llama.cpp/ggml/src/ggml-cuda/mma.cuh

218 lines
7.3 KiB
Plaintext
Raw Normal View History

#include "common.cuh"
struct mma_int_A_I16K4 {
static constexpr int I = 16;
static constexpr int K = 4;
static constexpr int ne = 2;
int x[ne] = {0};
static __device__ __forceinline__ int get_i(const int l) {
const int ret = (l%2) * (I/2) + threadIdx.x / K;
GGML_CUDA_ASSUME(ret >= 0);
GGML_CUDA_ASSUME(ret < I);
return ret;
}
static __device__ __forceinline__ int get_k(const int /* l */) {
const int ret = threadIdx.x % K;
GGML_CUDA_ASSUME(ret >= 0);
GGML_CUDA_ASSUME(ret < K);
return ret;
}
__device__ __forceinline__ void load(const int * __restrict__ xs0, const int & stride) {
#if defined(INT8_MMA_AVAILABLE)
const int * xs = xs0 + (threadIdx.x%I)*stride;
asm("ldmatrix.sync.aligned.m8n8.x2.b16 {%0, %1}, [%2];"
: "+r"(x[0]), "+r"(x[1])
: "l"(xs));
#else
#pragma unroll
for (int l = 0; l < ne; ++l) {
x[l] = xs0[get_i(l)*stride + get_k(l)];
}
#endif // defined(INT8_MMA_AVAILABLE)
}
};
struct mma_int_A_I16K8 {
static constexpr int I = 16;
static constexpr int K = 8;
static constexpr int ne = 4;
int x[ne] = {0};
static __device__ __forceinline__ int get_i(const int l) {
const int ret = (l%2) * (I/2) + threadIdx.x / (K/2);
GGML_CUDA_ASSUME(ret >= 0);
GGML_CUDA_ASSUME(ret < I);
return ret;
}
static __device__ __forceinline__ int get_k(const int l) {
const int ret = (l/2) * (K/2) + threadIdx.x % (K/2);
GGML_CUDA_ASSUME(ret >= 0);
GGML_CUDA_ASSUME(ret < K);
return ret;
}
__device__ __forceinline__ void load(const int * __restrict__ xs0, const int & stride) {
#if defined(INT8_MMA_AVAILABLE)
const int * xs = xs0 + (threadIdx.x%I)*stride + (threadIdx.x/I)*(K/2);
asm("ldmatrix.sync.aligned.m8n8.x4.b16 {%0, %1, %2, %3}, [%4];"
: "+r"(x[0]), "+r"(x[1]), "+r"(x[2]), "+r"(x[3])
: "l"(xs));
#else
#pragma unroll
for (int l = 0; l < ne; ++l) {
x[l] = xs0[get_i(l)*stride + get_k(l)];
}
#endif // defined(INT8_MMA_AVAILABLE)
}
};
struct mma_int_B_J8K4 {
static constexpr int J = 8;
static constexpr int K = 4;
static constexpr int ne = 1;
int x[ne] = {0};
static __device__ __forceinline__ int get_j(const int /* l */) {
const int ret = threadIdx.x / K;
GGML_CUDA_ASSUME(ret >= 0);
GGML_CUDA_ASSUME(ret < J);
return ret;
}
static __device__ __forceinline__ int get_k(const int /* l */) {
const int ret = threadIdx.x % K;
GGML_CUDA_ASSUME(ret >= 0);
GGML_CUDA_ASSUME(ret < K);
return ret;
}
__device__ __forceinline__ void load(const int * __restrict__ xs0, const int & stride) {
#if defined(INT8_MMA_AVAILABLE) && false // Loading as 4 byte values is faster
const int * xs = xs0 + (threadIdx.x%J)*stride;
asm("ldmatrix.sync.aligned.m8n8.x1.b16 {%0}, [%1];"
: "+r"(x[0])
: "l"(xs));
#else
#pragma unroll
for (int l = 0; l < ne; ++l) {
x[l] = xs0[get_j(l)*stride + get_k(l)];
}
#endif // defined(INT8_MMA_AVAILABLE)
}
};
struct mma_int_B_J8K8 {
static constexpr int J = 8;
static constexpr int K = 8;
static constexpr int ne = 2;
int x[ne] = {0};
static __device__ __forceinline__ int get_j(const int /* l */) {
const int ret = threadIdx.x / (K/2);
GGML_CUDA_ASSUME(ret >= 0);
GGML_CUDA_ASSUME(ret < J);
return ret;
}
static __device__ __forceinline__ int get_k(const int l) {
const int ret = l * (K/2) + threadIdx.x % (K/2);
GGML_CUDA_ASSUME(ret >= 0);
GGML_CUDA_ASSUME(ret < K);
return ret;
}
__device__ __forceinline__ void load(const int * __restrict__ xs0, const int & stride) {
#if defined(INT8_MMA_AVAILABLE) && false // Loading as 4 byte values is faster
const int * xs = xs0 + (threadIdx.x%J)*stride + ((threadIdx.x/J)*(K/2)) % K;
asm("ldmatrix.sync.aligned.m8n8.x2.b16 {%0, %1}, [%2];"
: "+r"(x[0]), "+r"(x[1])
: "l"(xs));
#else
#pragma unroll
for (int l = 0; l < ne; ++l) {
x[l] = xs0[get_j(l)*stride + get_k(l)];
}
#endif // defined(INT8_MMA_AVAILABLE)
}
};
struct mma_int_C_I16J8 {
static constexpr int I = 16;
static constexpr int J = 8;
static constexpr int ne = 4;
int x[ne] = {0};
static __device__ __forceinline__ int get_i(const int l) {
const int ret = (l/2) * (I/2) + threadIdx.x / (J/2);
GGML_CUDA_ASSUME(ret >= 0);
GGML_CUDA_ASSUME(ret < I);
return ret;
}
static __device__ __forceinline__ int get_j(const int l) {
const int ret = 2 * (threadIdx.x % (J/2)) + l%2;
GGML_CUDA_ASSUME(ret >= 0);
GGML_CUDA_ASSUME(ret < J);
return ret;
}
__device__ __forceinline__ void mma_K4(const mma_int_A_I16K4 & mma_A, const mma_int_B_J8K4 & mma_B) {
#ifdef INT8_MMA_AVAILABLE
#if __CUDA_ARCH__ >= CC_AMPERE
asm("mma.sync.aligned.m16n8k16.row.col.s32.s8.s8.s32 {%0, %1, %2, %3}, {%4, %5}, {%6}, {%0, %1, %2, %3};"
: "+r"(x[0]), "+r"(x[1]), "+r"(x[2]), "+r"(x[3])
: "r"(mma_A.x[0]), "r"(mma_A.x[1]), "r"(mma_B.x[0]));
#else
// On Turing m16n8k16 mma is not available, use 2x m8n8k16 mma instead:
asm("mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 {%0, %1}, {%2}, {%3}, {%0, %1};"
: "+r"(x[0]), "+r"(x[1])
: "r"(mma_A.x[0]), "r"(mma_B.x[0]));
asm("mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 {%0, %1}, {%2}, {%3}, {%0, %1};"
: "+r"(x[2]), "+r"(x[3])
: "r"(mma_A.x[1]), "r"(mma_B.x[0]));
#endif // __CUDA_ARCH__ >= CC_AMPERE
#else
GGML_UNUSED(mma_A);
GGML_UNUSED(mma_B);
NO_DEVICE_CODE;
#endif // INT8_MMA_AVAILABLE
}
__device__ __forceinline__ void mma_K8(const mma_int_A_I16K8 & mma_A, const mma_int_B_J8K8 & mma_B) {
#ifdef INT8_MMA_AVAILABLE
#if __CUDA_ARCH__ >= CC_AMPERE
asm("mma.sync.aligned.m16n8k32.row.col.s32.s8.s8.s32 {%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%0, %1, %2, %3};"
: "+r"(x[0]), "+r"(x[1]), "+r"(x[2]), "+r"(x[3])
: "r"(mma_A.x[0]), "r"(mma_A.x[1]), "r"(mma_A.x[2]), "r"(mma_A.x[3]), "r"(mma_B.x[0]), "r"(mma_B.x[1]));
#else
// On Turing m16n8k32 mma is not available, use 4x m8n8k16 mma instead:
asm("mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 {%0, %1}, {%2}, {%3}, {%0, %1};"
: "+r"(x[0]), "+r"(x[1])
: "r"(mma_A.x[0]), "r"(mma_B.x[0]));
asm("mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 {%0, %1}, {%2}, {%3}, {%0, %1};"
: "+r"(x[2]), "+r"(x[3])
: "r"(mma_A.x[1]), "r"(mma_B.x[0]));
asm("mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 {%0, %1}, {%2}, {%3}, {%0, %1};"
: "+r"(x[0]), "+r"(x[1])
: "r"(mma_A.x[2]), "r"(mma_B.x[1]));
asm("mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 {%0, %1}, {%2}, {%3}, {%0, %1};"
: "+r"(x[2]), "+r"(x[3])
: "r"(mma_A.x[3]), "r"(mma_B.x[1]));
#endif // __CUDA_ARCH__ >= CC_AMPERE
#else
GGML_UNUSED(mma_A);
GGML_UNUSED(mma_B);
NO_DEVICE_CODE;
#endif // INT8_MMA_AVAILABLE
}
};