llama.cpp/examples/quantize-stats/quantize-stats.cpp

423 lines
15 KiB
C++
Raw Normal View History

#include "ggml.h"
#include "build-info.h"
#define LLAMA_API_INTERNAL
#include "llama.h"
#include <algorithm>
#include <cassert>
#include <cinttypes>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <map>
#include <numeric>
#include <regex>
#include <string>
#include <unordered_map>
#include <vector>
#include <thread>
#include <mutex>
struct quantize_stats_params {
std::string model = "models/7B/ggml-model-f16.bin";
bool verbose = false;
bool per_layer_stats = false;
bool print_histogram = false;
bool reference = false;
std::vector<std::string> include_layers;
std::vector<std::string> exclude_layers;
std::vector<enum ggml_type> include_types;
};
const size_t HISTOGRAM_BUCKETS = 150;
const double HISTOGRAM_RANGE = 0.03;
struct error_stats {
size_t num_samples;
double total_error;
double max_error;
uint64_t error_histogram[HISTOGRAM_BUCKETS];
};
void quantize_stats_print_usage(int /*argc*/, char ** argv) {
quantize_stats_params params;
fprintf(stderr, "usage: %s [options]\n", argv[0]);
fprintf(stderr, "\n");
fprintf(stderr, "options:\n");
fprintf(stderr, " -h, --help show this help message and exit\n");
fprintf(stderr, " -m FNAME, --model FNAME\n");
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
fprintf(stderr, " -r, --reference\n");
fprintf(stderr, " use reference implementation (default: false)\n");
fprintf(stderr, " -v, --verbose\n");
fprintf(stderr, " verbose output (default: false)\n");
fprintf(stderr, " -p, --per-layer-stats\n");
fprintf(stderr, " print stats per layer (default: false)\n");
fprintf(stderr, " --histogram\n");
fprintf(stderr, " print error histogram (default: false)\n");
fprintf(stderr, " -l LAYER, --include-layer LAYER\n");
fprintf(stderr, " only test layers matching pattern\n");
fprintf(stderr, " -L LAYER, --exclude-layer LAYER\n");
fprintf(stderr, " exclude layers matching pattern\n");
fprintf(stderr, " -t TYPE, --type TYPE\n");
fprintf(stderr, " only test given type (q4_0, q4_1)\n");
fprintf(stderr, "\n");
}
// Check if a layer is included/excluded by command line
bool layer_included(const quantize_stats_params params, const std::string & layer) {
for (const auto& excluded : params.exclude_layers) {
if (std::regex_search(layer, std::regex(excluded))) {
return false;
}
}
for (const auto& included : params.include_layers) {
if (std::regex_search(layer, std::regex(included))) {
return true;
}
}
return params.include_layers.empty();
}
// Update error statistics given vectors with the before/after result of quantization
void update_error_stats(int64_t nelements, const float * input, const float * output, error_stats & stats) {
for (int64_t i = 0; i < nelements; i++) {
double diff = input[i] - output[i];
stats.total_error += diff * diff;
stats.max_error = fmax(fabs(diff), stats.max_error);
stats.error_histogram[std::max(std::min((size_t) floor(fabs(diff) / HISTOGRAM_RANGE * HISTOGRAM_BUCKETS), HISTOGRAM_BUCKETS-1), (size_t) 0)]++;
}
stats.num_samples += nelements;
}
void combine_error_stats(error_stats & into, const error_stats & from) {
into.num_samples += from.num_samples;
into.total_error += from.total_error;
if (from.max_error > into.max_error) into.max_error = from.max_error;
for (size_t i=0; i<HISTOGRAM_BUCKETS; ++i) into.error_histogram[i] += from.error_histogram[i];
}
double find_quantile(const error_stats & stats, double quantile) {
double sum = std::accumulate(std::begin(stats.error_histogram), std::end(stats.error_histogram), 0.0);
double accum = 0;
for (size_t i = 0; i < HISTOGRAM_BUCKETS; i++) {
accum += stats.error_histogram[i];
if (accum >= sum*quantile) {
return (i+1) * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS;
}
}
return INFINITY;
}
void print_error_stats(const std::string & name, const error_stats & stats, bool print_histogram) {
double rmse = sqrt(stats.total_error / (double) stats.num_samples);
double median = find_quantile(stats, .5);
double pct95 = find_quantile(stats, .95);
printf("%-50s: rmse %.8f, maxerr %.8f, 95pct<%.4f, median<%.4f\n", name.c_str(), rmse, stats.max_error, pct95, median);
if (print_histogram) {
printf("Error distribution:\n");
for (size_t i = 0; i < HISTOGRAM_BUCKETS; i++) {
double lower = i * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS;
double upper = (i+1) * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS;
if (i == HISTOGRAM_BUCKETS -1) upper = INFINITY;
printf("[%3.4f, %3.4f): %11" PRIu64 "\n", lower, upper, stats.error_histogram[i]);
}
}
}
// copied from ggml.h - verify that we can access this as a flat array
static bool tensor_is_contiguous(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return
tensor->nb[0] == ggml_type_size(tensor->type) &&
tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
}
void test_roundtrip_on_chunk(
const ggml_tensor * layer,
int64_t offset,
int64_t chunk_size,
const quantize_fns_t & qfns,
bool use_reference,
float * input_scratch,
char * quantized_scratch,
float * output_scratch,
error_stats & stats) {
if (layer->type == GGML_TYPE_F16) {
for (int i = 0; i < chunk_size; i++) {
input_scratch[i] = ggml_get_f32_1d(layer, i + offset);
}
} else {
input_scratch = ggml_get_data_f32(layer) + offset;
}
if (use_reference) {
qfns.quantize_row_q_reference(input_scratch, quantized_scratch, chunk_size);
} else {
qfns.quantize_row_q(input_scratch, quantized_scratch, chunk_size);
}
qfns.dequantize_row_q(quantized_scratch, output_scratch, chunk_size);
update_error_stats(chunk_size, input_scratch, output_scratch, stats);
}
// Run quantization function for a single layer and update error stats
void test_roundtrip_on_layer(
std::string & name,
bool print_layer_stats,
const quantize_fns_t & qfns,
bool use_reference,
const ggml_tensor * layer,
std::vector<float> & input_scratch,
std::vector<char> & quantized_scratch,
std::vector<float> & output_scratch,
error_stats & total_error,
int max_thread = 0) {
assert(tensor_is_contiguous(layer));
error_stats layer_error {};
uint64_t nelements = ggml_nelements(layer);
float* input_scratch_ptr = nullptr;
if (layer->type == GGML_TYPE_F16) {
if (input_scratch.size() < nelements) input_scratch.resize(nelements);
input_scratch_ptr = input_scratch.data();
}
if (quantized_scratch.size() < 4*nelements) quantized_scratch.resize(4*nelements);
if (output_scratch.size() < nelements) output_scratch.resize(nelements);
if (max_thread < 1) max_thread = std::thread::hardware_concurrency();
int chunk_size = 32*512;
int num_chunks = (nelements + chunk_size - 1)/chunk_size;
if (num_chunks < 2 || max_thread < 2) {
test_roundtrip_on_chunk(layer, 0, nelements, qfns, use_reference, input_scratch_ptr, quantized_scratch.data(),
output_scratch.data(), print_layer_stats ? layer_error : total_error);
} else {
auto & stats = print_layer_stats ? layer_error : total_error;
std::mutex mutex;
uint64_t counter = 0;
auto compute = [&mutex, &counter, &stats, &qfns, nelements, layer, use_reference, input_scratch_ptr,
&quantized_scratch, &output_scratch, chunk_size] () {
error_stats local_stats {};
while (true) {
std::unique_lock<std::mutex> lock(mutex);
uint64_t offset = counter; counter += chunk_size;
if (offset >= nelements) {
combine_error_stats(stats, local_stats);
break;
}
lock.unlock();
uint64_t chunk = offset + chunk_size < nelements ? chunk_size : nelements - offset;
test_roundtrip_on_chunk(layer, offset, chunk, qfns, use_reference, input_scratch_ptr + offset,
quantized_scratch.data() + 4*offset, output_scratch.data() + offset, local_stats);
}
};
int nthread = std::min(num_chunks, max_thread);
std::vector<std::thread> workers(nthread-1);
for (auto& w : workers) w = std::thread(compute);
compute();
for (auto& w : workers) w.join();
}
if (print_layer_stats) {
print_error_stats(name, layer_error, false);
combine_error_stats(total_error, layer_error);
}
}
int main(int argc, char ** argv) {
ggml_time_init();
quantize_stats_params params;
// read command line
int max_thread = 0;
bool invalid_param = false;
std::string arg;
for (int i = 1; i < argc; i++) {
arg = argv[i];
if (arg == "-h" || arg == "--help") {
quantize_stats_print_usage(argc, argv);
exit(0);
} else if (arg == "-r" || arg == "--reference") {
params.reference = true;
} else if (arg == "-v") {
params.verbose = true;
} else if (arg == "-p" || arg == "--per-layer-stats") {
params.per_layer_stats = true;
} else if (arg == "--histogram") {
params.print_histogram = true;
} else if (arg == "-m" || arg == "--model") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.model = argv[i];
} else if (arg == "-l" || arg == "--include-layer") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.include_layers.push_back(argv[i]);
} else if (arg == "-L" || arg == "--exclude-layer") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.exclude_layers.push_back(argv[i]);
} else if (arg == "-t" || arg == "--type") {
if (++i >= argc) {
invalid_param = true;
break;
}
int j;
for (j = 0; j < GGML_TYPE_COUNT && strcmp(argv[i], ggml_type_name((ggml_type) j)) != 0; j++) {
// find match
}
if (j < GGML_TYPE_COUNT) {
params.include_types.push_back((ggml_type) j);
} else {
fprintf(stderr, "error: %s not in list of types\n", argv[i]);
invalid_param = true;
}
} else if (arg == "-n" || arg == "--num-threads") {
if (++i >= argc) {
invalid_param = true;
break;
}
max_thread = atoi(argv[i]);
} else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
quantize_stats_print_usage(argc, argv);
return 1;
}
}
if (invalid_param) {
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
quantize_stats_print_usage(argc, argv);
return 1;
}
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
// load the model
fprintf(stderr, "Loading model\n");
const int64_t t_main_start_us = ggml_time_us();
llama_context * ctx;
{
auto lparams = llama_context_default_params();
lparams.n_ctx = 256;
lparams.seed = 1;
lparams.f16_kv = false;
lparams.use_mlock = false;
ctx = llama_init_from_file(params.model.c_str(), lparams);
if (ctx == NULL) {
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
return 1;
}
}
Rewrite loading code to try to satisfy everyone: - Support all three formats (ggml, ggmf, ggjt). (However, I didn't include the hack needed to support GPT4All files without conversion. Those can still be used after converting them with convert.py from my other PR.) - Support both mmap and read (mmap is used by default, but can be disabled with `--no-mmap`, and is automatically disabled for pre-ggjt files or on platforms where mmap is not supported). - Support multi-file models like before, but automatically determine the number of parts rather than requiring `--n_parts`. - Improve validation and error checking. - Stop using the per-file type field (f16) entirely in favor of just relying on the per-tensor type/size fields. This has no immediate benefit, but makes it easier to experiment with different formats, and should make it easier to support the new GPTQ-for-LLaMa models in the future (I have some work in progress on that front). - Support VirtualLock on Windows (using the same `--mlock` option as on Unix). - Indicate loading progress when using mmap + mlock. (Which led me to the interesting observation that on my Linux machine, with a warm file cache, mlock actually takes some time, whereas mmap without mlock starts almost instantly...) - To help implement this, move mlock support from ggml to the loading code. - madvise/PrefetchVirtualMemory support (based on #740) - Switch from ifstream to the `fopen` family of functions to avoid unnecessary copying and, when mmap is enabled, allow reusing the same file descriptor for both metadata reads and mmap (whereas the existing implementation opens the file a second time to mmap). - Quantization now produces a single-file output even with multi-file inputs (not really a feature as much as 'it was easier this way'). Implementation notes: I tried to factor the code into more discrete pieces than before. Regarding code style: I tried to follow the code style, but I'm naughty and used a few advanced C++ features repeatedly: - Destructors to make it easier to ensure everything gets cleaned up. - Exceptions. I don't even usually use exceptions when writing C++, and I can remove them if desired... but here they make the loading code much more succinct while still properly handling a variety of errors, ranging from API calls failing to integer overflow and allocation failure. The exceptions are converted to error codes at the API boundary.) Co-authored-by: Pavol Rusnak <pavol@rusnak.io> (for the bit I copied from #740)
2023-04-08 12:24:37 -07:00
const auto &tensors = llama_internal_get_tensor_map(ctx);
// check layer tensors
int included_layers = 0;
int64_t max_nelements = 0;
bool is_f16 = false;
Rewrite loading code to try to satisfy everyone: - Support all three formats (ggml, ggmf, ggjt). (However, I didn't include the hack needed to support GPT4All files without conversion. Those can still be used after converting them with convert.py from my other PR.) - Support both mmap and read (mmap is used by default, but can be disabled with `--no-mmap`, and is automatically disabled for pre-ggjt files or on platforms where mmap is not supported). - Support multi-file models like before, but automatically determine the number of parts rather than requiring `--n_parts`. - Improve validation and error checking. - Stop using the per-file type field (f16) entirely in favor of just relying on the per-tensor type/size fields. This has no immediate benefit, but makes it easier to experiment with different formats, and should make it easier to support the new GPTQ-for-LLaMa models in the future (I have some work in progress on that front). - Support VirtualLock on Windows (using the same `--mlock` option as on Unix). - Indicate loading progress when using mmap + mlock. (Which led me to the interesting observation that on my Linux machine, with a warm file cache, mlock actually takes some time, whereas mmap without mlock starts almost instantly...) - To help implement this, move mlock support from ggml to the loading code. - madvise/PrefetchVirtualMemory support (based on #740) - Switch from ifstream to the `fopen` family of functions to avoid unnecessary copying and, when mmap is enabled, allow reusing the same file descriptor for both metadata reads and mmap (whereas the existing implementation opens the file a second time to mmap). - Quantization now produces a single-file output even with multi-file inputs (not really a feature as much as 'it was easier this way'). Implementation notes: I tried to factor the code into more discrete pieces than before. Regarding code style: I tried to follow the code style, but I'm naughty and used a few advanced C++ features repeatedly: - Destructors to make it easier to ensure everything gets cleaned up. - Exceptions. I don't even usually use exceptions when writing C++, and I can remove them if desired... but here they make the loading code much more succinct while still properly handling a variety of errors, ranging from API calls failing to integer overflow and allocation failure. The exceptions are converted to error codes at the API boundary.) Co-authored-by: Pavol Rusnak <pavol@rusnak.io> (for the bit I copied from #740)
2023-04-08 12:24:37 -07:00
for (const auto& kv_tensor : tensors) {
if (!layer_included(params, kv_tensor.first)) {
continue;
}
if (params.verbose) {
printf("%s: type %s, size %" PRId64 "\n", kv_tensor.first.c_str(), ggml_type_name(kv_tensor.second->type), ggml_nelements(kv_tensor.second));
}
if (kv_tensor.second->type == GGML_TYPE_F16) {
is_f16 = true;
} else if (kv_tensor.second->type != GGML_TYPE_F32) {
fprintf(stderr, "%s: error: Quantization should be tested with a float model, "
"this model contains already quantized layers (%s is type %d)\n", __func__, kv_tensor.first.c_str(), kv_tensor.second->type);
llama_free(ctx);
return 1;
}
included_layers++;
max_nelements = std::max(max_nelements, ggml_nelements(kv_tensor.second));
}
if (is_f16) {
printf("note: source model is f16\n");
}
printf("testing %d layers with max size %" PRId64 "\n", included_layers, max_nelements);
// allocate scratch space
std::vector<float> input_scratch;
std::vector<char> quantized_scratch;
std::vector<float> output_scratch;
// loop throught quantization types
for (int i = 0; i < GGML_TYPE_COUNT; i++) {
const ggml_type type = (ggml_type) i;
if (!params.include_types.empty() && std::find(params.include_types.begin(), params.include_types.end(), i) == params.include_types.end()) {
continue;
}
quantize_fns_t qfns = ggml_internal_get_quantize_fn(i);
if (qfns.quantize_row_q && qfns.dequantize_row_q) {
if (params.verbose) {
printf("testing %s ...\n", ggml_type_name(type));
}
error_stats global_stats {};
Rewrite loading code to try to satisfy everyone: - Support all three formats (ggml, ggmf, ggjt). (However, I didn't include the hack needed to support GPT4All files without conversion. Those can still be used after converting them with convert.py from my other PR.) - Support both mmap and read (mmap is used by default, but can be disabled with `--no-mmap`, and is automatically disabled for pre-ggjt files or on platforms where mmap is not supported). - Support multi-file models like before, but automatically determine the number of parts rather than requiring `--n_parts`. - Improve validation and error checking. - Stop using the per-file type field (f16) entirely in favor of just relying on the per-tensor type/size fields. This has no immediate benefit, but makes it easier to experiment with different formats, and should make it easier to support the new GPTQ-for-LLaMa models in the future (I have some work in progress on that front). - Support VirtualLock on Windows (using the same `--mlock` option as on Unix). - Indicate loading progress when using mmap + mlock. (Which led me to the interesting observation that on my Linux machine, with a warm file cache, mlock actually takes some time, whereas mmap without mlock starts almost instantly...) - To help implement this, move mlock support from ggml to the loading code. - madvise/PrefetchVirtualMemory support (based on #740) - Switch from ifstream to the `fopen` family of functions to avoid unnecessary copying and, when mmap is enabled, allow reusing the same file descriptor for both metadata reads and mmap (whereas the existing implementation opens the file a second time to mmap). - Quantization now produces a single-file output even with multi-file inputs (not really a feature as much as 'it was easier this way'). Implementation notes: I tried to factor the code into more discrete pieces than before. Regarding code style: I tried to follow the code style, but I'm naughty and used a few advanced C++ features repeatedly: - Destructors to make it easier to ensure everything gets cleaned up. - Exceptions. I don't even usually use exceptions when writing C++, and I can remove them if desired... but here they make the loading code much more succinct while still properly handling a variety of errors, ranging from API calls failing to integer overflow and allocation failure. The exceptions are converted to error codes at the API boundary.) Co-authored-by: Pavol Rusnak <pavol@rusnak.io> (for the bit I copied from #740)
2023-04-08 12:24:37 -07:00
for (const auto& kv_tensor : tensors) {
if (!layer_included(params, kv_tensor.first)) {
continue;
}
if (params.verbose) {
printf(" %s ...\n", kv_tensor.first.c_str());
}
std::string layer_name { ggml_type_name(type) };
layer_name += "::" + kv_tensor.first;
test_roundtrip_on_layer(
layer_name,
params.per_layer_stats,
qfns,
params.reference,
kv_tensor.second,
input_scratch,
quantized_scratch,
output_scratch,
global_stats,
max_thread
);
}
print_error_stats(ggml_type_name(type), global_stats, params.print_histogram);
}
}
llama_free(ctx);
// report timing
{
const int64_t t_main_end_us = ggml_time_us();
printf("\n");
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0);
}
return 0;
}