1
0
mirror of https://github.com/ggerganov/llama.cpp.git synced 2025-01-17 23:58:33 +01:00
llama.cpp/examples/cvector-generator/mean.hpp

49 lines
1.5 KiB
C++
Raw Normal View History

#include "common.h"
#include "llama.h"
#include "ggml.h"
#include <string>
#include <vector>
#include <math.h>
namespace mean {
static void run(
const std::vector<struct ggml_tensor *> & v_input, // shape of v_input[0]: [n_embd, n_samples]
const std::vector<struct ggml_tensor *> & v_output) {
printf("%s: Running mean...\n", __func__);
for (size_t il = 0; il < v_input.size(); ++il) {
// prepare output vector
struct ggml_tensor * ctrl_out = v_output[il];
ggml_format_name(ctrl_out, "direction.%ld", il+1);
// calculate mean vector
struct ggml_tensor * t_layer = v_input[il];
GGML_ASSERT(t_layer->ne[0] == ctrl_out->ne[0]); // == n_embd
for (int ic = 0; ic < t_layer->ne[0]; ic++) {
float f = 0.0;
for (int ir = 0; ir < t_layer->ne[1]; ir++) {
f += ggml_get_f32_nd(t_layer, ic, ir, 0, 0);
}
f /= t_layer->ne[1];
ggml_set_f32_1d(ctrl_out, ic, f);
}
// normalize output vector
float norm = 0.0;
for (int i = 0; i < ggml_nelements(ctrl_out); i++) {
float f = ggml_get_f32_1d(ctrl_out, i);
norm += f*f;
}
norm = sqrt(norm);
for (int i = 0; i < ggml_nelements(ctrl_out); i++) {
float f = ggml_get_f32_1d(ctrl_out, i);
ggml_set_f32_1d(ctrl_out, i, f / norm);
}
printf("%s: Done layer %d / %d\n", __func__, (int) il+1, (int) v_input.size());
}
}
}