llama.cpp/ggml/src/ggml-cann/acl_tensor.h

259 lines
12 KiB
C
Raw Normal View History

/*
* Copyright (c) 2023-2024 The ggml authors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#ifndef CANN_ACL_TENSOR_H
#define CANN_ACL_TENSOR_H
2024-08-05 06:22:30 +02:00
#include <algorithm>
#include <cstring>
#include <aclnn/aclnn_base.h>
#include "common.h"
/**
* @brief Maps a ggml_type to its corresponding aclDataType.
*
* @details This function takes a ggml_type as input and returns the corresponding
* aclDataType. It supports mapping for various ggml_types. If the input type
* does not match any of the predefined ggml_types, the function returns
* ACL_DT_UNDEFINED.
*
* @param type The ggml_type to be mapped.
* @return The corresponding aclDataType. If the input type is not recognized,
* ACL_DT_UNDEFINED is returned.
*/
aclDataType ggml_cann_type_mapping(ggml_type type);
/**
* @brief Creates an ACL tensor from a ggml_tensor with optional shape.
*
* @details This function creates an ACL tensor based on the properties of the
* provided ggml_tensor. It supports customer shape by adjusting dimensions
* and strides accordingly. If customer shape is applied, additional
* dimensions and strides are calculated based on the provided parameters.
*
* @param tensor Pointer to the ggml_tensor to be converted to ACL tensor.
* @param ne Pointer to an array containing dimensions. Defaults to nullptr
* if no customer shape is applied.
* @param nb Pointer to an array containing strides. Defaults to nullptr
* if no customer shape is applied.
* @param dims Number of dimensions in the tensor. Defaults to 0 if no customer
* shape is applied.
* @param format ACL tensor format. Defaults to ACL_FORMAT_ND.
* @param offset Offset in bytes for the ACL tensor data. Defaults to 0.
* @return Pointer to the created ACL tensor.
*/
aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne = nullptr,
size_t* nb = nullptr, int64_t dims = 0,
aclFormat format = ACL_FORMAT_ND,
size_t offset = 0);
/**
2024-08-05 06:22:30 +02:00
* @brief Template for creating an ACL tensor from provided parameters. typename TYPE
* should be size_t or float.
*
* @details This function creates an ACL tensor using the provided data pointer,
* data type, dimensions, strides, format, offset, and additional parameters.
* It calculates necessary dimensions and strides based on the provided ne and nb
* arrays, adjusting them for the ACL tensor creation. The ACL storage length
* is also calculated based on the provided dimensions and strides.
*
* @param data_ptr Pointer to the data buffer for the ACL tensor.
* @param dtype ACL data type of the tensor.
* @param type_size Size of each element in the tensor data buffer.
* @param ne Pointer to an array containing tensor dimensions.
* @param nb Pointer to an array containing tensor strides.
* @param dims Number of dimensions of the tensor.
* @param format ACL tensor format. Defaults to ACL_FORMAT_ND.
* @param offset Offset in bytes for the ACL tensor data. Defaults to 0.
* @return Pointer to the created ACL tensor.
*/
2024-08-05 06:22:30 +02:00
template<typename TYPE>
aclTensor* ggml_cann_create_tensor(void* data_ptr, aclDataType dtype,
2024-08-05 06:22:30 +02:00
TYPE type_size, int64_t* ne, TYPE* nb,
int64_t dims,
aclFormat format = ACL_FORMAT_ND,
size_t offset = 0) {
int64_t tmp_ne[GGML_MAX_DIMS * 2];
int64_t tmp_stride[GGML_MAX_DIMS * 2];
memcpy(tmp_ne, ne, dims * sizeof(int64_t));
for (int i = 0; i < dims; i++) {
tmp_stride[i] = nb[i] / type_size;
}
std::reverse(tmp_ne, tmp_ne + dims);
std::reverse(tmp_stride, tmp_stride + dims);
int64_t acl_storage_len = 0;
for (int i = 0; i < dims; i++) {
acl_storage_len += (ne[i] - 1) * nb[i];
}
aclTensor* acl_tensor =
aclCreateTensor(tmp_ne, dims, dtype, tmp_stride, offset / type_size,
format, &acl_storage_len, 1, data_ptr);
return acl_tensor;
}
/**
* @brief Checks if tensors require broadcasting based on their shapes.
*
* @details This function determines if two ggml_tensors need to be broadcasted for
* element-wise operations. Broadcasting is necessary if the shapes of the
* tensors are not identical and no dimension in either tensor equals 1.
*
* @param t0 Pointer to the first ggml_tensor.
* @param t1 Pointer to the second ggml_tensor.
* @return True if broadcasting is needed, False otherwise.
*
* @remarks This function iterates over the dimensions of t0 and t1. It checks if each
* dimension in t1 differs from t0's corresponding dimension and is not equal
* to 1. If such a dimension is found, broadcasting is required to align t1
* with t0 for element-wise operations.
*/
bool ggml_cann_need_bcast(const ggml_tensor* t0, const ggml_tensor* t1);
/**
* @brief Computes broadcast shapes and strides for two ggml_tensors.
*
* @details This function calculates the broadcast shapes and strides for two ggml_tensors,
* following the broadcasting rules similar to numpy. It adjusts dimensions and
* strides to ensure compatibility for element-wise operations where one tensor
* can be broadcasted to match the shape of another tensor.
*
* @param src0 Pointer to the first ggml_tensor.
* @param src1 Pointer to the second ggml_tensor.
* @param bcast_ne_src0 Output array to store broadcasted dimensions for src0.
* @param bcast_ne_src1 Output array to store broadcasted dimensions for src1.
* @param bcast_nb_src0 Output array to store broadcasted strides for src0.
* @param bcast_nb_src1 Output array to store broadcasted strides for src1.
* @return Number of dimensions in the broadcasted shape.
*
* @pre ggml_can_repeat(src1, src0) must return true, indicating src1 can be broadcasted
* to match src0.
*
* @remarks This function iterates over the dimensions of src0 and src1, calculating the
* necessary broadcast dimensions and strides. If a dimension requires broadcasting
* (i.e., its size in src1 is smaller than in src0), an additional dimension is
* added with size calculated to match src0's dimension. This adjustment ensures
* that src1 can be element-wise broadcasted to src0's shape.
*
* How it works:
*
* if dim0 has padding.
* a -> (2, 2) padding = 2
* a: [[1, 2, *, *]
* [2, 3, *, *]]
* nb = (8, 4, 2)
*
* if a should bcast with b -> (2, 4)
* b' -> (2, 2, 2)
* b : [[1, 2, 3, 4, *, *]
* [5, 6, 7, 8, *, *]]
* nb = (12, 6, 1)
*
* after bcast:
* a' -> (2, 1, 2)
* a': [[[1, 2], *, *]
* [[2, 3], *, *]]
* nb = (8, 4, 2, 1)
*
* b' : [[[1, 2], [3, 4], *, *]
* [[5, 6], [7, 8], *, *]]
* nb = (12, 6, 2, 1)
* \endcode
*
* dim1 in a inserted dim, should add nb for dim1,
* and all other nb moves to next in order.
*/
int64_t ggml_cann_get_bcast_shape(const ggml_tensor* src0, const ggml_tensor* src1,
int64_t* bcast_ne_src0, int64_t* bcast_ne_src1,
size_t* bcast_nb_src0, size_t* bcast_nb_src1);
// Bcast macro to avoid duplicate code.
#define BCAST_SHAPE(src0, src1) \
int64_t bcast_##src0##_ne[GGML_MAX_DIMS * 2]; \
int64_t bcast_##src1##_ne[GGML_MAX_DIMS * 2]; \
size_t bcast_##src0##_nb[GGML_MAX_DIMS * 2]; \
size_t bcast_##src1##_nb[GGML_MAX_DIMS * 2]; \
int64_t bcast_dims = ggml_cann_get_bcast_shape( \
src0, src1, bcast_##src0##_ne, bcast_##src1##_ne, bcast_##src0##_nb, \
bcast_##src1##_nb);
#define BCAST_PARAM(tensor) bcast_##tensor##_ne, bcast_##tensor##_nb, bcast_dims
/**
* @brief Calculates broadcast shapes for matrix multiplication.
*
* @details This function computes the broadcast shapes required for matrix multiplication
* based on the input, weight, and destination tensor shapes. It ensures that the
* dimensions of weight tensors are expanded appropriately to satisfy matrix
* multiplication broadcast rules.
*
* @param input_ne Array containing the dimensions of the input tensor.
* @param weight_ne Array containing the dimensions of the weight tensor.
* @param dst_ne Array containing the dimensions of the destination tensor.
* @param input_nb Array containing the strides of the input tensor.
* @param weight_nb Array containing the strides of the weight tensor.
* @param dst_nb Array containing the strides of the destination tensor.
* @param bcast_input_ne Output array for broadcasted input tensor dimensions.
* @param bcast_weight_ne Output array for broadcasted weight tensor dimensions.
* @param bcast_dst_ne Output array for broadcasted destination tensor dimensions.
* @param bcast_input_nb Output array for broadcasted input tensor strides.
* @param bcast_weight_nb Output array for broadcasted weight tensor strides.
* @param bcast_dst_nb Output array for broadcasted destination tensor strides.
* @return The number of dimensions in the broadcasted tensors.
*
* @remarks This function iterates over the tensor dimensions and calculates the broadcast
* shapes needed for matrix multiplication. It ensures that dimensions where
* weight tensor requires expansion are appropriately handled to conform with
* broadcasting rules.
* @note compare with ggml_cann_get_bcast_shape, mul_mat broadcast need add this new dim
* before cast dim.
* @sa ggml_cann_get_bcast_shape
*/
int64_t ggml_cann_get_mulmat_bcast_shape(
const int64_t* input_ne, const int64_t* weight_ne, const int64_t* dst_ne,
const size_t* input_nb, const size_t* weight_nb, const size_t* dst_nb,
int64_t* bcast_input_ne, int64_t* bcast_weight_ne, int64_t* bcast_dst_ne,
size_t* bcast_input_nb, size_t* bcast_weight_nb, size_t* bcast_dst_nb);
// Bcast macro to avoid duplicate code.
#define BCAST_MUL_MAT_SHAPE(input, weight, dst) \
int64_t bcast_##input##_ne[GGML_MAX_DIMS * 2]; \
int64_t bcast_##weight##_ne[GGML_MAX_DIMS * 2]; \
int64_t bcast_##dst##_ne[GGML_MAX_DIMS * 2]; \
size_t bcast_##input##_nb[GGML_MAX_DIMS * 2]; \
size_t bcast_##weight##_nb[GGML_MAX_DIMS * 2]; \
size_t bcast_##dst##_nb[GGML_MAX_DIMS * 2]; \
int64_t bcast_dims = ggml_cann_get_mulmat_bcast_shape( \
input->ne, weight->ne, dst->ne, input->nb, weight->nb, dst->nb, \
bcast_##input##_ne, bcast_##weight##_ne, bcast_##dst##_ne, \
bcast_##input##_nb, bcast_##weight##_nb, bcast_##dst##_nb);
#define BCAST_MUL_MAT_PARAM(tensor) \
bcast_##tensor##_ne, bcast_##tensor##_nb, bcast_dims
#endif // CANN_ACL_TENSOR_H