mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-26 22:30:32 +01:00
216 lines
6.8 KiB
Plaintext
216 lines
6.8 KiB
Plaintext
|
#include "norm.cuh"
|
||
|
|
||
|
template <int block_size>
|
||
|
static __global__ void norm_f32(const float * x, float * dst, const int ncols, const float eps) {
|
||
|
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
||
|
const int tid = threadIdx.x;
|
||
|
|
||
|
float2 mean_var = make_float2(0.f, 0.f);
|
||
|
|
||
|
for (int col = tid; col < ncols; col += block_size) {
|
||
|
const float xi = x[row*ncols + col];
|
||
|
mean_var.x += xi;
|
||
|
mean_var.y += xi * xi;
|
||
|
}
|
||
|
|
||
|
// sum up partial sums
|
||
|
mean_var = warp_reduce_sum(mean_var);
|
||
|
if (block_size > WARP_SIZE) {
|
||
|
__shared__ float2 s_sum[32];
|
||
|
int warp_id = threadIdx.x / WARP_SIZE;
|
||
|
int lane_id = threadIdx.x % WARP_SIZE;
|
||
|
if (lane_id == 0) {
|
||
|
s_sum[warp_id] = mean_var;
|
||
|
}
|
||
|
__syncthreads();
|
||
|
mean_var = s_sum[lane_id];
|
||
|
mean_var = warp_reduce_sum(mean_var);
|
||
|
}
|
||
|
|
||
|
const float mean = mean_var.x / ncols;
|
||
|
const float var = mean_var.y / ncols - mean * mean;
|
||
|
const float inv_std = rsqrtf(var + eps);
|
||
|
|
||
|
for (int col = tid; col < ncols; col += block_size) {
|
||
|
dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_std;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <int block_size>
|
||
|
static __global__ void group_norm_f32(const float * x, float * dst, const int group_size, const int ne_elements, const float eps) {
|
||
|
// blockIdx.x: num_groups idx
|
||
|
// threadIdx.x: block_size idx
|
||
|
int start = blockIdx.x * group_size;
|
||
|
int end = start + group_size;
|
||
|
|
||
|
start += threadIdx.x;
|
||
|
|
||
|
if (end >= ne_elements) {
|
||
|
end = ne_elements;
|
||
|
}
|
||
|
|
||
|
float tmp = 0.0f; // partial sum for thread in warp
|
||
|
|
||
|
for (int j = start; j < end; j += block_size) {
|
||
|
tmp += x[j];
|
||
|
}
|
||
|
|
||
|
tmp = warp_reduce_sum(tmp);
|
||
|
if (block_size > WARP_SIZE) {
|
||
|
__shared__ float s_sum[32];
|
||
|
int warp_id = threadIdx.x / WARP_SIZE;
|
||
|
int lane_id = threadIdx.x % WARP_SIZE;
|
||
|
if (lane_id == 0) {
|
||
|
s_sum[warp_id] = tmp;
|
||
|
}
|
||
|
__syncthreads();
|
||
|
tmp = s_sum[lane_id];
|
||
|
tmp = warp_reduce_sum(tmp);
|
||
|
}
|
||
|
|
||
|
float mean = tmp / group_size;
|
||
|
tmp = 0.0f;
|
||
|
|
||
|
for (int j = start; j < end; j += block_size) {
|
||
|
float xi = x[j] - mean;
|
||
|
dst[j] = xi;
|
||
|
tmp += xi * xi;
|
||
|
}
|
||
|
|
||
|
tmp = warp_reduce_sum(tmp);
|
||
|
if (block_size > WARP_SIZE) {
|
||
|
__shared__ float s_sum[32];
|
||
|
int warp_id = threadIdx.x / WARP_SIZE;
|
||
|
int lane_id = threadIdx.x % WARP_SIZE;
|
||
|
if (lane_id == 0) {
|
||
|
s_sum[warp_id] = tmp;
|
||
|
}
|
||
|
__syncthreads();
|
||
|
tmp = s_sum[lane_id];
|
||
|
tmp = warp_reduce_sum(tmp);
|
||
|
}
|
||
|
|
||
|
float variance = tmp / group_size;
|
||
|
float scale = rsqrtf(variance + eps);
|
||
|
for (int j = start; j < end; j += block_size) {
|
||
|
dst[j] *= scale;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <int block_size>
|
||
|
static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps) {
|
||
|
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
||
|
const int tid = threadIdx.x;
|
||
|
|
||
|
float tmp = 0.0f; // partial sum for thread in warp
|
||
|
|
||
|
for (int col = tid; col < ncols; col += block_size) {
|
||
|
const float xi = x[row*ncols + col];
|
||
|
tmp += xi * xi;
|
||
|
}
|
||
|
|
||
|
// sum up partial sums
|
||
|
tmp = warp_reduce_sum(tmp);
|
||
|
if (block_size > WARP_SIZE) {
|
||
|
__shared__ float s_sum[32];
|
||
|
int warp_id = threadIdx.x / WARP_SIZE;
|
||
|
int lane_id = threadIdx.x % WARP_SIZE;
|
||
|
if (lane_id == 0) {
|
||
|
s_sum[warp_id] = tmp;
|
||
|
}
|
||
|
__syncthreads();
|
||
|
tmp = s_sum[lane_id];
|
||
|
tmp = warp_reduce_sum(tmp);
|
||
|
}
|
||
|
|
||
|
const float mean = tmp / ncols;
|
||
|
const float scale = rsqrtf(mean + eps);
|
||
|
|
||
|
for (int col = tid; col < ncols; col += block_size) {
|
||
|
dst[row*ncols + col] = scale * x[row*ncols + col];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
|
||
|
GGML_ASSERT(ncols % WARP_SIZE == 0);
|
||
|
if (ncols < 1024) {
|
||
|
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||
|
norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
|
||
|
} else {
|
||
|
const dim3 block_dims(1024, 1, 1);
|
||
|
norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void group_norm_f32_cuda(const float * x, float * dst, const int num_groups, const int group_size, const int ne_elements, cudaStream_t stream) {
|
||
|
static const float eps = 1e-6f;
|
||
|
if (group_size < 1024) {
|
||
|
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||
|
group_norm_f32<WARP_SIZE><<<num_groups, block_dims, 0, stream>>>(x, dst, group_size, ne_elements, eps);
|
||
|
} else {
|
||
|
const dim3 block_dims(1024, 1, 1);
|
||
|
group_norm_f32<1024><<<num_groups, block_dims, 0, stream>>>(x, dst, group_size, ne_elements, eps);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
|
||
|
GGML_ASSERT(ncols % WARP_SIZE == 0);
|
||
|
if (ncols < 1024) {
|
||
|
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||
|
rms_norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
|
||
|
} else {
|
||
|
const dim3 block_dims(1024, 1, 1);
|
||
|
rms_norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void ggml_cuda_op_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||
|
const ggml_tensor * src0 = dst->src[0];
|
||
|
const float * src0_d = (const float *)src0->data;
|
||
|
float * dst_d = (float *)dst->data;
|
||
|
cudaStream_t stream = ctx.stream();
|
||
|
|
||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||
|
|
||
|
const int64_t ne00 = src0->ne[0];
|
||
|
const int64_t nrows = ggml_nrows(src0);
|
||
|
|
||
|
float eps;
|
||
|
memcpy(&eps, dst->op_params, sizeof(float));
|
||
|
|
||
|
norm_f32_cuda(src0_d, dst_d, ne00, nrows, eps, stream);
|
||
|
}
|
||
|
|
||
|
void ggml_cuda_op_group_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||
|
const ggml_tensor * src0 = dst->src[0];
|
||
|
const float * src0_d = (const float *)src0->data;
|
||
|
float * dst_d = (float *)dst->data;
|
||
|
cudaStream_t stream = ctx.stream();
|
||
|
|
||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||
|
|
||
|
int num_groups = dst->op_params[0];
|
||
|
int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
|
||
|
group_norm_f32_cuda(src0_d, dst_d, num_groups * src0->ne[3], group_size, ggml_nelements(src0), stream);
|
||
|
}
|
||
|
|
||
|
void ggml_cuda_op_rms_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||
|
const ggml_tensor * src0 = dst->src[0];
|
||
|
const float * src0_d = (const float *)src0->data;
|
||
|
float * dst_d = (float *)dst->data;
|
||
|
cudaStream_t stream = ctx.stream();
|
||
|
|
||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||
|
|
||
|
const int64_t ne00 = src0->ne[0];
|
||
|
const int64_t nrows = ggml_nrows(src0);
|
||
|
|
||
|
float eps;
|
||
|
memcpy(&eps, dst->op_params, sizeof(float));
|
||
|
|
||
|
rms_norm_f32_cuda(src0_d, dst_d, ne00, nrows, eps, stream);
|
||
|
}
|