * ggml_type_size(dst->type);
cur_permute_buffer = (char*)cur_permute_buffer +
KH * KW * IC * ggml_type_size(dst->type);
}
}
} else {
offset = KH * KW * n_step_w *
ggml_type_size(dst->type); // equal to ggml_nbytes(dst)
ACL_CHECK(aclrtMemcpyAsync(dst->data, offset,
(char*)tmp_permute_buffer + offset, offset,
ACL_MEMCPY_DEVICE_TO_DEVICE, ctx.stream()));
}
// release
ACL_CHECK(aclDestroyTensor(tmp_permute_tensor));
}
void ggml_cann_im2col(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src0 = dst->src[0]; // kernel
ggml_tensor* src1 = dst->src[1]; // input
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
GGML_TENSOR_BINARY_OP_LOCALS;
// aclnnIm2col only works on 2D. set s1, p1, d1 to 1 to perform 2D
// im2col and do post-processing to restore it to 1D.
const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
const int32_t s1 = is_2D ? ((const int32_t*)(dst->op_params))[1] : 1;
const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
const int32_t p1 = is_2D ? ((const int32_t*)(dst->op_params))[3] : 1;
const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
const int32_t d1 = is_2D ? ((const int32_t*)(dst->op_params))[5] : 1;
const int64_t N = ne13;
const int64_t IC = ne12;
const int64_t KH = ne01;
const int64_t KW = ne00;
const int64_t IW = ne10;
const int64_t OH = is_2D ? ne2 : 1;
const int64_t OW = ne1;
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb10 == sizeof(float));
// memory allocated increased to 3x when is_2D == false
const int64_t n_bytes_factor = is_2D ? 1 : 3;
// im2col: [N,C,H,W] -> [N, IC * KH * KW, OW * OH * n_bytes_factor]
aclTensor* acl_src1 = ggml_cann_create_tensor(src1);
int64_t tmp_im2col_ne[] = {OW * OH * n_bytes_factor, IC * KH * KW, N};
size_t tmp_im2col_nb[GGML_MAX_DIMS - 1];
tmp_im2col_nb[0] = ggml_type_size(src1->type);
for (int i = 1; i < GGML_MAX_DIMS - 1; i++) {
tmp_im2col_nb[i] = tmp_im2col_nb[i - 1] * tmp_im2col_ne[i - 1];
}
// Calculate im2col.
// If dst is f16, tmp_buffer is f32, we need alloc src.typesize *
// dst.elemcount.
ggml_cann_pool_alloc im2col_allocator(
ctx.pool(),
ggml_nelements(dst) * ggml_element_size(src1) * n_bytes_factor);
void* tmp_im2col_buffer = im2col_allocator.get();
aclTensor* tmp_im2col_tensor = ggml_cann_create_tensor(
tmp_im2col_buffer, ggml_cann_type_mapping(src1->type),
ggml_type_size(src1->type), tmp_im2col_ne, tmp_im2col_nb,
GGML_MAX_DIMS - 1, ACL_FORMAT_ND);
std::vector<int64_t> kernel_dims = {KH, KW};
std::vector<int64_t> dilation_size = {d1, d0};
std::vector<int64_t> padding_dims = {p1, p0};
std::vector<int64_t> stride_dims = {s1, s0};
auto* kernel_size = aclCreateIntArray(kernel_dims.data(), 2);
auto* dilations = aclCreateIntArray(dilation_size.data(), 2);
auto* paddings = aclCreateIntArray(padding_dims.data(), 2);
auto* strides = aclCreateIntArray(stride_dims.data(), 2);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnIm2colGetWorkspaceSize(acl_src1, kernel_size, dilations,
paddings, strides, tmp_im2col_tensor,
&workspaceSize, &executor));
ggml_cann_pool_alloc workspace_allocator(ctx.pool());
if (workspaceSize > 0) {
workspace_allocator.alloc(workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnIm2col(workspaceAddr, workspaceSize, executor, ctx.stream()));
// Cast if dst is f16.
aclTensor* tmp_cast_tensor = nullptr;
ggml_cann_pool_alloc tmp_cast_allocator(ctx.pool());
void* tmp_cast_buffer = nullptr;
if (src1->type != dst->type) {
tmp_cast_allocator.alloc(ggml_nbytes(dst) * n_bytes_factor);
tmp_cast_buffer = tmp_cast_allocator.get();
size_t temp_cast_nb[GGML_MAX_DIMS - 1];
temp_cast_nb[0] = ggml_type_size(dst->type);
for (int i = 1; i < GGML_MAX_DIMS - 1; i++) {
temp_cast_nb[i] = temp_cast_nb[i - 1] * tmp_im2col_ne[i - 1];
}
tmp_cast_tensor = ggml_cann_create_tensor(
tmp_cast_buffer, ggml_cann_type_mapping(dst->type),
ggml_type_size(dst->type), tmp_im2col_ne, temp_cast_nb,
GGML_MAX_DIMS - 1, ACL_FORMAT_ND);
aclnn_cast(ctx, tmp_im2col_tensor, tmp_cast_tensor,
ggml_cann_type_mapping(dst->type));
}
// post-processing
if (is_2D) {
ggml_cann_im2col_2d_post_process(ctx, dst, src1, tmp_cast_tensor,
tmp_im2col_tensor);
} else {
std::vector<int64_t> im2col_op_params = {
KH, KW, IW, IC, N, OH, OW, s0, p0, d0, n_bytes_factor};
ggml_cann_im2col_1d_post_process(ctx, dst, src1, tmp_cast_tensor,
tmp_im2col_tensor, im2col_op_params);
}
// release
ACL_CHECK(aclDestroyTensor(acl_src1));
ACL_CHECK(aclDestroyTensor(tmp_im2col_tensor));
ACL_CHECK(aclDestroyTensor(tmp_cast_tensor));
ACL_CHECK(aclDestroyIntArray(kernel_size));
ACL_CHECK(aclDestroyIntArray(dilations));
ACL_CHECK(aclDestroyIntArray(paddings));
ACL_CHECK(aclDestroyIntArray(strides));
}
/**
* @brief Applies element-wise exponential function to the elements of a tensor.
*
* This function computes the exponential of each element in the source tensor
* `acl_src` and stores the result back into the same tensor.
* The operation is defined as:
* \f[
* \text {acl_src }_i=e^{acl\_src_i}
* \f]
*
* @param ctx The context for the CANN backend operations.
* @param acl_src The tensor on which the exponential function will be applied.
*/
static void aclnn_exp(ggml_backend_cann_context& ctx, aclTensor* acl_src) {
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(
aclnnInplaceExpGetWorkspaceSize(acl_src, &workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnInplaceExp(workspaceAddr, workspaceSize, executor, ctx.stream()));
}
/**
* @brief Multiplies elements of a tensor by a scalar value, optionally
* in-place.
*
* This function multiplies each element of the source tensor `acl_src` by the
* scalar `scale` and stores the result in the destination tensor `acl_dst`. If
* `inplace` is true, `acl_dst` will not be used and the operation is performed
* in-place on `acl_src`.
* The operation is defined as:
* \f[
* \text {acl_dst }_i=\text {acl_src }_i \times \text {scale}
* \f]
*
* @param ctx The context for the CANN backend operations.
* @param acl_src The source tensor whose elements will be multiplied.
* @param scale The scalar value by which each element of `acl_src` will be
* multiplied.
* @param acl_dst The destination tensor where the result will be stored if
* `inplace` is false.
* @param inplace Flag indicating whether to perform the operation in-place on
* `acl_src`.
*/
static void aclnn_muls(ggml_backend_cann_context& ctx, aclTensor* acl_src,
float scale, aclTensor* acl_dst, bool inplace) {
aclScalar* acl_scale = aclCreateScalar(&scale, aclDataType::ACL_FLOAT);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
if (inplace) {
ACL_CHECK(aclnnInplaceMulsGetWorkspaceSize(acl_src, acl_scale,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnInplaceMuls(workspaceAddr, workspaceSize, executor,
ctx.stream()));
} else {
ACL_CHECK(aclnnMulsGetWorkspaceSize(acl_src, acl_scale, acl_dst,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnMuls(workspaceAddr, workspaceSize, executor, ctx.stream()));
}
ACL_CHECK(aclDestroyScalar(acl_scale));
}
/**
* @brief Performs an in-place element-wise multiplication of two tensors.
*
* This function performs an element-wise multiplication of the tensors
* `acl_src` and `acl_other` and stores the result in `acl_src`.
* The operation is defined as:
* \f[
* \text {acl_src }_i=\text {acl_src }_i \times \text {acl_other }_i
* \f]
*
* @param ctx The context for the CANN backend operations.
* @param acl_src The source tensor where the multiplication result will be
* stored.
* @param acl_other The tensor whose elements will be multiplied with `acl_src`.
*/
static void aclnn_inplace_mul(ggml_backend_cann_context& ctx,
aclTensor* acl_src, aclTensor* acl_other) {
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnInplaceMulGetWorkspaceSize(acl_src, acl_other,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnInplaceMul(workspaceAddr, workspaceSize, executor, ctx.stream()));
}
/**
* @brief Performs element-wise multiplication of two tensors and stores the
* result in a destination tensor.
*
* This function performs element-wise multiplication of the tensors `acl_src`
* and `acl_other` and stores the result in the destination tensor `acl_dst`.
* The operation is defined as:
* \f[
* \text {acl_dst }_i=\text {acl_src }_i \times \text {acl_other }_i
* \f]
*
* @param ctx The context for the CANN backend operations.
* @param acl_src The first tensor for element-wise multiplication.
* @param acl_other The second tensor for element-wise multiplication.
* @param acl_dst The destination tensor where the result will be stored.
*/
static void aclnn_mul(ggml_backend_cann_context& ctx, aclTensor* acl_src,
aclTensor* acl_other, aclTensor* acl_dst) {
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnMulGetWorkspaceSize(acl_src, acl_other, acl_dst,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnMul(workspaceAddr, workspaceSize, executor, ctx.stream()));
}
/**
* @brief Applies element-wise cosine function to the elements of a tensor.
*
* This function computes the cosine of each element in the source tensor
* `acl_src` and stores the result in the destination tensor `acl_dst`. The
* operation is defined as: \f[ \text {acl_dst }_i=\cos \left(\text {acl_src
* }_i\right) \f]
*
* @param ctx The context for the CANN backend operations.
* @param acl_src The source tensor on which the cosine function will be
* applied.
* @param acl_dst The destination tensor where the cosine results will be
* stored.
*/
static void aclnn_cos(ggml_backend_cann_context& ctx, aclTensor* acl_src,
aclTensor* acl_dst) {
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(
aclnnCosGetWorkspaceSize(acl_src, acl_dst, &workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnCos(workspaceAddr, workspaceSize, executor, ctx.stream()));
}
/**
* @brief Applies element-wise sine function to the elements of a tensor.
*
* This function computes the sine of each element in the source tensor
`acl_src`
* and stores the result in the destination tensor `acl_dst`.
* The operation is defined as:
* \f[
* \text {acl_dst }_i=\sin \left(\text {acl_src }_i\right)
* \f]
* @param ctx The context for the CANN backend operations.
* @param acl_src The source tensor on which the sine function will be applied.
* @param acl_dst The destination tensor where the sine results will be stored.
*/
static void aclnn_sin(ggml_backend_cann_context& ctx, aclTensor* acl_src,
aclTensor* acl_dst) {
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(
aclnnSinGetWorkspaceSize(acl_src, acl_dst, &workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnSin(workspaceAddr, workspaceSize, executor, ctx.stream()));
}
void ggml_cann_timestep_embedding(ggml_backend_cann_context& ctx,
ggml_tensor* dst) {
const ggml_tensor* src = dst->src[0];
GGML_ASSERT(src->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
const int dim = dst->op_params[0];
const int max_period = dst->op_params[1];
int half = dim / 2;
aclTensor* acl_src = ggml_cann_create_tensor(src);
// arange: [0, ..., half)
float start = 0;
float stop = half;
float step = 1;
int64_t n_elements_arange = half;
int64_t tmp_arange_ne[] = {half};
size_t tmp_arange_nb[] = {sizeof(dst->type)};
ggml_cann_pool_alloc arange_allocator(ctx.pool(), half * sizeof(dst->type));
void* tmp_arange_buffer = arange_allocator.get();
aclTensor* tmp_arange_tensor = ggml_cann_create_tensor(
tmp_arange_buffer, ggml_cann_type_mapping(dst->type),
ggml_type_size(dst->type), tmp_arange_ne, tmp_arange_nb,
GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
aclnn_arange(ctx, tmp_arange_tensor, start, stop, step, n_elements_arange);
// freq
float freq_param = -logf(max_period) / half;
bool inplace = true;
aclnn_muls(ctx, tmp_arange_tensor, freq_param, nullptr, inplace);
aclnn_exp(ctx, tmp_arange_tensor);
// permute: src [0,1,2,3]->[0,1,3,2]
int64_t tmp_permute_ne[] = {src->ne[1], src->ne[0], src->ne[2], src->ne[3]};
size_t tmp_permute_nb[GGML_MAX_DIMS];
tmp_permute_nb[0] = ggml_type_size(src->type);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
tmp_permute_nb[i] = tmp_permute_nb[i - 1] * tmp_permute_ne[i - 1];
}
ggml_cann_pool_alloc permute_allocator(ctx.pool(), ggml_nbytes(src));
void* tmp_permute_buffer = permute_allocator.get();
aclTensor* tmp_permute_tenosr = ggml_cann_create_tensor(
tmp_permute_buffer, ggml_cann_type_mapping(src->type),
ggml_type_size(src->type), tmp_permute_ne, tmp_permute_nb,
GGML_MAX_DIMS, ACL_FORMAT_ND);
int64_t permute_dim[] = {0, 1, 3, 2};
int64_t num_dims = 4;
aclnn_permute(ctx, acl_src, tmp_permute_tenosr, permute_dim, num_dims);
// timestep * freq
int64_t tmp_mul_ne[] = {src->ne[1] * half, src->ne[0], src->ne[2],
src->ne[3]};
size_t tmp_mul_nb[GGML_MAX_DIMS];
tmp_mul_nb[0] = ggml_type_size(src->type);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
tmp_mul_nb[i] = tmp_mul_nb[i - 1] * tmp_mul_ne[i - 1];
}
int mul_nelements =
src->ne[1] * half * src->ne[0] * src->ne[2] * src->ne[3];
ggml_cann_pool_alloc mul_allocator(
ctx.pool(), mul_nelements * ggml_type_size(src->type));
void* tmp_mul_buffer = mul_allocator.get();
aclTensor* tmp_mul_tensor = ggml_cann_create_tensor(
tmp_mul_buffer, ggml_cann_type_mapping(src->type),
ggml_type_size(src->type), tmp_mul_ne, tmp_mul_nb, GGML_MAX_DIMS,
ACL_FORMAT_ND);
aclnn_mul(ctx, tmp_permute_tenosr, tmp_arange_tensor, tmp_mul_tensor);
// cos
ggml_cann_pool_alloc cos_allocator(
ctx.pool(), mul_nelements * ggml_type_size(src->type));
void* tmp_cos_buffer = cos_allocator.get();
aclTensor* tmp_cos_tensor = ggml_cann_create_tensor(
tmp_cos_buffer, ggml_cann_type_mapping(dst->type),
ggml_type_size(dst->type), tmp_mul_ne, tmp_mul_nb, GGML_MAX_DIMS,
ACL_FORMAT_ND);
aclnn_cos(ctx, tmp_mul_tensor, tmp_cos_tensor);
// sin
ggml_cann_pool_alloc sin_allocator(
ctx.pool(), mul_nelements * ggml_type_size(src->type));
void* tmp_sin_buffer = sin_allocator.get();
aclTensor* tmp_sin_tensor = ggml_cann_create_tensor(
tmp_sin_buffer, ggml_cann_type_mapping(dst->type),
ggml_type_size(dst->type), tmp_mul_ne, tmp_mul_nb, GGML_MAX_DIMS,
ACL_FORMAT_ND);
aclnn_sin(ctx, tmp_mul_tensor, tmp_sin_tensor);
// concat
int64_t concat_dim = 3;
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
aclTensor* tensors[] = {tmp_cos_tensor, tmp_sin_tensor};
aclTensorList* tensorList = aclCreateTensorList(tensors, 2);
aclnn_concat(ctx, tensorList, acl_dst, concat_dim);
// release
// segmentation fault when delete both tensorList and his elements.
ACL_CHECK(aclDestroyTensorList(tensorList));
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(tmp_arange_tensor));
ACL_CHECK(aclDestroyTensor(tmp_permute_tenosr));
ACL_CHECK(aclDestroyTensor(tmp_mul_tensor));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
/**
* @brief Fills a tensor with a scalar value.
*
* This function fills the destination tensor `acl_dst` with the scalar value
* `scalar`.
*
* @param ctx The context for the CANN backend operations.
* @param scalar The scalar value used to fill the tensor.
* @param acl_dst The destination tensor to be filled with the scalar value.
*/
static void aclnn_fill_scalar(ggml_backend_cann_context& ctx, float scalar,
aclTensor* acl_dst) {
auto acl_scalar = aclCreateScalar(&scalar, aclDataType::ACL_FLOAT);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnInplaceFillScalarGetWorkspaceSize(
acl_dst, acl_scalar, &workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnInplaceFillScalar(workspaceAddr, workspaceSize, executor,
ctx.stream()));
ACL_CHECK(aclDestroyScalar(acl_scalar));
}
/**
* @brief Raises each element of a tensor to the power of the corresponding
* element in another tensor.
*
* This function computes the element-wise power of the destination tensor
* `acl_dst` raised to the power of the exponent tensor `acl_exp`.
* The operation is defined as:
* \f[
* \text {acl_dst }_i=acl\_dst_i^{\text {acl_exp }_i}
* \f]
*
* @param ctx The context for the CANN backend operations.
* @param acl_dst The destination tensor, which also serves as the base tensor.
* @param acl_exp The exponent tensor, each element of which is used to raise
* the corresponding element in the destination tensor.
*/
static void aclnn_pow_tensor_tensor(ggml_backend_cann_context& ctx,
aclTensor* acl_dst, aclTensor* acl_exp) {
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnInplacePowTensorTensorGetWorkspaceSize(
acl_dst, acl_exp, &workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnInplacePowTensorTensor(workspaceAddr, workspaceSize,
executor, ctx.stream()));
}
/**
* @brief Applies the Alibi (Attention with Linear Biases) mechanism to the
* @details This function implements the Alibi mechanism, which introduces
* learnable biases into the attention scores to simulate relative
* position encoding without the need for explicit positional
* embeddings.
*
* @param ctx The backend CANN context for executing operations.
* @param acl_src The source tensor representing the query or key.
* @param acl_position The position tensor containing relative positions.
* @param acl_dst The destination tensor where the result will be stored.
* @param n_head The number of attention heads.
* @param src_ne The dimensions of the source tensor.
* @param src_nb0 The byte size of the first dimension of the source
tensor.
* @param max_bias The maximum bias value used in the Alibi mechanism.
* @param dst The destination tensor object for additional metadata.
*
* The function performs the following steps:
* 1. Calculates the logarithm floor of the number of heads to determine the
base for bias calculation.
* 2. Initializes arrays with arithmetic sequences and fills them with bias
values.
* 3. Computes the bias tensor based on the calculated biases and arithmetic
sequences.
* 4. Reshapes the bias tensor to match the dimensions of the input tensors.
* 5. Multiplies the position tensor by the bias tensor.
* 6. Adds the result of the multiplication to the source tensor to produce the
final output.
*/
static void aclnn_alibi(ggml_backend_cann_context& ctx, aclTensor* acl_src,
aclTensor* acl_position, aclTensor* acl_dst,
const int n_head, int64_t* src_ne, const size_t src_nb0,
float max_bias, ggml_tensor* dst) {
const int64_t ne2_ne3 = src_ne[2] * src_ne[3];
GGML_ASSERT(src_nb0 == sizeof(float));
GGML_ASSERT(n_head == src_ne[2]);
const int n_heads_log2_floor = 1u << (uint32_t)floor(log2(n_head));
float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
// init arange
ggml_cann_pool_alloc arange_allocator(ctx.pool(),
ne2_ne3 * ggml_type_size(dst->type));
void* tmp_arange_buffer = arange_allocator.get();
// arange1: [1, ..., n_heads_log2_floor+1)
float start = 1;
float stop = n_heads_log2_floor + 1;
float step = 1;
int64_t n_elements_arange = n_heads_log2_floor;
int64_t tmp_arange1_ne[] = {n_heads_log2_floor};
size_t tmp_arange1_nb[] = {sizeof(dst->type)};
aclTensor* tmp_arange1_tensor = ggml_cann_create_tensor(
tmp_arange_buffer, ggml_cann_type_mapping(dst->type),
ggml_type_size(dst->type), tmp_arange1_ne, tmp_arange1_nb,
GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
aclnn_arange(ctx, tmp_arange1_tensor, start, stop, step, n_elements_arange);
aclTensor* tmp_arange2_tensor = nullptr;
if (n_heads_log2_floor < ne2_ne3) {
// arange2: [1, ..., 2 * (k - n_heads_log2_floor) + 1)
start = 1;
stop = 2 * (ne2_ne3 - n_heads_log2_floor) + 1;
step = 2;
n_elements_arange = ne2_ne3 - n_heads_log2_floor;
int64_t tmp_arange2_ne[] = {ne2_ne3 - n_heads_log2_floor};
size_t tmp_arange2_nb[] = {sizeof(dst->type)};
aclTensor* tmp_arange2_tensor = ggml_cann_create_tensor(
(char*)tmp_arange_buffer +
n_heads_log2_floor * ggml_type_size(dst->type),
ggml_cann_type_mapping(dst->type), ggml_type_size(dst->type),
tmp_arange2_ne, tmp_arange2_nb, GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
aclnn_arange(ctx, tmp_arange2_tensor, start, stop, step,
n_elements_arange);
}
// init mk_base
ggml_cann_pool_alloc mk_base_allocator(ctx.pool(),
ne2_ne3 * ggml_type_size(dst->type));
void* tmp_mk_base_buffer = mk_base_allocator.get();
int64_t tmp_mk_base1_ne[] = {n_heads_log2_floor};
size_t tmp_mk_base1_nb[] = {sizeof(dst->type)};
aclTensor* tmp_mk_base1_tensor = ggml_cann_create_tensor(
tmp_mk_base_buffer, ggml_cann_type_mapping(dst->type),
ggml_type_size(dst->type), tmp_mk_base1_ne, tmp_mk_base1_nb,
GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
aclnn_fill_scalar(ctx, m0, tmp_mk_base1_tensor);
aclTensor* tmp_mk_base2_tensor = nullptr;
if (n_heads_log2_floor < ne2_ne3) {
int64_t tmp_mk_base2_ne[] = {ne2_ne3 - n_heads_log2_floor};
size_t tmp_mk_base2_nb[] = {sizeof(dst->type)};
aclTensor* tmp_mk_base2_tensor = ggml_cann_create_tensor(
(char*)tmp_mk_base_buffer +
n_heads_log2_floor * ggml_type_size(dst->type),
ggml_cann_type_mapping(dst->type), ggml_type_size(dst->type),
tmp_mk_base2_ne, tmp_mk_base2_nb, GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
aclnn_fill_scalar(ctx, m1, tmp_mk_base2_tensor);
}
// init mk
int64_t tmp_mk_base_ne[] = {ne2_ne3};
size_t tmp_mk_base_nb[] = {sizeof(dst->type)};
aclTensor* tmp_mk_base_tensor = ggml_cann_create_tensor(
tmp_mk_base_buffer, ggml_cann_type_mapping(dst->type),
ggml_type_size(dst->type), tmp_mk_base_ne, tmp_mk_base_nb,
GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
aclTensor* tmp_arange_tensor = ggml_cann_create_tensor(
tmp_arange_buffer, ggml_cann_type_mapping(dst->type),
ggml_type_size(dst->type), tmp_mk_base_ne, tmp_mk_base_nb,
GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
aclnn_pow_tensor_tensor(ctx, tmp_mk_base_tensor, tmp_arange_tensor);
// reshape mk
int64_t tmp_mk_ne[] = {1, 1, src_ne[2], src_ne[3]};
size_t tmp_mk_nb[GGML_MAX_DIMS];
tmp_mk_nb[0] = ggml_type_size(dst->type);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
tmp_mk_nb[i] = tmp_mk_nb[i - 1] * tmp_mk_ne[i - 1];
}
aclTensor* tmp_mk_tensor = ggml_cann_create_tensor(
tmp_mk_base_buffer, ggml_cann_type_mapping(dst->type),
ggml_type_size(dst->type), tmp_mk_ne, tmp_mk_nb, GGML_MAX_DIMS,
ACL_FORMAT_ND);
// acl_position * mk
int64_t tmp_output_ne[] = {src_ne[0], src_ne[1], src_ne[2], src_ne[3]};
size_t tmp_output_nb[GGML_MAX_DIMS];
tmp_output_nb[0] = ggml_type_size(dst->type);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
tmp_output_nb[i] = tmp_output_nb[i - 1] * tmp_output_ne[i - 1];
}
ggml_cann_pool_alloc output_allocator(ctx.pool(), ggml_nbytes(dst));
void* tmp_output_buffer = output_allocator.get();
aclTensor* tmp_output_tensor = ggml_cann_create_tensor(
tmp_output_buffer, ggml_cann_type_mapping(dst->type),
ggml_type_size(dst->type), tmp_output_ne, tmp_output_nb, GGML_MAX_DIMS,
ACL_FORMAT_ND);
aclnn_mul(ctx, acl_position, tmp_mk_tensor, tmp_output_tensor);
// add
aclnn_add(ctx, tmp_output_tensor, acl_src, acl_dst);
ACL_CHECK(aclDestroyTensor(tmp_arange1_tensor));
ACL_CHECK(aclDestroyTensor(tmp_arange2_tensor));
ACL_CHECK(aclDestroyTensor(tmp_mk_base1_tensor));
ACL_CHECK(aclDestroyTensor(tmp_mk_base2_tensor));
ACL_CHECK(aclDestroyTensor(tmp_mk_base_tensor));
ACL_CHECK(aclDestroyTensor(tmp_arange_tensor));
ACL_CHECK(aclDestroyTensor(tmp_mk_tensor));
ACL_CHECK(aclDestroyTensor(tmp_output_tensor));
}
void ggml_cann_cpy(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_cann_dup(ctx, dst);
}
/**
* @brief Performs element-wise addition of two tensors in place.
*
* This function adds the source tensor `acl_src` to the destination tensor
* `acl_dst` element-wise and stores the result in the destination tensor
* `acl_dst`.
*
* @param ctx The context for the CANN backend operations.
* @param acl_src The source tensor to be added.
* @param acl_dst The destination tensor which will hold the result of the
* addition.
*/
static void aclnn_inplace_add(ggml_backend_cann_context& ctx,
aclTensor* acl_src, aclTensor* acl_dst) {
aclScalar* alpha = nullptr;
float alphaValue = 1.0f;
alpha = aclCreateScalar(&alphaValue, aclDataType::ACL_FLOAT);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnInplaceAddGetWorkspaceSize(acl_dst, acl_src, alpha,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnInplaceAdd(workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclDestroyScalar(alpha));
}
/**
* @brief Applies the softmax function to a tensor along a specified dimension.
*
* This function computes the softmax of the source tensor `acl_src` along the
* specified dimension `dim` and stores the result in the destination tensor
* `acl_dst`.
*
* @param ctx The context for the CANN backend operations.
* @param acl_src The source tensor on which the softmax function will be
* applied.
* @param dim The dimension along which the softmax function will be computed.
* @param acl_dst The destination tensor where the softmax results will be
* stored.
*/
static void aclnn_softmax(ggml_backend_cann_context& ctx, aclTensor* acl_src,
int64_t dim, aclTensor* acl_dst) {
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnSoftmaxGetWorkspaceSize(acl_src, dim, acl_dst,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
aclrtStream stream = ctx.stream();
ACL_CHECK(aclnnSoftmax(workspaceAddr, workspaceSize, executor, stream));
}
void ggml_cann_softmax(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src0 = dst->src[0];
ggml_tensor* src1 = dst->src[1]; // mask
aclTensor* acl_src0 = ggml_cann_create_tensor(src0);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
float scale = 1.0f;
float max_bias = 0.0f;
memcpy(&scale, (float*)dst->op_params + 0, sizeof(float));
memcpy(&max_bias, (float*)dst->op_params + 1, sizeof(float));
// input mul scale
aclScalar* acl_scale = aclCreateScalar(&scale, aclDataType::ACL_FLOAT);
size_t n_bytes = ggml_nbytes(src0);
ggml_cann_pool_alloc mul_scale_allocator(ctx.pool(), n_bytes);
void* input_mul_scale_buffer = mul_scale_allocator.get();
aclTensor* acl_input_mul_scale_tensor = ggml_cann_create_tensor(
input_mul_scale_buffer, ACL_FLOAT, ggml_type_size(src0->type), src0->ne,
src0->nb, GGML_MAX_DIMS);
bool inplace = false;
aclnn_muls(ctx, acl_src0, scale, acl_input_mul_scale_tensor, inplace);
// mask
aclTensor* acl_src1_fp32_tensor = nullptr;
aclTensor* tmp_mask_tensor = nullptr;
ggml_cann_pool_alloc src1_fp32_allocator(ctx.pool());
if (src1) {
const bool use_f16 = src1->type == GGML_TYPE_F16;
if (use_f16) {
// cast to fp32
size_t n_bytes = ggml_nelements(src1) * sizeof(float_t);
size_t src1_fp32_nb[GGML_MAX_DIMS];
src1_fp32_nb[0] = sizeof(float_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
src1_fp32_nb[i] = src1_fp32_nb[i - 1] * src1->ne[i - 1];
}
src1_fp32_allocator.alloc(n_bytes);
void* src1_fp32_buffer = src1_fp32_allocator.get();
acl_src1_fp32_tensor = ggml_cann_create_tensor(
src1_fp32_buffer, ACL_FLOAT, sizeof(float), src1->ne,
src1_fp32_nb, GGML_MAX_DIMS);
aclTensor* acl_src1 = ggml_cann_create_tensor(src1);
aclnn_cast(ctx, acl_src1, acl_src1_fp32_tensor, ACL_FLOAT);
ACL_CHECK(aclDestroyTensor(acl_src1));
} else {
acl_src1_fp32_tensor = ggml_cann_create_tensor(src1);
}
// broadcast the mask across rows, only use ne11 of ne01 in mask
if (src1->ne[1] != src0->ne[1]) {
// mask shape: [1,1,ne11,ne10]
int64_t tmp_mask_ne[] = {src0->ne[0], src0->ne[1], 1, 1};
size_t tmp_mask_nb[GGML_MAX_DIMS];
tmp_mask_nb[0] = sizeof(float_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
tmp_mask_nb[i] = tmp_mask_nb[i - 1] * tmp_mask_ne[i - 1];
}
tmp_mask_tensor = ggml_cann_create_tensor(
src1->data, ACL_FLOAT, sizeof(float), tmp_mask_ne, tmp_mask_nb,
GGML_MAX_DIMS, ACL_FORMAT_ND);
}
// alibi
const int n_head = src0->ne[2];
const size_t src_nb0 = src0->nb[0];
n_bytes = ggml_nbytes(dst);
ggml_cann_pool_alloc output_allocator(ctx.pool(), n_bytes);
void* output_buffer = output_allocator.get();
aclTensor* alibi_output_tensor = ggml_cann_create_tensor(
output_buffer, ACL_FLOAT, ggml_type_size(dst->type), dst->ne,
dst->nb, GGML_MAX_DIMS);
if (max_bias <= 0.0f) {
// slope = 1.0
if (tmp_mask_tensor) {
aclnn_add(ctx, tmp_mask_tensor, acl_input_mul_scale_tensor,
alibi_output_tensor);
} else {
aclnn_add(ctx, acl_src1_fp32_tensor, acl_input_mul_scale_tensor,
alibi_output_tensor);
}
} else {
// slope != 1.0
if (tmp_mask_tensor) {
aclnn_alibi(ctx, acl_input_mul_scale_tensor, tmp_mask_tensor,
alibi_output_tensor, n_head, src0->ne, src_nb0,
max_bias, dst);
} else {
aclnn_alibi(ctx, acl_input_mul_scale_tensor,
acl_src1_fp32_tensor, alibi_output_tensor, n_head,
src0->ne, src_nb0, max_bias, dst);
}
}
// softmax
aclnn_softmax(ctx, alibi_output_tensor, 3, acl_dst);
ACL_CHECK(aclDestroyTensor(alibi_output_tensor));
} else {
aclnn_softmax(ctx, acl_input_mul_scale_tensor, 3, acl_dst);
}
ACL_CHECK(aclDestroyTensor(acl_src0));
ACL_CHECK(aclDestroyTensor(acl_src1_fp32_tensor));
ACL_CHECK(aclDestroyTensor(acl_dst));
ACL_CHECK(aclDestroyScalar(acl_scale));
ACL_CHECK(aclDestroyTensor(acl_input_mul_scale_tensor));
ACL_CHECK(aclDestroyTensor(tmp_mask_tensor));
}
void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src0 = dst->src[0];
ggml_tensor* src1 = dst->src[1];
ggml_cann_pool_alloc src0_extra_allocator(ctx.pool(), sizeof(ggml_tensor));
ggml_cann_pool_alloc src1_extra_allocator(ctx.pool(), sizeof(ggml_tensor));
ggml_cann_pool_alloc dst_extra_allocator(ctx.pool(), sizeof(ggml_tensor));
src0->extra = src0_extra_allocator.get();
src1->extra = src1_extra_allocator.get();
dst->extra = dst_extra_allocator.get();
ACL_CHECK(aclrtMemcpyAsync(src0->extra, sizeof(ggml_tensor), src0,
sizeof(ggml_tensor), ACL_MEMCPY_HOST_TO_DEVICE,
ctx.stream()));
ACL_CHECK(aclrtMemcpyAsync(src1->extra, sizeof(ggml_tensor), src1,
sizeof(ggml_tensor), ACL_MEMCPY_HOST_TO_DEVICE,
ctx.stream()));
ACL_CHECK(aclrtMemcpyAsync(dst->extra, sizeof(ggml_tensor), dst,
sizeof(ggml_tensor), ACL_MEMCPY_HOST_TO_DEVICE,
ctx.stream()));
switch (src0->type) {
case GGML_TYPE_F32:
aclrtlaunch_ascendc_get_row_f32(
24, ctx.stream(), src0->data, src1->data, dst->data,
((ggml_tensor*)src0->extra)->ne,
((ggml_tensor*)src0->extra)->nb,
((ggml_tensor*)src1->extra)->ne,
((ggml_tensor*)src1->extra)->nb, ((ggml_tensor*)dst->extra)->ne,
((ggml_tensor*)dst->extra)->nb);
break;
case GGML_TYPE_F16:
aclrtlaunch_ascendc_get_row_f16(
24, ctx.stream(), src0->data, src1->data, dst->data,
((ggml_tensor*)src0->extra)->ne,
((ggml_tensor*)src0->extra)->nb,
((ggml_tensor*)src1->extra)->ne,
((ggml_tensor*)src1->extra)->nb, ((ggml_tensor*)dst->extra)->ne,
((ggml_tensor*)dst->extra)->nb);
break;
case GGML_TYPE_Q4_0:
aclrtlaunch_ascendc_get_row_q4_0(
24, ctx.stream(), src0->data, src1->data, dst->data,
((ggml_tensor*)src0->extra)->ne,
((ggml_tensor*)src1->extra)->ne,
((ggml_tensor*)src1->extra)->nb, ((ggml_tensor*)dst->extra)->ne,
((ggml_tensor*)dst->extra)->nb);
break;
case GGML_TYPE_Q8_0:
aclrtlaunch_ascendc_get_row_q8_0(
24, ctx.stream(), src0->data, src1->data, dst->data,
((ggml_tensor*)src0->extra)->ne,
((ggml_tensor*)src1->extra)->ne,
((ggml_tensor*)src1->extra)->nb, ((ggml_tensor*)dst->extra)->ne,
((ggml_tensor*)dst->extra)->nb);
break;
default:
GGML_ABORT("fatal error");
break;
}
}
/**
* @brief Repeats elements of a tensor along a specified dimension.
*
* This function repeats each element of the source tensor `acl_src` a specified
* number of times (`repeats`) along the specified dimension `dim` and stores
* the result in the destination tensor `acl_dst`.
*
* @param ctx The context for the CANN backend operations.
* @param acl_src The source tensor whose elements will be repeated.
* @param acl_dst The destination tensor where the repeated elements will be
* stored.
* @param dim The dimension along which the elements will be repeated.
* @param repeats The number of times each element will be repeated.
* @param output_size The size of the output tensor.
*/
static void aclnn_repeat_interleave(ggml_backend_cann_context& ctx,
aclTensor* acl_src, aclTensor* acl_dst,
int64_t dim, int64_t repeats,
int64_t output_size) {
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnRepeatInterleaveIntWithDimGetWorkspaceSize(
acl_src, repeats, dim, output_size, acl_dst, &workspaceSize,
&executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnRepeatInterleaveIntWithDim(workspaceAddr, workspaceSize,
executor, ctx.stream()));
}
/**
* @brief Performs matrix multiplication of two tensors.
*
* This function computes the matrix multiplication of the input tensor
* `acl_input` and the weight tensor `acl_weight`, and stores the result in the
* destination tensor `acl_dst`.
* The operation is defined as:
* \f[
* \text {acl_dst}=\text {acl_input@acl_weight}
* \f]
*
* @param ctx The context for the CANN backend operations.
* @param acl_input The input tensor for the matrix multiplication.
* @param acl_weight The weight tensor for the matrix multiplication.
* @param acl_dst The destination tensor where the result of the matrix
* multiplication will be stored.
*/
static void aclnn_mat_mul(ggml_backend_cann_context& ctx, aclTensor* acl_input,
aclTensor* acl_weight, aclTensor* acl_dst) {
int8_t cube_math_type = 1; // ALLOW_FP32_DOWN_PRECISION, when input is
// fp32, atlas a2 will transpose it to HFLOAT32.
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnMatmulGetWorkspaceSize(acl_input, acl_weight, acl_dst,
cube_math_type, &workspaceSize,
&executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(
aclnnMatmul(workspaceAddr, workspaceSize, executor, ctx.stream()));
}
/**
* @brief Performs matrix multiplication with floating-point precision on
* tensors using the CANN backend.
*
* This function performs matrix multiplication of the input tensor and the
* weight tensor, handling broadcasting and transposing as needed, and stores
* the result in the destination tensor `dst`.
*
* @param ctx The context for the CANN backend operations.
* @param dst The destination tensor where the result of the matrix
* multiplication will be stored.
*/
static void ggml_cann_mat_mul_fp(ggml_backend_cann_context& ctx,
ggml_tensor* dst) {
ggml_tensor* weight = dst->src[0]; // weight
ggml_tensor* input = dst->src[1]; // input
// when weight ne2 or ne3 is 1, aclnnMatmulGetWorkspaceSize will auto
// broadcast, when weight ne2 or ne3 is not 1, weight need repeat.
BCAST_MUL_MAT_SHAPE(input, weight, dst);
// transpose weight: [1,2,3,4] -> [1,2,4,3]
int64_t transpose_ne[] = {bcast_weight_ne[1], bcast_weight_ne[0],
bcast_weight_ne[2], bcast_weight_ne[3],
bcast_weight_ne[4], bcast_weight_ne[5]};
size_t transpose_nb[] = {bcast_weight_nb[1], bcast_weight_nb[0],
bcast_weight_nb[2], bcast_weight_nb[3],
bcast_weight_nb[4], bcast_weight_nb[5]};
aclTensor* acl_weight_tensor =
ggml_cann_create_tensor(weight, transpose_ne, transpose_nb, bcast_dims);
aclTensor* acl_input_tensor =
ggml_cann_create_tensor(input, BCAST_MUL_MAT_PARAM(input));
aclTensor* acl_dst = ggml_cann_create_tensor(dst, BCAST_MUL_MAT_PARAM(dst));
aclnn_mat_mul(ctx, acl_input_tensor, acl_weight_tensor, acl_dst);
ACL_CHECK(aclDestroyTensor(acl_weight_tensor));
ACL_CHECK(aclDestroyTensor(acl_input_tensor));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
/**
* @brief Performs matrix multiplication with quantized weights and
* floating-point inputs using the CANN backend.
*
* This function performs matrix multiplication of the input tensor `src1` and
* the weight tensor `src0`, handling broadcasting, transposing, and
* quantization as needed, and stores the result in the destination tensor
* `dst`.
*
* @param ctx The context for the CANN backend operations.
* @param dst The destination tensor where the result of the matrix
* multiplication will be stored.
*/
2024-08-05 06:22:30 +02:00
static void ggml_cann_mul_mat_quant(ggml_backend_cann_context& ctx,
ggml_tensor* dst,
const enum ggml_type type) {
ggml_tensor* src0 = dst->src[0]; // weight
ggml_tensor* src1 = dst->src[1]; // input
// The shape of the weight is NCHW. Matrix multiplication uses HW dims. HC
// is regarded as batch. weight need transpose.
int64_t weight_ne[] = {src0->ne[1], src0->ne[0]};
2024-08-05 06:22:30 +02:00
float weight_elem_size;
if (type == GGML_TYPE_Q4_0) {
weight_elem_size = float(sizeof(uint8_t)) / 2;
}
else if (type == GGML_TYPE_Q8_0) {
weight_elem_size = float(sizeof(uint8_t));
}
else {
GGML_ABORT("Only support Q4_0 and Q8_0 MUL_MAT");
}
float weight_nb[] = {weight_elem_size * src0->ne[0], weight_elem_size};
// size of one matrix is element_size * height * width.
size_t weight_stride = weight_elem_size * src0->ne[0] * src0->ne[1];
size_t weight_size = weight_stride * src0->ne[2] * src0->ne[3];
// scale stored at the end of weight. Also need transpose.
2024-08-05 06:22:30 +02:00
GGML_ASSERT(QK4_0 == QK8_0);
int64_t scale_ne[] = {src0->ne[1], src0->ne[0] / QK8_0};
size_t scale_elem_size = sizeof(uint16_t);
size_t scale_nb[] = {src0->ne[0] / QK8_0 * scale_elem_size,
scale_elem_size};
size_t scale_stride = scale_elem_size * src0->ne[0] * src0->ne[1] / QK8_0;
char* scale_offset = (char*)src0->data + weight_size;
// input
void* input_buffer;
size_t input_elem_size = sizeof(uint16_t);
int64_t input_ne[] = {src1->ne[0], src1->ne[1]};
size_t input_nb[] = {input_elem_size, input_elem_size * src1->ne[0]};
size_t input_stride = input_elem_size * src1->ne[0] * src1->ne[1];
ggml_cann_pool_alloc input_alloctor(ctx.pool());
if (src1->type != GGML_TYPE_F16) {
aclTensor* acl_src1_tensor = ggml_cann_create_tensor(src1);
input_alloctor.alloc(ggml_nelements(src1) * input_elem_size);
input_buffer = input_alloctor.get();
int64_t* input_cast_ne = src1->ne;
size_t input_cast_nb[GGML_MAX_DIMS];
input_cast_nb[0] = sizeof(uint16_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
input_cast_nb[i] = input_cast_nb[i - 1] * input_cast_ne[i - 1];
}
aclTensor* acl_input_tensor = ggml_cann_create_tensor(
input_buffer, ACL_FLOAT16, input_elem_size, input_cast_ne,
input_cast_nb, GGML_MAX_DIMS);
aclnn_cast(ctx, acl_src1_tensor, acl_input_tensor, ACL_FLOAT16);
ACL_CHECK(aclDestroyTensor(acl_input_tensor));
ACL_CHECK(aclDestroyTensor(acl_src1_tensor));
} else {
input_buffer = src1->data;
}
// output
size_t output_elem_size = sizeof(uint16_t);
int64_t output_ne[] = {dst->ne[0], dst->ne[1]};
size_t output_nb[] = {output_elem_size, output_elem_size * dst->ne[0]};
ggml_cann_pool_alloc output_alloctor(
ctx.pool(), ggml_nelements(dst) * output_elem_size);
void* output_buffer = output_alloctor.get();
size_t output_stride = output_elem_size * dst->ne[0] * dst->ne[1];
// aclnn
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
for (int64_t n1 = 0; n1 < src1->ne[3]; n1++) {
for (int64_t c1 = 0; c1 < src1->ne[2]; c1++) {
int64_t n0 = n1 / (src1->ne[3] / src0->ne[3]);
int64_t c0 = c1 / (src1->ne[2] / src0->ne[2]);
int64_t batch1 = n1 * src1->ne[2] + c1;
int64_t batch0 = n0 * src0->ne[2] + c0;
aclTensor* acl_input_tensor = ggml_cann_create_tensor(
(char*)input_buffer + batch1 * input_stride, ACL_FLOAT16,
input_elem_size, input_ne, input_nb, 2);
aclTensor* acl_weight_tensor = ggml_cann_create_tensor(
2024-08-05 06:22:30 +02:00
(char*)src0->data + batch0 * weight_stride,
ggml_cann_type_mapping(type), weight_elem_size, weight_ne,
weight_nb, 2);
aclTensor* acl_scale_tensor = ggml_cann_create_tensor(
scale_offset + batch0 * scale_stride, ACL_FLOAT16,
scale_elem_size, scale_ne, scale_nb, 2);
aclTensor* acl_output_tensor = ggml_cann_create_tensor(
(char*)output_buffer + batch1 * output_stride, ACL_FLOAT16,
output_elem_size, output_ne, output_nb, 2);
ACL_CHECK(aclnnWeightQuantBatchMatmulV2GetWorkspaceSize(
acl_input_tensor, acl_weight_tensor, acl_scale_tensor, nullptr,
nullptr, nullptr, nullptr, QK8_0, acl_output_tensor,
&workspaceSize, &executor));
if (workspaceSize > 0 && workspaceAddr == nullptr) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(),
workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnWeightQuantBatchMatmulV2(
workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclDestroyTensor(acl_input_tensor));
ACL_CHECK(aclDestroyTensor(acl_weight_tensor));
ACL_CHECK(aclDestroyTensor(acl_scale_tensor));
ACL_CHECK(aclDestroyTensor(acl_output_tensor));
}
}
// cast out
int64_t* output_cast_ne = dst->ne;
size_t output_cast_nb[GGML_MAX_DIMS];
output_cast_nb[0] = sizeof(uint16_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
output_cast_nb[i] = output_cast_nb[i - 1] * output_cast_ne[i - 1];
}
aclTensor* acl_output_tensor =
ggml_cann_create_tensor(output_buffer, ACL_FLOAT16, output_elem_size,
output_cast_ne, output_cast_nb, GGML_MAX_DIMS);
aclTensor* acl_dst_tensor = ggml_cann_create_tensor(dst);
aclnn_cast(ctx, acl_output_tensor, acl_dst_tensor, ACL_FLOAT);
ACL_CHECK(aclDestroyTensor(acl_output_tensor));
ACL_CHECK(aclDestroyTensor(acl_dst_tensor));
}
void ggml_cann_mul_mat(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
const enum ggml_type type = dst->src[0]->type;
switch (type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
ggml_cann_mat_mul_fp(ctx, dst);
break;
2024-08-05 06:22:30 +02:00
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q8_0:
2024-08-05 06:22:30 +02:00
ggml_cann_mul_mat_quant(ctx, dst, type);
break;
default:
GGML_ABORT("fatal error");
break;
}
}
/**
* @brief Rolls the elements of a tensor along a specified dimension.
*
* This function rolls the elements of the source tensor `acl_src` by the
* specified shifts `shifts` along the specified dimensions `dims`, and stores
* the result in the destination tensor `acl_dst`.
*
* @param ctx The context for the CANN backend operations.
* @param acl_src The source tensor whose elements will be rolled.
* @param acl_dst The destination tensor where the rolled elements will be
* stored.
* @param shifts An array specifying the number of positions by which elements
* are shifted.
* @param dims An array specifying the dimensions along which elements are
* shifted.
*/
static void aclnn_roll(ggml_backend_cann_context& ctx, aclTensor* acl_src,
aclTensor* acl_dst, int64_t* shifts, int64_t* dims) {
aclIntArray* acl_shifts = aclCreateIntArray(shifts, 1);
aclIntArray* acl_dims = aclCreateIntArray(dims, 1);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnRollGetWorkspaceSize(acl_src, acl_shifts, acl_dims, acl_dst,
&workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnRoll(workspaceAddr, workspaceSize, executor, ctx.stream()));
ACL_CHECK(aclDestroyIntArray(acl_shifts));
ACL_CHECK(aclDestroyIntArray(acl_dims));
}
/**
* @brief Fills specified positions of a tensor with a scalar value.
*
* This function fills the positions in the source tensor `acl_src` specified by
* `index` along the dimension `dim` with the scalar value `value`.
*
* @param ctx The context for the CANN backend operations.
* @param acl_src The source tensor where the positions will be filled.
* @param dim The dimension along which the positions are specified.
* @param index An array specifying the positions to be filled.
* @param index_num The number of positions specified in the index array.
* @param value The scalar value used to fill the specified positions.
*/
static void aclnn_index_fill_tensor(ggml_backend_cann_context& ctx,
aclTensor* acl_src, int64_t dim,
int64_t* index, int64_t index_num,
float value) {
aclIntArray* acl_index = aclCreateIntArray(index, index_num);
aclScalar* acl_value = aclCreateScalar(&value, aclDataType::ACL_FLOAT);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(aclnnInplaceIndexFillTensorGetWorkspaceSize(
acl_src, dim, acl_index, acl_value, &workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
ACL_CHECK(aclnnInplaceIndexFillTensor(workspaceAddr, workspaceSize,
executor, ctx.stream()));
ACL_CHECK(aclDestroyIntArray(acl_index));
ACL_CHECK(aclDestroyScalar(acl_value));
}
static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst,
aclTensor* acl_cos_repeat_tensor,
aclTensor* acl_sin_repeat_tensor,
float theta_scale, bool is_neox) {
// int sin/cos cache, cache has different repeat method depond on
// @param.is_neox
ggml_tensor* src0 = dst->src[0]; // input
ggml_tensor* src1 = dst->src[1]; // position
// arange, [0,1,...,ne0/2]
int64_t arange_length = src0->ne[0] / 2;
ggml_cann_pool_alloc arange_allocator(ctx.pool(),
arange_length * sizeof(float_t));
void* arange_buffer = arange_allocator.get();
int64_t arange_ne[] = {arange_length, 1, 1, 1};
size_t arange_nb[] = {sizeof(float_t), sizeof(float_t), sizeof(float_t),
arange_length * sizeof(float_t)};
aclTensor* acl_arange_tensor =
ggml_cann_create_tensor(arange_buffer, ACL_FLOAT, sizeof(float_t),
arange_ne, arange_nb, GGML_MAX_DIMS);
float start = 0;
float step = 1;
float stop = src0->ne[0] / 2;
float n_elements = src0->ne[0] / 2;
aclnn_arange(ctx, acl_arange_tensor, start, stop, step, n_elements);
// power
// aclnnPowScalarTensor(): @param self is tensor which should be scalar, so
// use aclnn_pow_tensor_tensor() until fixed. aclScalar* acl_theta_scale =
// aclCreateScalar(&theta_scale, aclDataType::ACL_FLOAT);
// aclnn_power_scalar_tensor(ctx, acl_theta_scale, acl_arange_tensor,
// acl_power_tensor);
ggml_cann_pool_alloc theta_scale_allocator(ctx.pool(),
arange_length * sizeof(float_t));
void* theta_scale_buffer = theta_scale_allocator.get();
aclTensor* acl_theta_scale_tensor = aclnn_ones(
ctx, theta_scale_buffer, arange_length * sizeof(float_t), arange_ne,
GGML_MAX_DIMS, ACL_FLOAT, sizeof(float_t), theta_scale);
aclnn_pow_tensor_tensor(ctx, acl_theta_scale_tensor, acl_arange_tensor);
// position
GGML_ASSERT(src1->type == GGML_TYPE_I32);
int64_t position_length = src1->ne[0];
int64_t position_ne[] = {1, position_length, 1, 1};
size_t position_nb[] = {sizeof(int32_t), sizeof(int32_t),
sizeof(int32_t) * position_length,
sizeof(int32_t) * position_length};
aclTensor* acl_position_tensor = ggml_cann_create_tensor(
src1->data, ggml_cann_type_mapping(src1->type),
ggml_type_size(src1->type), position_ne, position_nb, GGML_MAX_DIMS);
// power * position
int64_t theta_length = arange_length * position_length;
ggml_cann_pool_alloc theta_allocator(ctx.pool(),
theta_length * sizeof(float_t));
void* theta_buffer = theta_allocator.get();
int64_t theta_ne[] = {arange_length, position_length, 1, 1};
size_t theta_nb[GGML_MAX_DIMS];
theta_nb[0] = sizeof(float_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
theta_nb[i] = theta_nb[i - 1] * theta_ne[i - 1];
}
aclTensor* acl_theta_tensor =
ggml_cann_create_tensor(theta_buffer, ACL_FLOAT, sizeof(float_t),
theta_ne, theta_nb, GGML_MAX_DIMS);
aclnn_mul(ctx, acl_position_tensor, acl_theta_scale_tensor,
acl_theta_tensor);
// permute: [0,1,2,3]->[0,2,1,3]
int64_t permute_ne[] = {arange_length, 1, position_length, 1};
size_t permute_nb[GGML_MAX_DIMS];
permute_nb[0] = sizeof(float_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
permute_nb[i] = permute_nb[i - 1] * permute_ne[i - 1];
}
ggml_cann_pool_alloc permute_allocator(ctx.pool(),
theta_length * sizeof(float_t));
void* permute_buffer = permute_allocator.get();
aclTensor* acl_permute_tensor = ggml_cann_create_tensor(
permute_buffer, ACL_FLOAT, sizeof(float_t), permute_ne, permute_nb,
GGML_MAX_DIMS, ACL_FORMAT_ND);
int64_t permute_dim[] = {0, 2, 1, 3};
int64_t num_dims = 4;
aclnn_permute(ctx, acl_theta_tensor, acl_permute_tensor, permute_dim,
num_dims);
// sin/cos
ggml_cann_pool_alloc sin_allocator(ctx.pool(),
theta_length * sizeof(float_t));
void* sin_buffer = sin_allocator.get();
aclTensor* acl_sin_tensor = ggml_cann_create_tensor(
sin_buffer, ACL_FLOAT, sizeof(float_t), permute_ne, permute_nb,
GGML_MAX_DIMS, ACL_FORMAT_ND);
aclnn_sin(ctx, acl_permute_tensor, acl_sin_tensor);
ggml_cann_pool_alloc cos_allocator(ctx.pool(),
theta_length * sizeof(float_t));
void* cos_buffer = cos_allocator.get();
aclTensor* acl_cos_tensor = ggml_cann_create_tensor(
cos_buffer, ACL_FLOAT, sizeof(float_t), permute_ne, permute_nb,
GGML_MAX_DIMS, ACL_FORMAT_ND);
aclnn_cos(ctx, acl_permute_tensor, acl_cos_tensor);
// repeat
if (is_neox) {
int64_t repeatsArray[] = {1, 1, 1, 2};
aclnn_repeat(ctx, acl_sin_tensor, acl_sin_repeat_tensor, repeatsArray);
aclnn_repeat(ctx, acl_cos_tensor, acl_cos_repeat_tensor, repeatsArray);
} else {
int64_t num_repeats = 2;
int64_t dim = 3;
int64_t output_size = arange_length * num_repeats;
aclnn_repeat_interleave(ctx, acl_sin_tensor, acl_sin_repeat_tensor, dim,
num_repeats, output_size);
aclnn_repeat_interleave(ctx, acl_cos_tensor, acl_cos_repeat_tensor, dim,
num_repeats, output_size);
}
// release
ACL_CHECK(aclDestroyTensor(acl_arange_tensor));
ACL_CHECK(aclDestroyTensor(acl_theta_scale_tensor));
ACL_CHECK(aclDestroyTensor(acl_position_tensor));
ACL_CHECK(aclDestroyTensor(acl_theta_tensor));
ACL_CHECK(aclDestroyTensor(acl_permute_tensor));
ACL_CHECK(aclDestroyTensor(acl_sin_tensor));
ACL_CHECK(aclDestroyTensor(acl_cos_tensor));
}
void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
// TODO: use ascendc
// Only test with LLAMA model.
ggml_tensor* src0 = dst->src[0]; // input
ggml_tensor* src2 = dst->src[2]; // freq_factors
// TODO: with freq_factors
GGML_ASSERT(src2 == NULL);
// param
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
// const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t*)dst->op_params)[1];
const int mode = ((int32_t*)dst->op_params)[2];
// const int n_ctx = ((int32_t *) dst->op_params)[3];
const int n_ctx_orig = ((int32_t*)dst->op_params)[4];
GGML_TENSOR_UNARY_OP_LOCALS
memcpy(&freq_base, (int32_t*)dst->op_params + 5, sizeof(float));
memcpy(&freq_scale, (int32_t*)dst->op_params + 6, sizeof(float));
memcpy(&ext_factor, (int32_t*)dst->op_params + 7, sizeof(float));
memcpy(&attn_factor, (int32_t*)dst->op_params + 8, sizeof(float));
memcpy(&beta_fast, (int32_t*)dst->op_params + 9, sizeof(float));
memcpy(&beta_slow, (int32_t*)dst->op_params + 10, sizeof(float));
GGML_ASSERT(n_dims <= ne0);
GGML_ASSERT(n_dims % 2 == 0);
// TODO: ext_factor != 0
GGML_ASSERT(ext_factor == 0);
// TODO: freq_scale != 1
GGML_ASSERT(freq_scale == 1);
const float theta_scale = powf(freq_base, -2.0f / n_dims);
float corr_dims[2];
ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast,
beta_slow, corr_dims);
const bool is_neox = mode & 2;
// init cos/sin cache
ggml_cann_pool_alloc sin_allocator(
ctx.pool(), src0->ne[0] * src0->ne[2] * sizeof(float_t));
ggml_cann_pool_alloc cos_allocator(
ctx.pool(), src0->ne[0] * src0->ne[2] * sizeof(float_t));
void* sin_buffer = sin_allocator.get();
void* cos_buffer = cos_allocator.get();
int64_t sin_reshape_ne[4] = {src0->ne[0], 1, src0->ne[2], 1};
size_t sin_reshape_nb[GGML_MAX_DIMS];
sin_reshape_nb[0] = sizeof(float_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
sin_reshape_nb[i] = sin_reshape_nb[i - 1] * sin_reshape_ne[i - 1];
}
aclTensor* acl_sin_reshape_tensor =
ggml_cann_create_tensor(sin_buffer, ACL_FLOAT, sizeof(float_t),
sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS);
aclTensor* acl_cos_reshape_tensor =
ggml_cann_create_tensor(cos_buffer, ACL_FLOAT, sizeof(float_t),
sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS);
aclnn_cache_init(ctx, dst, acl_cos_reshape_tensor, acl_sin_reshape_tensor,
theta_scale, is_neox);
// roll input
void* input_roll_buffer;
aclTensor* acl_minus_one_tensor;
void* minus_one_scale_buffer = nullptr;
ggml_cann_pool_alloc roll_allocator(ctx.pool(), ggml_nbytes(src0));
ggml_cann_pool_alloc minus_one_scale_allocator(
ctx.pool(), sizeof(float_t) * src0->ne[0]);
if (!is_neox) {
// roll input: [q0,q1,q2,q3,...] -> [q1,q0,q3,q2,...]
input_roll_buffer = roll_allocator.get();
int64_t input_roll_ne[4] = {2, src0->ne[1] * (src0->ne[0] / 2),
src0->ne[2], src0->ne[3]};
size_t input_roll_nb[GGML_MAX_DIMS];
input_roll_nb[0] = ggml_type_size(src0->type);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
input_roll_nb[i] = input_roll_nb[i - 1] * input_roll_ne[i - 1];
}
aclTensor* acl_input_roll_tensor = ggml_cann_create_tensor(
input_roll_buffer, ggml_cann_type_mapping(src0->type),
ggml_type_size(src0->type), input_roll_ne, input_roll_nb,
GGML_MAX_DIMS);
aclTensor* acl_input_tensor = ggml_cann_create_tensor(
src0->data, ggml_cann_type_mapping(src0->type),
ggml_type_size(src0->type), input_roll_ne, input_roll_nb,
GGML_MAX_DIMS);
int64_t shifts[] = {1};
int64_t dims[] = {3};
aclnn_roll(ctx, acl_input_tensor, acl_input_roll_tensor, shifts, dims);
ACL_CHECK(aclDestroyTensor(acl_input_roll_tensor));
ACL_CHECK(aclDestroyTensor(acl_input_tensor));
// init [-1, 1, -1, 1, ...]
minus_one_scale_buffer = minus_one_scale_allocator.get();
int64_t minus_one_ne[4] = {src0->ne[0], 1, 1, 1};
size_t minus_one_nb[GGML_MAX_DIMS];
minus_one_nb[0] = sizeof(float_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
minus_one_nb[i] = minus_one_nb[i - 1] * minus_one_ne[i - 1];
}
acl_minus_one_tensor = aclnn_ones(
ctx, minus_one_scale_buffer, sizeof(float_t) * src0->ne[0],
minus_one_ne, GGML_MAX_DIMS, ACL_FLOAT, sizeof(float_t), 1);
int64_t dim = 3;
int64_t* index = new int64_t[src0->ne[0]];
for (int i = 0; i < src0->ne[0]; i++) {
index[i] = i / 2 * 2;
}
int64_t index_num = src0->ne[0];
float value = -1;
aclnn_index_fill_tensor(ctx, acl_minus_one_tensor, dim, index,
index_num, value);
} else {
// roll input: [q0,q1,q2,...] ->
// [q_half,q_half+1,...,q_end,q0,q1,...q_half-1]
input_roll_buffer = roll_allocator.get();
aclTensor* acl_input_roll_tensor = ggml_cann_create_tensor(
input_roll_buffer, ggml_cann_type_mapping(src0->type),
ggml_type_size(src0->type), src0->ne, src0->nb, GGML_MAX_DIMS);
aclTensor* acl_input_tensor = ggml_cann_create_tensor(src0);
int64_t shifts[] = {src0->ne[0] / 2};
int64_t dims[] = {3};
aclnn_roll(ctx, acl_input_tensor, acl_input_roll_tensor, shifts, dims);
ACL_CHECK(aclDestroyTensor(acl_input_roll_tensor));
ACL_CHECK(aclDestroyTensor(acl_input_tensor));
// init [-1, -1, -1, 1, 11...]
minus_one_scale_buffer = minus_one_scale_allocator.get();
int64_t minus_one_ne[4] = {src0->ne[0], 1, 1, 1};
size_t minus_one_nb[GGML_MAX_DIMS];
minus_one_nb[0] = sizeof(float_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
minus_one_nb[i] = minus_one_nb[i - 1] * minus_one_ne[i - 1];
}
acl_minus_one_tensor = aclnn_ones(
ctx, minus_one_scale_buffer, sizeof(float_t) * src0->ne[0],
minus_one_ne, GGML_MAX_DIMS, ACL_FLOAT, sizeof(float_t), 1);
// -1 * first half
int64_t first_half_ne[4] = {src0->ne[0] / 2, 1, 1, 1};
size_t first_half_nb[GGML_MAX_DIMS];
first_half_nb[0] = sizeof(float_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
first_half_nb[i] = first_half_nb[i - 1] * first_half_ne[i - 1];
}
aclTensor* acl_first_half_tensor = ggml_cann_create_tensor(
minus_one_scale_buffer, ACL_FLOAT, sizeof(float_t), first_half_ne,
first_half_nb, GGML_MAX_DIMS);
bool inplace = true;
float scale = -1;
aclnn_muls(ctx, acl_first_half_tensor, scale, nullptr, inplace);
ACL_CHECK(aclDestroyTensor(acl_first_half_tensor));
}
// TODO: n_dims < ne0
GGML_ASSERT(n_dims == src0->ne[0]);
// input * scale
ggml_cann_pool_alloc roll_mul_scale_allocator(ctx.pool(),
ggml_nbytes(src0));
void* input_roll_mul_scale_buffer = roll_mul_scale_allocator.get();
size_t input_nb[GGML_MAX_DIMS];
input_nb[0] = ggml_type_size(src0->type);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
input_nb[i] = input_nb[i - 1] * src0->ne[i - 1];
}
aclTensor* acl_input_roll_mul_scale_tensor = ggml_cann_create_tensor(
input_roll_mul_scale_buffer, ggml_cann_type_mapping(src0->type),
ggml_type_size(src0->type), src0->ne, input_nb, GGML_MAX_DIMS);
aclTensor* acl_input_roll_reshape_tensor = ggml_cann_create_tensor(
input_roll_buffer, ggml_cann_type_mapping(src0->type),
ggml_type_size(src0->type), src0->ne, input_nb, GGML_MAX_DIMS);
aclnn_mul(ctx, acl_input_roll_reshape_tensor, acl_minus_one_tensor,
acl_input_roll_mul_scale_tensor);
// output
aclTensor* acl_src0 = ggml_cann_create_tensor(src0);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
void* output_fp32_buffer;
if (src0->type == GGML_TYPE_F32) {
aclnn_inplace_mul(ctx, acl_src0, acl_cos_reshape_tensor);
aclnn_inplace_mul(ctx, acl_input_roll_mul_scale_tensor,
acl_sin_reshape_tensor);
aclnn_add(ctx, acl_src0, acl_input_roll_mul_scale_tensor, acl_dst);
// TODO: ne0 != n_dims in mode2
} else if (src0->type == GGML_TYPE_F16) {
size_t input_fp32_nb[GGML_MAX_DIMS];
input_fp32_nb[0] = sizeof(float_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
input_fp32_nb[i] = input_fp32_nb[i - 1] * dst->ne[i - 1];
}
ggml_cann_pool_alloc fp32_allocator1(
ctx.pool(), ggml_nelements(dst) * sizeof(float_t));
void* input_fp32_buffer1 = fp32_allocator1.get();
aclTensor* input_fp32_tensor1 = ggml_cann_create_tensor(
input_fp32_buffer1, ACL_FLOAT, sizeof(float_t), dst->ne,
input_fp32_nb, GGML_MAX_DIMS);
ggml_cann_pool_alloc fp32_allocator2(
ctx.pool(), ggml_nelements(dst) * sizeof(float_t));
void* input_fp32_buffer2 = fp32_allocator2.get();
aclTensor* input_fp32_tensor2 = ggml_cann_create_tensor(
input_fp32_buffer2, ACL_FLOAT, sizeof(float_t), dst->ne,
input_fp32_nb, GGML_MAX_DIMS);
ggml_cann_pool_alloc fp32_allocator(
ctx.pool(), ggml_nelements(dst) * sizeof(float_t));
output_fp32_buffer = fp32_allocator.get();
aclTensor* output_fp32_tensor = ggml_cann_create_tensor(
output_fp32_buffer, ACL_FLOAT, sizeof(float_t), dst->ne,
input_fp32_nb, GGML_MAX_DIMS);
aclnn_mul(ctx, acl_src0, acl_cos_reshape_tensor, input_fp32_tensor1);
aclnn_mul(ctx, acl_input_roll_mul_scale_tensor, acl_sin_reshape_tensor,
input_fp32_tensor2);
aclnn_add(ctx, input_fp32_tensor1, input_fp32_tensor2,
output_fp32_tensor);
aclnn_cast(ctx, output_fp32_tensor, acl_dst, ACL_FLOAT16);
ACL_CHECK(aclDestroyTensor(input_fp32_tensor1));
ACL_CHECK(aclDestroyTensor(input_fp32_tensor2));
ACL_CHECK(aclDestroyTensor(output_fp32_tensor));
}
ACL_CHECK(aclDestroyTensor(acl_sin_reshape_tensor));
ACL_CHECK(aclDestroyTensor(acl_cos_reshape_tensor));
ACL_CHECK(aclDestroyTensor(acl_minus_one_tensor));
ACL_CHECK(aclDestroyTensor(acl_input_roll_mul_scale_tensor));
ACL_CHECK(aclDestroyTensor(acl_input_roll_reshape_tensor));
ACL_CHECK(aclDestroyTensor(acl_src0));
ACL_CHECK(aclDestroyTensor(acl_dst));
}