2024-11-01 23:50:59 +01:00
|
|
|
#include "llama.h"
|
|
|
|
#include <cstdio>
|
|
|
|
#include <cstring>
|
|
|
|
#include <iostream>
|
|
|
|
#include <string>
|
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
static void print_usage(int, char ** argv) {
|
|
|
|
printf("\nexample usage:\n");
|
|
|
|
printf("\n %s -m model.gguf [-c context_size] [-ngl n_gpu_layers]\n", argv[0]);
|
|
|
|
printf("\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
int main(int argc, char ** argv) {
|
|
|
|
std::string model_path;
|
|
|
|
int ngl = 99;
|
|
|
|
int n_ctx = 2048;
|
|
|
|
|
|
|
|
// parse command line arguments
|
|
|
|
for (int i = 1; i < argc; i++) {
|
|
|
|
try {
|
|
|
|
if (strcmp(argv[i], "-m") == 0) {
|
|
|
|
if (i + 1 < argc) {
|
|
|
|
model_path = argv[++i];
|
|
|
|
} else {
|
|
|
|
print_usage(argc, argv);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
} else if (strcmp(argv[i], "-c") == 0) {
|
|
|
|
if (i + 1 < argc) {
|
|
|
|
n_ctx = std::stoi(argv[++i]);
|
|
|
|
} else {
|
|
|
|
print_usage(argc, argv);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
} else if (strcmp(argv[i], "-ngl") == 0) {
|
|
|
|
if (i + 1 < argc) {
|
|
|
|
ngl = std::stoi(argv[++i]);
|
|
|
|
} else {
|
|
|
|
print_usage(argc, argv);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
print_usage(argc, argv);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
} catch (std::exception & e) {
|
|
|
|
fprintf(stderr, "error: %s\n", e.what());
|
|
|
|
print_usage(argc, argv);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (model_path.empty()) {
|
|
|
|
print_usage(argc, argv);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// only print errors
|
|
|
|
llama_log_set([](enum ggml_log_level level, const char * text, void * /* user_data */) {
|
|
|
|
if (level >= GGML_LOG_LEVEL_ERROR) {
|
|
|
|
fprintf(stderr, "%s", text);
|
|
|
|
}
|
|
|
|
}, nullptr);
|
|
|
|
|
2024-11-25 15:13:39 +01:00
|
|
|
// load dynamic backends
|
|
|
|
ggml_backend_load_all();
|
|
|
|
|
2024-11-01 23:50:59 +01:00
|
|
|
// initialize the model
|
|
|
|
llama_model_params model_params = llama_model_default_params();
|
|
|
|
model_params.n_gpu_layers = ngl;
|
|
|
|
|
2025-01-06 09:55:18 +01:00
|
|
|
llama_model * model = llama_model_load_from_file(model_path.c_str(), model_params);
|
2024-11-01 23:50:59 +01:00
|
|
|
if (!model) {
|
|
|
|
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2025-01-12 10:32:42 +01:00
|
|
|
const llama_vocab * vocab = llama_model_get_vocab(model);
|
|
|
|
|
2024-11-01 23:50:59 +01:00
|
|
|
// initialize the context
|
|
|
|
llama_context_params ctx_params = llama_context_default_params();
|
|
|
|
ctx_params.n_ctx = n_ctx;
|
|
|
|
ctx_params.n_batch = n_ctx;
|
|
|
|
|
2025-01-12 10:32:42 +01:00
|
|
|
llama_context * ctx = llama_init_from_model(model, ctx_params);
|
2024-11-01 23:50:59 +01:00
|
|
|
if (!ctx) {
|
|
|
|
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// initialize the sampler
|
|
|
|
llama_sampler * smpl = llama_sampler_chain_init(llama_sampler_chain_default_params());
|
|
|
|
llama_sampler_chain_add(smpl, llama_sampler_init_min_p(0.05f, 1));
|
|
|
|
llama_sampler_chain_add(smpl, llama_sampler_init_temp(0.8f));
|
|
|
|
llama_sampler_chain_add(smpl, llama_sampler_init_dist(LLAMA_DEFAULT_SEED));
|
|
|
|
|
|
|
|
// helper function to evaluate a prompt and generate a response
|
|
|
|
auto generate = [&](const std::string & prompt) {
|
|
|
|
std::string response;
|
|
|
|
|
|
|
|
// tokenize the prompt
|
2025-01-12 10:32:42 +01:00
|
|
|
const int n_prompt_tokens = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, true, true);
|
2024-11-01 23:50:59 +01:00
|
|
|
std::vector<llama_token> prompt_tokens(n_prompt_tokens);
|
2025-01-12 10:32:42 +01:00
|
|
|
if (llama_tokenize(vocab, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), llama_get_kv_cache_used_cells(ctx) == 0, true) < 0) {
|
2024-11-01 23:50:59 +01:00
|
|
|
GGML_ABORT("failed to tokenize the prompt\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
// prepare a batch for the prompt
|
|
|
|
llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size());
|
|
|
|
llama_token new_token_id;
|
|
|
|
while (true) {
|
|
|
|
// check if we have enough space in the context to evaluate this batch
|
|
|
|
int n_ctx = llama_n_ctx(ctx);
|
|
|
|
int n_ctx_used = llama_get_kv_cache_used_cells(ctx);
|
|
|
|
if (n_ctx_used + batch.n_tokens > n_ctx) {
|
|
|
|
printf("\033[0m\n");
|
|
|
|
fprintf(stderr, "context size exceeded\n");
|
|
|
|
exit(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (llama_decode(ctx, batch)) {
|
|
|
|
GGML_ABORT("failed to decode\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
// sample the next token
|
|
|
|
new_token_id = llama_sampler_sample(smpl, ctx, -1);
|
|
|
|
|
|
|
|
// is it an end of generation?
|
2025-01-12 10:32:42 +01:00
|
|
|
if (llama_vocab_is_eog(vocab, new_token_id)) {
|
2024-11-01 23:50:59 +01:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
// convert the token to a string, print it and add it to the response
|
|
|
|
char buf[256];
|
2025-01-12 10:32:42 +01:00
|
|
|
int n = llama_token_to_piece(vocab, new_token_id, buf, sizeof(buf), 0, true);
|
2024-11-01 23:50:59 +01:00
|
|
|
if (n < 0) {
|
|
|
|
GGML_ABORT("failed to convert token to piece\n");
|
|
|
|
}
|
|
|
|
std::string piece(buf, n);
|
|
|
|
printf("%s", piece.c_str());
|
|
|
|
fflush(stdout);
|
|
|
|
response += piece;
|
|
|
|
|
|
|
|
// prepare the next batch with the sampled token
|
|
|
|
batch = llama_batch_get_one(&new_token_id, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
return response;
|
|
|
|
};
|
|
|
|
|
|
|
|
std::vector<llama_chat_message> messages;
|
|
|
|
std::vector<char> formatted(llama_n_ctx(ctx));
|
|
|
|
int prev_len = 0;
|
|
|
|
while (true) {
|
|
|
|
// get user input
|
|
|
|
printf("\033[32m> \033[0m");
|
|
|
|
std::string user;
|
|
|
|
std::getline(std::cin, user);
|
|
|
|
|
|
|
|
if (user.empty()) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2025-01-12 10:32:42 +01:00
|
|
|
const char * tmpl = llama_model_chat_template(model);
|
|
|
|
|
2024-11-01 23:50:59 +01:00
|
|
|
// add the user input to the message list and format it
|
|
|
|
messages.push_back({"user", strdup(user.c_str())});
|
2025-01-12 10:32:42 +01:00
|
|
|
int new_len = llama_chat_apply_template(tmpl, messages.data(), messages.size(), true, formatted.data(), formatted.size());
|
2024-11-01 23:50:59 +01:00
|
|
|
if (new_len > (int)formatted.size()) {
|
|
|
|
formatted.resize(new_len);
|
2025-01-12 10:32:42 +01:00
|
|
|
new_len = llama_chat_apply_template(tmpl, messages.data(), messages.size(), true, formatted.data(), formatted.size());
|
2024-11-01 23:50:59 +01:00
|
|
|
}
|
|
|
|
if (new_len < 0) {
|
|
|
|
fprintf(stderr, "failed to apply the chat template\n");
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// remove previous messages to obtain the prompt to generate the response
|
|
|
|
std::string prompt(formatted.begin() + prev_len, formatted.begin() + new_len);
|
|
|
|
|
|
|
|
// generate a response
|
|
|
|
printf("\033[33m");
|
|
|
|
std::string response = generate(prompt);
|
|
|
|
printf("\n\033[0m");
|
|
|
|
|
|
|
|
// add the response to the messages
|
|
|
|
messages.push_back({"assistant", strdup(response.c_str())});
|
2025-01-12 10:32:42 +01:00
|
|
|
prev_len = llama_chat_apply_template(tmpl, messages.data(), messages.size(), false, nullptr, 0);
|
2024-11-01 23:50:59 +01:00
|
|
|
if (prev_len < 0) {
|
|
|
|
fprintf(stderr, "failed to apply the chat template\n");
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// free resources
|
|
|
|
for (auto & msg : messages) {
|
|
|
|
free(const_cast<char *>(msg.content));
|
|
|
|
}
|
|
|
|
llama_sampler_free(smpl);
|
|
|
|
llama_free(ctx);
|
2025-01-06 09:55:18 +01:00
|
|
|
llama_model_free(model);
|
2024-11-01 23:50:59 +01:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|