mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-13 05:42:22 +01:00
67 lines
1.5 KiB
C
67 lines
1.5 KiB
C
|
#pragma once
|
||
|
|
||
|
#include "llama-impl.h"
|
||
|
#include "llama-hparams.h"
|
||
|
|
||
|
#include "ggml-cpp.h"
|
||
|
|
||
|
#include <unordered_map>
|
||
|
#include <vector>
|
||
|
|
||
|
//
|
||
|
// llama_adapter_cvec
|
||
|
//
|
||
|
|
||
|
// TODO: rename to llama_adapter_cvec
|
||
|
struct llama_control_vector {
|
||
|
std::vector<ggml_context_ptr> ctxs;
|
||
|
std::vector<ggml_backend_buffer_ptr> bufs;
|
||
|
|
||
|
std::vector<struct ggml_tensor *> tensors; // per layer
|
||
|
|
||
|
int32_t layer_start = -1;
|
||
|
int32_t layer_end = -1;
|
||
|
|
||
|
struct ggml_tensor * tensor_for(int il) const;
|
||
|
|
||
|
struct ggml_tensor * apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const;
|
||
|
};
|
||
|
|
||
|
int32_t llama_control_vector_apply(
|
||
|
struct llama_control_vector & cvec,
|
||
|
const llama_model & model,
|
||
|
const float * data,
|
||
|
size_t len,
|
||
|
int32_t n_embd,
|
||
|
int32_t il_start,
|
||
|
int32_t il_end);
|
||
|
|
||
|
//
|
||
|
// llama_adapter_lora
|
||
|
//
|
||
|
|
||
|
// TODO: rename to llama_adapter_lora_weight
|
||
|
struct llama_lora_weight {
|
||
|
struct ggml_tensor * a = nullptr;
|
||
|
struct ggml_tensor * b = nullptr;
|
||
|
|
||
|
llama_lora_weight() = default;
|
||
|
llama_lora_weight(struct ggml_tensor * a, struct ggml_tensor * b) : a(a), b(b) {}
|
||
|
};
|
||
|
|
||
|
// TODO: rename to llama_adapter_lora
|
||
|
struct llama_lora_adapter {
|
||
|
// map tensor name to lora_a_b
|
||
|
std::unordered_map<std::string, struct llama_lora_weight> ab_map;
|
||
|
|
||
|
std::vector<ggml_context_ptr> ctxs;
|
||
|
std::vector<ggml_backend_buffer_ptr> bufs;
|
||
|
|
||
|
float alpha;
|
||
|
|
||
|
llama_lora_adapter() = default;
|
||
|
~llama_lora_adapter() = default;
|
||
|
|
||
|
llama_lora_weight * get_weight(struct ggml_tensor * w);
|
||
|
};
|