mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-19 00:18:57 +01:00
95 lines
3.6 KiB
C
95 lines
3.6 KiB
C
|
#pragma once
|
||
|
|
||
|
#include "llama.h"
|
||
|
|
||
|
#include <unordered_map>
|
||
|
#include <string>
|
||
|
#include <vector>
|
||
|
|
||
|
#define LLAMA_NGRAM_MIN 1
|
||
|
#define LLAMA_NGRAM_MAX 4
|
||
|
#define LLAMA_NGRAM_STATIC 2
|
||
|
|
||
|
// Data structures to map n-grams to empirical token probabilities:
|
||
|
|
||
|
struct llama_ngram {
|
||
|
llama_token tokens[LLAMA_NGRAM_MAX];
|
||
|
|
||
|
llama_ngram() {
|
||
|
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
|
||
|
tokens[i] = -1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
llama_ngram(const llama_token * input, const int ngram_size) {
|
||
|
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
|
||
|
tokens[i] = i < ngram_size ? input[i] : -1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool operator==(const llama_ngram & other) const {
|
||
|
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
|
||
|
if (tokens[i] != other.tokens[i]) {
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
struct llama_ngram_hash_function {
|
||
|
size_t operator()(const llama_ngram & ngram) const {
|
||
|
size_t hash = 0;
|
||
|
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
|
||
|
hash ^= std::hash<llama_token>{}(ngram.tokens[i]);
|
||
|
}
|
||
|
return hash;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// token -> number of times token has been seen
|
||
|
typedef std::unordered_map<llama_token, int32_t> llama_ngram_cache_part;
|
||
|
|
||
|
// n-gram -> empirical distribution of following tokens
|
||
|
typedef std::unordered_map<llama_ngram, llama_ngram_cache_part, llama_ngram_hash_function> llama_ngram_cache;
|
||
|
|
||
|
|
||
|
// Update an ngram cache with tokens.
|
||
|
// ngram_cache: the cache to modify.
|
||
|
// ngram_min/ngram_max: the min/max size of the ngrams to extract from inp_data.
|
||
|
// inp_data: the token sequence with which to update ngram_cache.
|
||
|
// nnew: how many new tokens have been appended to inp_data since the last call to this function.
|
||
|
// print_progress: whether to print progress to stderr.
|
||
|
//
|
||
|
// In order to get correct results inp_data can ONLY BE APPENDED TO.
|
||
|
// Changes in the middle need a complete rebuild.
|
||
|
void llama_ngram_cache_update(
|
||
|
llama_ngram_cache & ngram_cache, int ngram_min, int ngram_max, std::vector<llama_token> & inp_data, int nnew, bool print_progress);
|
||
|
|
||
|
// Try to draft tokens from ngram caches.
|
||
|
// inp: the tokens generated so far.
|
||
|
// draft: the token sequence to draft. Expected to initially contain the previously sampled token.
|
||
|
// n_draft: maximum number of tokens to add to draft.
|
||
|
// ngram_min/gram_max: the min/max size of the ngrams in nc_context and nc_dynamic.
|
||
|
// nc_context: ngram cache based on current context.
|
||
|
// nc_dynamic: ngram cache based on previous user generations.
|
||
|
// nc_static: ngram cache generated from a large text corpus, used for validation.
|
||
|
void llama_ngram_cache_draft(
|
||
|
std::vector<llama_token> & inp, std::vector<llama_token> & draft, int n_draft, int ngram_min, int ngram_max,
|
||
|
llama_ngram_cache & nc_context, llama_ngram_cache & nc_dynamic, llama_ngram_cache & nc_static);
|
||
|
|
||
|
// Save an ngram cache to a file.
|
||
|
// ngram_cache: the ngram cache to save.
|
||
|
// filename: the path under which to save the ngram cache.
|
||
|
void llama_ngram_cache_save(llama_ngram_cache & ngram_cache, std::string & filename);
|
||
|
|
||
|
// Load an ngram cache saved with llama_ngram_cache_save.
|
||
|
// filename: the path from which to load the ngram cache.
|
||
|
// returns: an ngram cache containing the information saved to filename.
|
||
|
llama_ngram_cache llama_ngram_cache_load(std::string & filename);
|
||
|
|
||
|
// Merge two ngram caches.
|
||
|
// ngram_cache_target: the ngram cache to which to add the information from ngram_cache_add.
|
||
|
// ngram_cache_add: the ngram cache to add to ngram_cache_target.
|
||
|
void llama_ngram_cache_merge(llama_ngram_cache & ngram_cache_target, llama_ngram_cache & ngram_cache_add);
|