mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-15 14:50:51 +01:00
81 lines
2.9 KiB
Markdown
81 lines
2.9 KiB
Markdown
|
# llama.cpp/example/tts
|
||
|
This example demonstrates the Text To Speech feature. It uses a
|
||
|
[model](https://www.outeai.com/blog/outetts-0.2-500m) from
|
||
|
[outeai](https://www.outeai.com/).
|
||
|
|
||
|
## Quickstart
|
||
|
If you have built llama.cpp with `-DLLAMA_CURL=ON` you can simply run the
|
||
|
following command and the required models will be downloaded automatically:
|
||
|
```console
|
||
|
$ build/bin/llama-tts --tts-oute-default -p "Hello world" && aplay output.wav
|
||
|
```
|
||
|
For details about the models and how to convert them to the required format
|
||
|
see the following sections.
|
||
|
|
||
|
### Model conversion
|
||
|
Checkout or download the model that contains the LLM model:
|
||
|
```console
|
||
|
$ pushd models
|
||
|
$ git clone --branch main --single-branch --depth 1 https://huggingface.co/OuteAI/OuteTTS-0.2-500M
|
||
|
$ cd OuteTTS-0.2-500M && git lfs install && git lfs pull
|
||
|
$ popd
|
||
|
```
|
||
|
Convert the model to .gguf format:
|
||
|
```console
|
||
|
(venv) python convert_hf_to_gguf.py models/OuteTTS-0.2-500M \
|
||
|
--outfile models/outetts-0.2-0.5B-f16.gguf --outtype f16
|
||
|
```
|
||
|
The generated model will be `models/outetts-0.2-0.5B-f16.gguf`.
|
||
|
|
||
|
We can optionally quantize this to Q8_0 using the following command:
|
||
|
```console
|
||
|
$ build/bin/llama-quantize models/outetts-0.2-0.5B-f16.gguf \
|
||
|
models/outetts-0.2-0.5B-q8_0.gguf q8_0
|
||
|
```
|
||
|
The quantized model will be `models/outetts-0.2-0.5B-q8_0.gguf`.
|
||
|
|
||
|
Next we do something simlar for the audio decoder. First download or checkout
|
||
|
the model for the voice decoder:
|
||
|
```console
|
||
|
$ pushd models
|
||
|
$ git clone --branch main --single-branch --depth 1 https://huggingface.co/novateur/WavTokenizer-large-speech-75token
|
||
|
$ cd WavTokenizer-large-speech-75token && git lfs install && git lfs pull
|
||
|
$ popd
|
||
|
```
|
||
|
This model file is PyTorch checkpoint (.ckpt) and we first need to convert it to
|
||
|
huggingface format:
|
||
|
```console
|
||
|
(venv) python examples/tts/convert_pt_to_hf.py \
|
||
|
models/WavTokenizer-large-speech-75token/wavtokenizer_large_speech_320_24k.ckpt
|
||
|
...
|
||
|
Model has been successfully converted and saved to models/WavTokenizer-large-speech-75token/model.safetensors
|
||
|
Metadata has been saved to models/WavTokenizer-large-speech-75token/index.json
|
||
|
Config has been saved to models/WavTokenizer-large-speech-75tokenconfig.json
|
||
|
```
|
||
|
Then we can convert the huggingface format to gguf:
|
||
|
```console
|
||
|
(venv) python convert_hf_to_gguf.py models/WavTokenizer-large-speech-75token \
|
||
|
--outfile models/wavtokenizer-large-75-f16.gguf --outtype f16
|
||
|
...
|
||
|
INFO:hf-to-gguf:Model successfully exported to models/wavtokenizer-large-75-f16.gguf
|
||
|
```
|
||
|
|
||
|
### Running the example
|
||
|
|
||
|
With both of the models generated, the LLM model and the voice decoder model,
|
||
|
we can run the example:
|
||
|
```console
|
||
|
$ build/bin/llama-tts -m ./models/outetts-0.2-0.5B-q8_0.gguf \
|
||
|
-mv ./models/wavtokenizer-large-75-f16.gguf \
|
||
|
-p "Hello world"
|
||
|
...
|
||
|
main: audio written to file 'output.wav'
|
||
|
```
|
||
|
The output.wav file will contain the audio of the prompt. This can be heard
|
||
|
by playing the file with a media player. On Linux the following command will
|
||
|
play the audio:
|
||
|
```console
|
||
|
$ aplay output.wav
|
||
|
```
|
||
|
|