2023-04-24 18:23:31 +02:00
|
|
|
#include "common.h"
|
|
|
|
#include "llama.h"
|
2023-05-01 18:23:47 +02:00
|
|
|
#include "build-info.h"
|
2023-04-24 18:23:31 +02:00
|
|
|
|
2023-04-29 12:48:11 +02:00
|
|
|
#include <vector>
|
|
|
|
#include <cstdio>
|
|
|
|
#include <chrono>
|
2023-04-24 18:23:31 +02:00
|
|
|
|
|
|
|
int main(int argc, char ** argv) {
|
|
|
|
gpt_params params;
|
|
|
|
params.seed = 42;
|
|
|
|
params.n_threads = 4;
|
|
|
|
params.repeat_last_n = 64;
|
|
|
|
params.prompt = "The quick brown fox";
|
|
|
|
|
|
|
|
if (gpt_params_parse(argc, argv, params) == false) {
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2023-05-01 18:23:47 +02:00
|
|
|
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
|
|
|
|
2023-04-29 12:48:11 +02:00
|
|
|
if (params.n_predict < 0) {
|
|
|
|
params.n_predict = 16;
|
|
|
|
}
|
|
|
|
|
2023-04-24 18:23:31 +02:00
|
|
|
auto lparams = llama_context_default_params();
|
|
|
|
|
2023-04-29 12:48:11 +02:00
|
|
|
lparams.n_ctx = params.n_ctx;
|
|
|
|
lparams.seed = params.seed;
|
|
|
|
lparams.f16_kv = params.memory_f16;
|
|
|
|
lparams.use_mmap = params.use_mmap;
|
|
|
|
lparams.use_mlock = params.use_mlock;
|
2023-04-24 18:23:31 +02:00
|
|
|
|
|
|
|
auto n_past = 0;
|
2023-04-29 12:48:11 +02:00
|
|
|
auto last_n_tokens_data = std::vector<llama_token>(params.repeat_last_n, 0);
|
2023-04-24 18:23:31 +02:00
|
|
|
|
|
|
|
// init
|
2023-06-24 10:47:58 +02:00
|
|
|
auto model = llama_load_model_from_file(params.model.c_str(), lparams);
|
|
|
|
if (model == nullptr) {
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
auto ctx = llama_new_context_with_model(model, lparams);
|
|
|
|
if (ctx == nullptr) {
|
|
|
|
llama_free_model(model);
|
|
|
|
return 1;
|
|
|
|
}
|
2023-08-21 22:07:43 +02:00
|
|
|
auto tokens = llama_tokenize(ctx, params.prompt.c_str(), true);
|
|
|
|
auto n_prompt_tokens = tokens.size();
|
2023-04-24 18:23:31 +02:00
|
|
|
if (n_prompt_tokens < 1) {
|
|
|
|
fprintf(stderr, "%s : failed to tokenize prompt\n", __func__);
|
2023-06-24 10:47:58 +02:00
|
|
|
llama_free(ctx);
|
|
|
|
llama_free_model(model);
|
2023-04-24 18:23:31 +02:00
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// evaluate prompt
|
|
|
|
llama_eval(ctx, tokens.data(), n_prompt_tokens, n_past, params.n_threads);
|
|
|
|
|
|
|
|
last_n_tokens_data.insert(last_n_tokens_data.end(), tokens.data(), tokens.data() + n_prompt_tokens);
|
|
|
|
n_past += n_prompt_tokens;
|
|
|
|
|
2023-04-29 12:48:11 +02:00
|
|
|
const size_t state_size = llama_get_state_size(ctx);
|
|
|
|
uint8_t * state_mem = new uint8_t[state_size];
|
|
|
|
|
2023-04-24 18:23:31 +02:00
|
|
|
// Save state (rng, logits, embedding and kv_cache) to file
|
2023-04-29 12:48:11 +02:00
|
|
|
{
|
|
|
|
FILE *fp_write = fopen("dump_state.bin", "wb");
|
|
|
|
llama_copy_state_data(ctx, state_mem); // could also copy directly to memory mapped file
|
|
|
|
fwrite(state_mem, 1, state_size, fp_write);
|
|
|
|
fclose(fp_write);
|
|
|
|
}
|
2023-04-24 18:23:31 +02:00
|
|
|
|
|
|
|
// save state (last tokens)
|
2023-04-29 12:48:11 +02:00
|
|
|
const auto last_n_tokens_data_saved = std::vector<llama_token>(last_n_tokens_data);
|
|
|
|
const auto n_past_saved = n_past;
|
2023-04-24 18:23:31 +02:00
|
|
|
|
|
|
|
// first run
|
|
|
|
printf("\n%s", params.prompt.c_str());
|
2023-04-29 12:53:12 +02:00
|
|
|
|
2023-04-24 18:23:31 +02:00
|
|
|
for (auto i = 0; i < params.n_predict; i++) {
|
llama : new sampling algorithms (#1126)
* Sample interface, new samplers.
New samplers:
- locally typical sampling
- tail free sampling
- frequency and presence penalty
- mirostat
Ignore EOS fix: -inf should be used.
* mirostat
* Added --logit-bias and --no-penalize-nl, removed std::span
* Use C++11, clarify llama API documentation, rename Mirostat parameters to --mirostat_lr and --mirostat_ent, add temperature sampling for Mirostat, simplify Mirostat sampling API parameters (removed N and *k)
Use C++11, clarify llama API documentation, rename Mirostat parameters to --mirostat_lr and --mirostat_ent, add temperature sampling for Mirostat, simplify Mirostat sampling API parameters (removed N and *k)
* Save and load example adjust
* Tests
* Windows build fix
* Windows test fix
2023-04-29 07:34:41 +02:00
|
|
|
auto logits = llama_get_logits(ctx);
|
|
|
|
auto n_vocab = llama_n_vocab(ctx);
|
|
|
|
std::vector<llama_token_data> candidates;
|
|
|
|
candidates.reserve(n_vocab);
|
|
|
|
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
|
|
|
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
|
|
|
}
|
|
|
|
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
|
|
|
auto next_token = llama_sample_token(ctx, &candidates_p);
|
2023-08-27 13:19:19 +02:00
|
|
|
auto next_token_str = llama_token_to_piece(ctx, next_token);
|
2023-04-24 18:23:31 +02:00
|
|
|
last_n_tokens_data.push_back(next_token);
|
2023-04-29 12:48:11 +02:00
|
|
|
|
2023-08-21 22:07:43 +02:00
|
|
|
printf("%s", next_token_str.c_str());
|
2023-04-24 18:23:31 +02:00
|
|
|
if (llama_eval(ctx, &next_token, 1, n_past, params.n_threads)) {
|
|
|
|
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
|
2023-06-24 10:47:58 +02:00
|
|
|
llama_free(ctx);
|
|
|
|
llama_free_model(model);
|
2023-04-24 18:23:31 +02:00
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
n_past += 1;
|
|
|
|
}
|
2023-04-29 12:53:12 +02:00
|
|
|
|
2023-04-24 18:23:31 +02:00
|
|
|
printf("\n\n");
|
|
|
|
|
2023-06-24 10:47:58 +02:00
|
|
|
// free old context
|
2023-04-24 18:23:31 +02:00
|
|
|
llama_free(ctx);
|
|
|
|
|
2023-06-24 10:47:58 +02:00
|
|
|
// make new context
|
|
|
|
auto ctx2 = llama_new_context_with_model(model, lparams);
|
2023-04-24 18:23:31 +02:00
|
|
|
|
|
|
|
// Load state (rng, logits, embedding and kv_cache) from file
|
2023-04-29 12:48:11 +02:00
|
|
|
{
|
|
|
|
FILE *fp_read = fopen("dump_state.bin", "rb");
|
|
|
|
if (state_size != llama_get_state_size(ctx2)) {
|
|
|
|
fprintf(stderr, "\n%s : failed to validate state size\n", __func__);
|
2023-06-24 10:47:58 +02:00
|
|
|
llama_free(ctx2);
|
|
|
|
llama_free_model(model);
|
2023-04-29 12:48:11 +02:00
|
|
|
return 1;
|
|
|
|
}
|
2023-04-29 12:53:12 +02:00
|
|
|
|
|
|
|
const size_t ret = fread(state_mem, 1, state_size, fp_read);
|
|
|
|
if (ret != state_size) {
|
|
|
|
fprintf(stderr, "\n%s : failed to read state\n", __func__);
|
2023-06-24 10:47:58 +02:00
|
|
|
llama_free(ctx2);
|
|
|
|
llama_free_model(model);
|
2023-04-29 12:53:12 +02:00
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2023-04-29 12:48:11 +02:00
|
|
|
llama_set_state_data(ctx2, state_mem); // could also read directly from memory mapped file
|
|
|
|
fclose(fp_read);
|
2023-04-24 18:23:31 +02:00
|
|
|
}
|
2023-04-29 12:48:11 +02:00
|
|
|
|
|
|
|
delete[] state_mem;
|
2023-04-24 18:23:31 +02:00
|
|
|
|
|
|
|
// restore state (last tokens)
|
|
|
|
last_n_tokens_data = last_n_tokens_data_saved;
|
|
|
|
n_past = n_past_saved;
|
|
|
|
|
|
|
|
// second run
|
|
|
|
for (auto i = 0; i < params.n_predict; i++) {
|
llama : new sampling algorithms (#1126)
* Sample interface, new samplers.
New samplers:
- locally typical sampling
- tail free sampling
- frequency and presence penalty
- mirostat
Ignore EOS fix: -inf should be used.
* mirostat
* Added --logit-bias and --no-penalize-nl, removed std::span
* Use C++11, clarify llama API documentation, rename Mirostat parameters to --mirostat_lr and --mirostat_ent, add temperature sampling for Mirostat, simplify Mirostat sampling API parameters (removed N and *k)
Use C++11, clarify llama API documentation, rename Mirostat parameters to --mirostat_lr and --mirostat_ent, add temperature sampling for Mirostat, simplify Mirostat sampling API parameters (removed N and *k)
* Save and load example adjust
* Tests
* Windows build fix
* Windows test fix
2023-04-29 07:34:41 +02:00
|
|
|
auto logits = llama_get_logits(ctx2);
|
|
|
|
auto n_vocab = llama_n_vocab(ctx2);
|
|
|
|
std::vector<llama_token_data> candidates;
|
|
|
|
candidates.reserve(n_vocab);
|
|
|
|
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
|
|
|
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
|
|
|
}
|
|
|
|
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
|
|
|
auto next_token = llama_sample_token(ctx2, &candidates_p);
|
2023-08-27 13:19:19 +02:00
|
|
|
auto next_token_str = llama_token_to_piece(ctx2, next_token);
|
2023-04-24 18:23:31 +02:00
|
|
|
last_n_tokens_data.push_back(next_token);
|
2023-04-29 12:48:11 +02:00
|
|
|
|
2023-08-21 22:07:43 +02:00
|
|
|
printf("%s", next_token_str.c_str());
|
2023-04-24 18:23:31 +02:00
|
|
|
if (llama_eval(ctx2, &next_token, 1, n_past, params.n_threads)) {
|
|
|
|
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
|
2023-06-24 10:47:58 +02:00
|
|
|
llama_free(ctx2);
|
|
|
|
llama_free_model(model);
|
2023-04-24 18:23:31 +02:00
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
n_past += 1;
|
|
|
|
}
|
2023-04-29 12:48:11 +02:00
|
|
|
|
2023-04-24 18:23:31 +02:00
|
|
|
printf("\n\n");
|
2023-04-29 12:48:11 +02:00
|
|
|
|
2023-06-24 10:47:58 +02:00
|
|
|
llama_free(ctx2);
|
|
|
|
llama_free_model(model);
|
|
|
|
|
2023-04-24 18:23:31 +02:00
|
|
|
return 0;
|
|
|
|
}
|