410 lines
13 KiB
C++
Raw Normal View History

#if defined(_WIN32)
#include <windows.h>
#else
#include <unistd.h>
#endif
#include <climits>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <sstream>
#include <string>
#include <unordered_map>
#include <vector>
#include "llama-cpp.h"
typedef std::unique_ptr<char[]> char_array_ptr;
struct Argument {
std::string flag;
std::string help_text;
};
struct Options {
std::string model_path, prompt_non_interactive;
int ngl = 99;
int n_ctx = 2048;
};
class ArgumentParser {
public:
ArgumentParser(const char * program_name) : program_name(program_name) {}
void add_argument(const std::string & flag, std::string & var, const std::string & help_text = "") {
string_args[flag] = &var;
arguments.push_back({flag, help_text});
}
void add_argument(const std::string & flag, int & var, const std::string & help_text = "") {
int_args[flag] = &var;
arguments.push_back({flag, help_text});
}
int parse(int argc, const char ** argv) {
for (int i = 1; i < argc; ++i) {
std::string arg = argv[i];
if (string_args.count(arg)) {
if (i + 1 < argc) {
*string_args[arg] = argv[++i];
} else {
fprintf(stderr, "error: missing value for %s\n", arg.c_str());
print_usage();
return 1;
}
} else if (int_args.count(arg)) {
if (i + 1 < argc) {
if (parse_int_arg(argv[++i], *int_args[arg]) != 0) {
fprintf(stderr, "error: invalid value for %s: %s\n", arg.c_str(), argv[i]);
print_usage();
return 1;
}
} else {
fprintf(stderr, "error: missing value for %s\n", arg.c_str());
print_usage();
return 1;
}
} else {
fprintf(stderr, "error: unrecognized argument %s\n", arg.c_str());
print_usage();
return 1;
}
}
if (string_args["-m"]->empty()) {
fprintf(stderr, "error: -m is required\n");
print_usage();
return 1;
}
return 0;
}
private:
const char * program_name;
std::unordered_map<std::string, std::string *> string_args;
std::unordered_map<std::string, int *> int_args;
std::vector<Argument> arguments;
int parse_int_arg(const char * arg, int & value) {
char * end;
const long val = std::strtol(arg, &end, 10);
if (*end == '\0' && val >= INT_MIN && val <= INT_MAX) {
value = static_cast<int>(val);
return 0;
}
return 1;
}
void print_usage() const {
printf("\nUsage:\n");
printf(" %s [OPTIONS]\n\n", program_name);
printf("Options:\n");
for (const auto & arg : arguments) {
printf(" %-10s %s\n", arg.flag.c_str(), arg.help_text.c_str());
}
printf("\n");
}
};
class LlamaData {
public:
llama_model_ptr model;
llama_sampler_ptr sampler;
llama_context_ptr context;
std::vector<llama_chat_message> messages;
int init(const Options & opt) {
model = initialize_model(opt.model_path, opt.ngl);
if (!model) {
return 1;
}
context = initialize_context(model, opt.n_ctx);
if (!context) {
return 1;
}
sampler = initialize_sampler();
return 0;
}
private:
// Initializes the model and returns a unique pointer to it
llama_model_ptr initialize_model(const std::string & model_path, const int ngl) {
llama_model_params model_params = llama_model_default_params();
model_params.n_gpu_layers = ngl;
llama_model_ptr model(llama_load_model_from_file(model_path.c_str(), model_params));
if (!model) {
fprintf(stderr, "%s: error: unable to load model\n", __func__);
}
return model;
}
// Initializes the context with the specified parameters
llama_context_ptr initialize_context(const llama_model_ptr & model, const int n_ctx) {
llama_context_params ctx_params = llama_context_default_params();
ctx_params.n_ctx = n_ctx;
ctx_params.n_batch = n_ctx;
llama_context_ptr context(llama_new_context_with_model(model.get(), ctx_params));
if (!context) {
fprintf(stderr, "%s: error: failed to create the llama_context\n", __func__);
}
return context;
}
// Initializes and configures the sampler
llama_sampler_ptr initialize_sampler() {
llama_sampler_ptr sampler(llama_sampler_chain_init(llama_sampler_chain_default_params()));
llama_sampler_chain_add(sampler.get(), llama_sampler_init_min_p(0.05f, 1));
llama_sampler_chain_add(sampler.get(), llama_sampler_init_temp(0.8f));
llama_sampler_chain_add(sampler.get(), llama_sampler_init_dist(LLAMA_DEFAULT_SEED));
return sampler;
}
};
// Add a message to `messages` and store its content in `owned_content`
static void add_message(const char * role, const std::string & text, LlamaData & llama_data,
std::vector<char_array_ptr> & owned_content) {
char_array_ptr content(new char[text.size() + 1]);
std::strcpy(content.get(), text.c_str());
llama_data.messages.push_back({role, content.get()});
owned_content.push_back(std::move(content));
}
// Function to apply the chat template and resize `formatted` if needed
static int apply_chat_template(const LlamaData & llama_data, std::vector<char> & formatted, const bool append) {
int result = llama_chat_apply_template(llama_data.model.get(), nullptr, llama_data.messages.data(),
llama_data.messages.size(), append, formatted.data(), formatted.size());
if (result > static_cast<int>(formatted.size())) {
formatted.resize(result);
result = llama_chat_apply_template(llama_data.model.get(), nullptr, llama_data.messages.data(),
llama_data.messages.size(), append, formatted.data(), formatted.size());
}
return result;
}
// Function to tokenize the prompt
static int tokenize_prompt(const llama_model_ptr & model, const std::string & prompt,
std::vector<llama_token> & prompt_tokens) {
const int n_prompt_tokens = -llama_tokenize(model.get(), prompt.c_str(), prompt.size(), NULL, 0, true, true);
prompt_tokens.resize(n_prompt_tokens);
if (llama_tokenize(model.get(), prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true,
true) < 0) {
GGML_ABORT("failed to tokenize the prompt\n");
}
return n_prompt_tokens;
}
// Check if we have enough space in the context to evaluate this batch
static int check_context_size(const llama_context_ptr & ctx, const llama_batch & batch) {
const int n_ctx = llama_n_ctx(ctx.get());
const int n_ctx_used = llama_get_kv_cache_used_cells(ctx.get());
if (n_ctx_used + batch.n_tokens > n_ctx) {
printf("\033[0m\n");
fprintf(stderr, "context size exceeded\n");
return 1;
}
return 0;
}
// convert the token to a string
static int convert_token_to_string(const llama_model_ptr & model, const llama_token token_id, std::string & piece) {
char buf[256];
int n = llama_token_to_piece(model.get(), token_id, buf, sizeof(buf), 0, true);
if (n < 0) {
GGML_ABORT("failed to convert token to piece\n");
}
piece = std::string(buf, n);
return 0;
}
static void print_word_and_concatenate_to_response(const std::string & piece, std::string & response) {
printf("%s", piece.c_str());
fflush(stdout);
response += piece;
}
// helper function to evaluate a prompt and generate a response
static int generate(LlamaData & llama_data, const std::string & prompt, std::string & response) {
std::vector<llama_token> prompt_tokens;
const int n_prompt_tokens = tokenize_prompt(llama_data.model, prompt, prompt_tokens);
if (n_prompt_tokens < 0) {
return 1;
}
// prepare a batch for the prompt
llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size());
llama_token new_token_id;
while (true) {
check_context_size(llama_data.context, batch);
if (llama_decode(llama_data.context.get(), batch)) {
GGML_ABORT("failed to decode\n");
}
// sample the next token, check is it an end of generation?
new_token_id = llama_sampler_sample(llama_data.sampler.get(), llama_data.context.get(), -1);
if (llama_token_is_eog(llama_data.model.get(), new_token_id)) {
break;
}
std::string piece;
if (convert_token_to_string(llama_data.model, new_token_id, piece)) {
return 1;
}
print_word_and_concatenate_to_response(piece, response);
// prepare the next batch with the sampled token
batch = llama_batch_get_one(&new_token_id, 1);
}
return 0;
}
static int parse_arguments(const int argc, const char ** argv, Options & opt) {
ArgumentParser parser(argv[0]);
parser.add_argument("-m", opt.model_path, "model");
parser.add_argument("-p", opt.prompt_non_interactive, "prompt");
parser.add_argument("-c", opt.n_ctx, "context_size");
parser.add_argument("-ngl", opt.ngl, "n_gpu_layers");
if (parser.parse(argc, argv)) {
return 1;
}
return 0;
}
static int read_user_input(std::string & user) {
std::getline(std::cin, user);
return user.empty(); // Indicate an error or empty input
}
// Function to generate a response based on the prompt
static int generate_response(LlamaData & llama_data, const std::string & prompt, std::string & response) {
// Set response color
printf("\033[33m");
if (generate(llama_data, prompt, response)) {
fprintf(stderr, "failed to generate response\n");
return 1;
}
// End response with color reset and newline
printf("\n\033[0m");
return 0;
}
// Helper function to apply the chat template and handle errors
static int apply_chat_template_with_error_handling(const LlamaData & llama_data, std::vector<char> & formatted,
const bool is_user_input, int & output_length) {
const int new_len = apply_chat_template(llama_data, formatted, is_user_input);
if (new_len < 0) {
fprintf(stderr, "failed to apply the chat template\n");
return -1;
}
output_length = new_len;
return 0;
}
// Helper function to handle user input
static bool handle_user_input(std::string & user_input, const std::string & prompt_non_interactive) {
if (!prompt_non_interactive.empty()) {
user_input = prompt_non_interactive;
return true; // No need for interactive input
}
printf("\033[32m> \033[0m");
return !read_user_input(user_input); // Returns false if input ends the loop
}
// Function to tokenize the prompt
static int chat_loop(LlamaData & llama_data, std::string & prompt_non_interactive) {
std::vector<char_array_ptr> owned_content;
std::vector<char> fmtted(llama_n_ctx(llama_data.context.get()));
int prev_len = 0;
while (true) {
// Get user input
std::string user_input;
if (!handle_user_input(user_input, prompt_non_interactive)) {
break;
}
add_message("user", prompt_non_interactive.empty() ? user_input : prompt_non_interactive, llama_data,
owned_content);
int new_len;
if (apply_chat_template_with_error_handling(llama_data, fmtted, true, new_len) < 0) {
return 1;
}
std::string prompt(fmtted.begin() + prev_len, fmtted.begin() + new_len);
std::string response;
if (generate_response(llama_data, prompt, response)) {
return 1;
}
}
return 0;
}
static void log_callback(const enum ggml_log_level level, const char * text, void *) {
if (level == GGML_LOG_LEVEL_ERROR) {
fprintf(stderr, "%s", text);
}
}
static bool is_stdin_a_terminal() {
#if defined(_WIN32)
HANDLE hStdin = GetStdHandle(STD_INPUT_HANDLE);
DWORD mode;
return GetConsoleMode(hStdin, &mode);
#else
return isatty(STDIN_FILENO);
#endif
}
static std::string read_pipe_data() {
std::ostringstream result;
result << std::cin.rdbuf(); // Read all data from std::cin
return result.str();
}
int main(int argc, const char ** argv) {
Options opt;
if (parse_arguments(argc, argv, opt)) {
return 1;
}
if (!is_stdin_a_terminal()) {
if (!opt.prompt_non_interactive.empty()) {
opt.prompt_non_interactive += "\n\n";
}
opt.prompt_non_interactive += read_pipe_data();
}
llama_log_set(log_callback, nullptr);
LlamaData llama_data;
if (llama_data.init(opt)) {
return 1;
}
if (chat_loop(llama_data, opt.prompt_non_interactive)) {
return 1;
}
return 0;
}