Currently this implementation supports [MobileVLM-1.7B](https://huggingface.co/mtgv/MobileVLM-1.7B) / [MobileVLM_V2-1.7B](https://huggingface.co/mtgv/MobileVLM_V2-1.7B) variants.
Notice: The overall process of model inference for both **MobileVLM** and **MobileVLM_V2** models is the same, but the process of model conversion is a little different. Therefore, using MobileVLM as an example, the different conversion step will be shown.
-p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWho is the author of this book? Answer the question using a single word or phrase. ASSISTANT:"
```
## Model conversion
- Clone `mobileVLM-1.7B` and `clip-vit-large-patch14-336` locally:
3. Use `convert-image-encoder-to-gguf.py` with `--projector-type ldp` (for **V2** the arg is `--projector-type ldpv2`) to convert the LLaVA image encoder to GGUF:
Now both the LLaMA part and the image encoder is in the `MobileVLM-1.7B` directory.
## Android compile and run
### compile
refer to `examples/llava/android/build_64.sh`
```sh
mkdir examples/llava/android/build_64
cd examples/llava/android/build_64
../build_64.sh
```
### run on Android
refer to `android/adb_run.sh`, modify resources' `name` and `path`
## some result on Android with `Snapdragon 888` chip
### case 1
**input**
```sh
/data/local/tmp/llava-cli \
-m /data/local/tmp/ggml-model-q4_k.gguf \
--mmproj /data/local/tmp/mmproj-model-f16.gguf \
-t 4 \
--image /data/local/tmp/demo.jpg \
-p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWho is the author of this book? \nAnswer the question using a single word or phrase. ASSISTANT:"
```
**output**
```sh
encode_image_with_clip: image encoded in 21148.71 ms by CLIP ( 146.87 ms per image patch)
Susan Wise Bauer
llama_print_timings: load time = 23574.72 ms
llama_print_timings: sample time = 1.24 ms / 6 runs ( 0.21 ms per token, 4850.44 tokens per second)
llama_print_timings: prompt eval time = 12460.15 ms / 246 tokens ( 50.65 ms per token, 19.74 tokens per second)
llama_print_timings: eval time = 424.86 ms / 6 runs ( 70.81 ms per token, 14.12 tokens per second)
llama_print_timings: total time = 34731.93 ms
```
### case 2
**input**
```sh
/data/local/tmp/llava-cli \
-m /data/local/tmp/ggml-model-q4_k.gguf \
--mmproj /data/local/tmp/mmproj-model-f16.gguf \
-t 4 \
--image /data/local/tmp/cat.jpeg \
-p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWhat is in the image? ASSISTANT:"
```
**output**
```sh
encode_image_with_clip: image encoded in 21149.51 ms by CLIP ( 146.87 ms per image patch)
The image depicts a cat sitting in the grass near some tall green plants.
llama_print_timings: load time = 23257.32 ms
llama_print_timings: sample time = 5.25 ms / 18 runs ( 0.29 ms per token, 3430.53 tokens per second)
llama_print_timings: prompt eval time = 11900.73 ms / 232 tokens ( 51.30 ms per token, 19.49 tokens per second)
llama_print_timings: eval time = 1279.03 ms / 18 runs ( 71.06 ms per token, 14.07 tokens per second)
-p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWho is the author of this book? \nAnswer the question using a single word or phrase. ASSISTANT:" \
--n-gpu-layers 999
```
**output**
```sh
encode_image_with_clip: image encoded in 296.62 ms by CLIP ( 2.06 ms per image patch)
Susan Wise Bauer
llama_print_timings: load time = 1067.64 ms
llama_print_timings: sample time = 1.53 ms / 6 runs ( 0.25 ms per token, 3934.43 tokens per second)
llama_print_timings: prompt eval time = 306.84 ms / 246 tokens ( 1.25 ms per token, 801.72 tokens per second)
llama_print_timings: eval time = 91.50 ms / 6 runs ( 15.25 ms per token, 65.58 tokens per second)
llama_print_timings: total time = 1352.63 ms / 252 tokens
```
### case 2
**input**
```sh
./llava-cli \
-m /data/local/tmp/ggml-model-q4_k.gguf \
--mmproj /data/local/tmp/mmproj-model-f16.gguf \
-p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWhat is in the image? ASSISTANT:" \
--n-gpu-layers 999
```
**output**
```sh
encode_image_with_clip: image encoded in 302.15 ms by CLIP ( 2.10 ms per image patch)
The image features a cat lying in the grass.
llama_print_timings: load time = 1057.07 ms
llama_print_timings: sample time = 3.27 ms / 11 runs ( 0.30 ms per token, 3360.83 tokens per second)
llama_print_timings: prompt eval time = 213.60 ms / 232 tokens ( 0.92 ms per token, 1086.14 tokens per second)
llama_print_timings: eval time = 166.65 ms / 11 runs ( 15.15 ms per token, 66.01 tokens per second)
llama_print_timings: total time = 1365.47 ms / 243 tokens
The `n_patch` of output in `ldp` is 1/4 of the input. In order to implement quickly, we uniformly modified `clip_n_patches` function to a quarter. when counting the time consumption, the calculated time will be 4 times bigger than the real cost.