mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-30 22:03:03 +01:00
1326 lines
44 KiB
C++
1326 lines
44 KiB
C++
|
#include "ggml.h"
|
||
|
#include "ggml-backend.h"
|
||
|
#include "ggml-impl.h"
|
||
|
#include "gguf.h"
|
||
|
|
||
|
#include <cinttypes>
|
||
|
#include <cstddef>
|
||
|
#include <cstdint>
|
||
|
#include <cstdio>
|
||
|
#include <cstdlib>
|
||
|
#include <cstring>
|
||
|
#include <map>
|
||
|
#include <new>
|
||
|
#include <stdexcept>
|
||
|
#include <string>
|
||
|
#include <vector>
|
||
|
|
||
|
template <typename T>
|
||
|
struct type_to_gguf_type;
|
||
|
|
||
|
template <>
|
||
|
struct type_to_gguf_type<uint8_t> {
|
||
|
static constexpr enum gguf_type value = GGUF_TYPE_UINT8;
|
||
|
};
|
||
|
|
||
|
template <>
|
||
|
struct type_to_gguf_type<int8_t> {
|
||
|
static constexpr enum gguf_type value = GGUF_TYPE_INT8;
|
||
|
};
|
||
|
|
||
|
template <>
|
||
|
struct type_to_gguf_type<uint16_t> {
|
||
|
static constexpr enum gguf_type value = GGUF_TYPE_UINT16;
|
||
|
};
|
||
|
|
||
|
template <>
|
||
|
struct type_to_gguf_type<int16_t> {
|
||
|
static constexpr enum gguf_type value = GGUF_TYPE_INT16;
|
||
|
};
|
||
|
|
||
|
template <>
|
||
|
struct type_to_gguf_type<uint32_t> {
|
||
|
static constexpr enum gguf_type value = GGUF_TYPE_UINT32;
|
||
|
};
|
||
|
|
||
|
template <>
|
||
|
struct type_to_gguf_type<int32_t> {
|
||
|
static constexpr enum gguf_type value = GGUF_TYPE_INT32;
|
||
|
};
|
||
|
|
||
|
template <>
|
||
|
struct type_to_gguf_type<float> {
|
||
|
static constexpr enum gguf_type value = GGUF_TYPE_FLOAT32;
|
||
|
};
|
||
|
|
||
|
template <>
|
||
|
struct type_to_gguf_type<bool> {
|
||
|
static constexpr enum gguf_type value = GGUF_TYPE_BOOL;
|
||
|
};
|
||
|
|
||
|
template <>
|
||
|
struct type_to_gguf_type<std::string> {
|
||
|
static constexpr enum gguf_type value = GGUF_TYPE_STRING;
|
||
|
};
|
||
|
|
||
|
template <>
|
||
|
struct type_to_gguf_type<uint64_t> {
|
||
|
static constexpr enum gguf_type value = GGUF_TYPE_UINT64;
|
||
|
};
|
||
|
|
||
|
template <>
|
||
|
struct type_to_gguf_type<int64_t> {
|
||
|
static constexpr enum gguf_type value = GGUF_TYPE_INT64;
|
||
|
};
|
||
|
|
||
|
template <>
|
||
|
struct type_to_gguf_type<double> {
|
||
|
static constexpr enum gguf_type value = GGUF_TYPE_FLOAT64;
|
||
|
};
|
||
|
|
||
|
static const std::map<gguf_type, size_t> GGUF_TYPE_SIZE = {
|
||
|
{GGUF_TYPE_UINT8, sizeof(uint8_t)},
|
||
|
{GGUF_TYPE_INT8, sizeof(int8_t)},
|
||
|
{GGUF_TYPE_UINT16, sizeof(uint16_t)},
|
||
|
{GGUF_TYPE_INT16, sizeof(int16_t)},
|
||
|
{GGUF_TYPE_UINT32, sizeof(uint32_t)},
|
||
|
{GGUF_TYPE_INT32, sizeof(int32_t)},
|
||
|
{GGUF_TYPE_FLOAT32, sizeof(float)},
|
||
|
{GGUF_TYPE_BOOL, sizeof(int8_t)},
|
||
|
{GGUF_TYPE_STRING, 0}, // undefined
|
||
|
{GGUF_TYPE_ARRAY, 0}, // undefined
|
||
|
{GGUF_TYPE_UINT64, sizeof(uint64_t)},
|
||
|
{GGUF_TYPE_INT64, sizeof(int64_t)},
|
||
|
{GGUF_TYPE_FLOAT64, sizeof(double)},
|
||
|
};
|
||
|
static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
|
||
|
|
||
|
static const std::map<gguf_type, const char *> GGUF_TYPE_NAME = {
|
||
|
{GGUF_TYPE_UINT8, "u8"},
|
||
|
{GGUF_TYPE_INT8, "i8"},
|
||
|
{GGUF_TYPE_UINT16, "u16"},
|
||
|
{GGUF_TYPE_INT16, "i16"},
|
||
|
{GGUF_TYPE_UINT32, "u32"},
|
||
|
{GGUF_TYPE_INT32, "i32"},
|
||
|
{GGUF_TYPE_FLOAT32, "f32"},
|
||
|
{GGUF_TYPE_BOOL, "bool"},
|
||
|
{GGUF_TYPE_STRING, "str"},
|
||
|
{GGUF_TYPE_ARRAY, "arr"},
|
||
|
{GGUF_TYPE_UINT64, "u64"},
|
||
|
{GGUF_TYPE_INT64, "i64"},
|
||
|
{GGUF_TYPE_FLOAT64, "f64"},
|
||
|
};
|
||
|
static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
|
||
|
|
||
|
size_t gguf_type_size(enum gguf_type type) {
|
||
|
auto it = GGUF_TYPE_SIZE.find(type);
|
||
|
return it == GGUF_TYPE_SIZE.end() ? 0 : it->second;
|
||
|
}
|
||
|
|
||
|
struct gguf_kv {
|
||
|
std::string key;
|
||
|
|
||
|
bool is_array;
|
||
|
enum gguf_type type;
|
||
|
|
||
|
std::vector<int8_t> data;
|
||
|
std::vector<std::string> data_string;
|
||
|
|
||
|
template <typename T>
|
||
|
gguf_kv(const std::string & key, const T value)
|
||
|
: key(key), is_array(false), type(type_to_gguf_type<T>::value) {
|
||
|
GGML_ASSERT(!key.empty());
|
||
|
data.resize(sizeof(T));
|
||
|
memcpy(data.data(), &value, sizeof(T));
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
gguf_kv(const std::string & key, const std::vector<T> & value)
|
||
|
: key(key), is_array(true), type(type_to_gguf_type<T>::value) {
|
||
|
GGML_ASSERT(!key.empty());
|
||
|
data.resize(value.size()*sizeof(T));
|
||
|
for (size_t i = 0; i < value.size(); ++i) {
|
||
|
const T tmp = value[i];
|
||
|
memcpy(data.data() + i*sizeof(T), &tmp, sizeof(T));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
gguf_kv(const std::string & key, const std::string & value)
|
||
|
: key(key), is_array(false), type(GGUF_TYPE_STRING) {
|
||
|
GGML_ASSERT(!key.empty());
|
||
|
data_string.push_back(value);
|
||
|
}
|
||
|
|
||
|
gguf_kv(const std::string & key, const std::vector<std::string> & value)
|
||
|
: key(key), is_array(true), type(GGUF_TYPE_STRING) {
|
||
|
GGML_ASSERT(!key.empty());
|
||
|
data_string = value;
|
||
|
}
|
||
|
|
||
|
const std::string & get_key() const {
|
||
|
return key;
|
||
|
}
|
||
|
|
||
|
const enum gguf_type & get_type() const {
|
||
|
return type;
|
||
|
}
|
||
|
|
||
|
size_t get_ne() const {
|
||
|
if (type == GGUF_TYPE_STRING) {
|
||
|
const size_t ne = data_string.size();
|
||
|
GGML_ASSERT(is_array || ne == 1);
|
||
|
return ne;
|
||
|
}
|
||
|
const size_t type_size = gguf_type_size(type);
|
||
|
GGML_ASSERT(data.size() % type_size == 0);
|
||
|
const size_t ne = data.size() / type_size;
|
||
|
GGML_ASSERT(is_array || ne == 1);
|
||
|
return ne;
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
const T & get_val(const size_t i = 0) const {
|
||
|
GGML_ASSERT(type_to_gguf_type<T>::value == type);
|
||
|
if constexpr (std::is_same<T, std::string>::value) {
|
||
|
GGML_ASSERT(data_string.size() >= i+1);
|
||
|
return data_string[i];
|
||
|
}
|
||
|
const size_t type_size = gguf_type_size(type);
|
||
|
GGML_ASSERT(data.size() % type_size == 0);
|
||
|
GGML_ASSERT(data.size() >= (i+1)*type_size);
|
||
|
return reinterpret_cast<const T *>(data.data())[i];
|
||
|
}
|
||
|
|
||
|
void cast(const enum gguf_type new_type) {
|
||
|
const size_t new_type_size = gguf_type_size(new_type);
|
||
|
GGML_ASSERT(data.size() % new_type_size == 0);
|
||
|
type = new_type;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
struct gguf_tensor_info {
|
||
|
struct ggml_tensor t; // for holding the equivalent info
|
||
|
uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
|
||
|
};
|
||
|
|
||
|
struct gguf_context {
|
||
|
uint32_t version = GGUF_VERSION;
|
||
|
|
||
|
std::vector<struct gguf_kv> kv;
|
||
|
std::vector<struct gguf_tensor_info> info;
|
||
|
|
||
|
size_t alignment = GGUF_DEFAULT_ALIGNMENT;
|
||
|
size_t offset = 0; // offset of `data` from beginning of file
|
||
|
size_t size = 0; // size of `data` in bytes
|
||
|
|
||
|
void * data = nullptr;
|
||
|
};
|
||
|
|
||
|
struct gguf_reader {
|
||
|
FILE * file;
|
||
|
|
||
|
gguf_reader(FILE * file) : file(file) {}
|
||
|
|
||
|
template <typename T>
|
||
|
bool read(T & dst) const {
|
||
|
return fread(&dst, 1, sizeof(dst), file) == sizeof(dst);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
bool read(std::vector<T> & dst, const size_t n) const {
|
||
|
dst.resize(n);
|
||
|
for (size_t i = 0; i < dst.size(); ++i) {
|
||
|
if constexpr (std::is_same<T, bool>::value) {
|
||
|
bool tmp;
|
||
|
if (!read(tmp)) {
|
||
|
return false;
|
||
|
}
|
||
|
dst[i] = tmp;
|
||
|
} else {
|
||
|
if (!read(dst[i])) {
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool read(bool & dst) const {
|
||
|
int8_t tmp = -1;
|
||
|
if (!read(tmp)) {
|
||
|
return false;
|
||
|
}
|
||
|
dst = tmp != 0;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool read(enum ggml_type & dst) const {
|
||
|
int32_t tmp = -1;
|
||
|
if (!read(tmp)) {
|
||
|
return false;
|
||
|
}
|
||
|
dst = ggml_type(tmp);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool read(enum gguf_type & dst) const {
|
||
|
int32_t tmp = -1;
|
||
|
if (!read(tmp)) {
|
||
|
return false;
|
||
|
}
|
||
|
dst = gguf_type(tmp);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool read(std::string & dst) const {
|
||
|
uint64_t size = -1;
|
||
|
if (!read(size)) {
|
||
|
return false;
|
||
|
}
|
||
|
dst.resize(size);
|
||
|
return fread(dst.data(), 1, dst.length(), file) == dst.length();
|
||
|
}
|
||
|
|
||
|
bool read(void * dst, const size_t size) const {
|
||
|
return fread(dst, 1, size, file) == size;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
struct gguf_context * gguf_init_empty(void) {
|
||
|
return new gguf_context;
|
||
|
}
|
||
|
|
||
|
template<typename T>
|
||
|
bool gguf_read_emplace_helper(const struct gguf_reader & gr, std::vector<struct gguf_kv> & kv, const std::string & key, const bool is_array, const size_t n) {
|
||
|
if (is_array) {
|
||
|
std::vector<T> value;
|
||
|
try {
|
||
|
if (!gr.read(value, n)) {
|
||
|
return false;
|
||
|
}
|
||
|
} catch (std::length_error &) {
|
||
|
fprintf(stderr, "%s: encountered length_error while reading value for key '%s'\n", __func__, key.c_str());
|
||
|
return false;
|
||
|
} catch (std::bad_alloc &) {
|
||
|
fprintf(stderr, "%s: encountered bad_alloc error while reading value for key '%s'\n", __func__, key.c_str());
|
||
|
return false;
|
||
|
}
|
||
|
kv.emplace_back(key, value);
|
||
|
} else {
|
||
|
T value;
|
||
|
if (!gr.read(value)) {
|
||
|
return false;
|
||
|
}
|
||
|
kv.emplace_back(key, value);
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_params params) {
|
||
|
const struct gguf_reader gr(file);
|
||
|
struct gguf_context * ctx = new gguf_context;
|
||
|
|
||
|
bool ok = true;
|
||
|
|
||
|
// file magic
|
||
|
{
|
||
|
std::vector<char> magic;
|
||
|
ok = ok && gr.read(magic, 4);
|
||
|
|
||
|
if (!ok) {
|
||
|
fprintf(stderr, "%s: failed to read magic\n", __func__);
|
||
|
gguf_free(ctx);
|
||
|
return nullptr;
|
||
|
}
|
||
|
|
||
|
for (uint32_t i = 0; i < magic.size(); i++) {
|
||
|
if (magic[i] != GGUF_MAGIC[i]) {
|
||
|
fprintf(stderr, "%s: invalid magic characters: '%c%c%c%c', expected 'GGUF'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
|
||
|
gguf_free(ctx);
|
||
|
return nullptr;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// header
|
||
|
int64_t n_kv = 0;
|
||
|
int64_t n_tensors = 0;
|
||
|
|
||
|
if (ok && gr.read(ctx->version)) {
|
||
|
if (ctx->version == 1) {
|
||
|
fprintf(stderr, "%s: GGUFv1 is no longer supported, please use a more up-to-date version\n", __func__);
|
||
|
ok = false;
|
||
|
}
|
||
|
if (ctx->version > GGUF_VERSION) {
|
||
|
fprintf(stderr, "%s: this GGUF file is version %" PRIu32 " but this software only supports up to version %d\n",
|
||
|
__func__, ctx->version, GGUF_VERSION);
|
||
|
ok = false;
|
||
|
}
|
||
|
} else {
|
||
|
ok = false;
|
||
|
}
|
||
|
|
||
|
if (ok && gr.read(n_tensors)) {
|
||
|
static_assert(sizeof(size_t) <= 8 && sizeof(gguf_tensor_info) >= 2, "int64_t insufficient for indexing");
|
||
|
if (n_tensors < 0 || n_tensors > int64_t(SIZE_MAX/sizeof(gguf_tensor_info))) {
|
||
|
fprintf(stderr, "%s: number of tensors is %" PRIi64 " but must be in [0, %zu]\n",
|
||
|
__func__, n_tensors, SIZE_MAX/sizeof(gguf_tensor_info));
|
||
|
ok = false;
|
||
|
}
|
||
|
} else {
|
||
|
ok = false;
|
||
|
}
|
||
|
|
||
|
if (ok && gr.read(n_kv)) {
|
||
|
static_assert(sizeof(size_t) <= 8 && sizeof(gguf_tensor_info) >= 2, "int64_t insufficient for indexing");
|
||
|
if (n_kv < 0 || n_kv > int64_t(SIZE_MAX/sizeof(gguf_kv))) {
|
||
|
fprintf(stderr, "%s: number of key value pairs is %" PRIi64 " but must be in [0, %zu]\n",
|
||
|
__func__, n_kv, SIZE_MAX/sizeof(gguf_kv));
|
||
|
ok = false;
|
||
|
}
|
||
|
} else {
|
||
|
ok = false;
|
||
|
}
|
||
|
|
||
|
if (!ok) {
|
||
|
fprintf(stderr, "%s: failed to read header\n", __func__);
|
||
|
gguf_free(ctx);
|
||
|
return nullptr;
|
||
|
}
|
||
|
|
||
|
// KV pairs
|
||
|
{
|
||
|
for (int64_t i = 0; ok && i < n_kv; ++i) {
|
||
|
std::string key;
|
||
|
gguf_type type = gguf_type(-1);
|
||
|
bool is_array = false;
|
||
|
uint64_t n = 1;
|
||
|
|
||
|
try {
|
||
|
ok = ok && gr.read(key);
|
||
|
} catch (std::length_error &) {
|
||
|
fprintf(stderr, "%s: encountered length_error while reading key %" PRIi64 "\n", __func__, i);
|
||
|
ok = false;
|
||
|
} catch (std::bad_alloc &) {
|
||
|
fprintf(stderr, "%s: encountered bad_alloc error while reading key %" PRIi64 "\n", __func__, i);
|
||
|
ok = false;
|
||
|
}
|
||
|
for (size_t j = 0; ok && j < ctx->kv.size(); ++j) {
|
||
|
if (key == ctx->kv[j].key) {
|
||
|
fprintf(stderr, "%s: duplicate key '%s' for tensors %zu and %" PRIi64 " \n", __func__, key.c_str(), j, i);
|
||
|
ok = false;
|
||
|
}
|
||
|
}
|
||
|
if (!ok) {
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
ok = ok && gr.read(type);
|
||
|
if (type == GGUF_TYPE_ARRAY) {
|
||
|
is_array = true;
|
||
|
ok = ok && gr.read(type);
|
||
|
ok = ok && gr.read(n);
|
||
|
}
|
||
|
if (!ok) {
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
switch (type) {
|
||
|
case GGUF_TYPE_UINT8: ok = ok && gguf_read_emplace_helper<uint8_t> (gr, ctx->kv, key, is_array, n); break;
|
||
|
case GGUF_TYPE_INT8: ok = ok && gguf_read_emplace_helper<int8_t> (gr, ctx->kv, key, is_array, n); break;
|
||
|
case GGUF_TYPE_UINT16: ok = ok && gguf_read_emplace_helper<uint16_t> (gr, ctx->kv, key, is_array, n); break;
|
||
|
case GGUF_TYPE_INT16: ok = ok && gguf_read_emplace_helper<int16_t> (gr, ctx->kv, key, is_array, n); break;
|
||
|
case GGUF_TYPE_UINT32: ok = ok && gguf_read_emplace_helper<uint32_t> (gr, ctx->kv, key, is_array, n); break;
|
||
|
case GGUF_TYPE_INT32: ok = ok && gguf_read_emplace_helper<int32_t> (gr, ctx->kv, key, is_array, n); break;
|
||
|
case GGUF_TYPE_FLOAT32: ok = ok && gguf_read_emplace_helper<float> (gr, ctx->kv, key, is_array, n); break;
|
||
|
case GGUF_TYPE_BOOL: ok = ok && gguf_read_emplace_helper<bool> (gr, ctx->kv, key, is_array, n); break;
|
||
|
case GGUF_TYPE_STRING: ok = ok && gguf_read_emplace_helper<std::string>(gr, ctx->kv, key, is_array, n); break;
|
||
|
case GGUF_TYPE_UINT64: ok = ok && gguf_read_emplace_helper<uint64_t> (gr, ctx->kv, key, is_array, n); break;
|
||
|
case GGUF_TYPE_INT64: ok = ok && gguf_read_emplace_helper<int64_t> (gr, ctx->kv, key, is_array, n); break;
|
||
|
case GGUF_TYPE_FLOAT64: ok = ok && gguf_read_emplace_helper<double> (gr, ctx->kv, key, is_array, n); break;
|
||
|
case GGUF_TYPE_ARRAY:
|
||
|
default:
|
||
|
{
|
||
|
fprintf(stderr, "%s: key '%s' has invalid GGUF type %d\n", __func__, key.c_str(), type);
|
||
|
ok = false;
|
||
|
} break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!ok) {
|
||
|
fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
|
||
|
gguf_free(ctx);
|
||
|
return nullptr;
|
||
|
}
|
||
|
GGML_ASSERT(int64_t(ctx->kv.size()) == n_kv);
|
||
|
|
||
|
const int alignment_idx = gguf_find_key(ctx, GGUF_KEY_GENERAL_ALIGNMENT);
|
||
|
ctx->alignment = alignment_idx == -1 ? GGUF_DEFAULT_ALIGNMENT : gguf_get_val_u32(ctx, alignment_idx);
|
||
|
|
||
|
if (ctx->alignment == 0 || (ctx->alignment & (ctx->alignment - 1)) != 0) {
|
||
|
fprintf(stderr, "%s: alignment %zu is not a power of 2\n", __func__, ctx->alignment);
|
||
|
gguf_free(ctx);
|
||
|
return nullptr;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// read the tensor info
|
||
|
for (int64_t i = 0; ok && i < n_tensors; ++i) {
|
||
|
struct gguf_tensor_info info;
|
||
|
|
||
|
// tensor name
|
||
|
{
|
||
|
std::string name;
|
||
|
try {
|
||
|
ok = ok && gr.read(name);
|
||
|
} catch (std::length_error &) {
|
||
|
fprintf(stderr, "%s: encountered length_error while reading tensor name %" PRIi64 "\n", __func__, i);
|
||
|
ok = false;
|
||
|
} catch (std::bad_alloc &) {
|
||
|
fprintf(stderr, "%s: encountered bad_alloc error while reading tensor name %" PRIi64 "\n", __func__, i);
|
||
|
ok = false;
|
||
|
}
|
||
|
if (name.length() >= GGML_MAX_NAME) {
|
||
|
fprintf(stderr, "%s: tensor name %" PRIi64 " is too long: %zu >= %d\n", __func__, i, name.length(), GGML_MAX_NAME);
|
||
|
ok = false;
|
||
|
break;
|
||
|
}
|
||
|
ggml_set_name(&info.t, name.c_str());
|
||
|
|
||
|
// make sure there are no duplicate tensor names
|
||
|
for (int64_t j = 0; ok && j < i; ++j) {
|
||
|
if (strcmp(info.t.name, ctx->info[j].t.name) == 0) {
|
||
|
fprintf(stderr, "%s: duplicate tensor name '%s' for tensors %" PRIi64 " and %" PRIi64 "\n", __func__, info.t.name, j, i);
|
||
|
ok = false;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (!ok) {
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
// tensor shape
|
||
|
{
|
||
|
uint32_t n_dims = -1;
|
||
|
ok = ok && gr.read(n_dims);
|
||
|
if (n_dims > GGML_MAX_DIMS) {
|
||
|
fprintf(stderr, "%s: tensor '%s' has invalid number of dimensions: %" PRIu32 " > %" PRIu32 "\n",
|
||
|
__func__, info.t.name, n_dims, GGML_MAX_DIMS);
|
||
|
ok = false;
|
||
|
break;
|
||
|
}
|
||
|
for (uint32_t j = 0; ok && j < GGML_MAX_DIMS; ++j) {
|
||
|
info.t.ne[j] = 1;
|
||
|
if (j < n_dims) {
|
||
|
ok = ok && gr.read(info.t.ne[j]);
|
||
|
}
|
||
|
|
||
|
// check that all ne are non-negative
|
||
|
if (info.t.ne[j] < 0) {
|
||
|
fprintf(stderr, "%s: tensor '%s' dimension %" PRIu32 " has invalid number of elements: %" PRIi64 " < 0\n",
|
||
|
__func__, info.t.name, j, info.t.ne[j]);
|
||
|
ok = false;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// check that the total number of elements is representable
|
||
|
if (ok && ((INT64_MAX/info.t.ne[1] <= info.t.ne[0]) ||
|
||
|
(INT64_MAX/info.t.ne[2] <= info.t.ne[0]*info.t.ne[1]) ||
|
||
|
(INT64_MAX/info.t.ne[3] <= info.t.ne[0]*info.t.ne[1]*info.t.ne[2]))) {
|
||
|
|
||
|
fprintf(stderr, "%s: total number of elements in tensor '%s' with shape "
|
||
|
"(%" PRIi64 ", %" PRIi64 ", %" PRIi64 ", %" PRIi64 ") is >= %" PRIi64 "\n",
|
||
|
__func__, info.t.name, info.t.ne[0], info.t.ne[1], info.t.ne[2], info.t.ne[3], INT64_MAX);
|
||
|
ok = false;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (!ok) {
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
// tensor type
|
||
|
{
|
||
|
ok = ok && gr.read(info.t.type);
|
||
|
|
||
|
// check that tensor type is within defined range
|
||
|
if (info.t.type < 0 || info.t.type >= GGML_TYPE_COUNT) {
|
||
|
fprintf(stderr, "%s: tensor '%s' has invalid ggml type %d (%s)\n",
|
||
|
__func__, info.t.name, info.t.type, ggml_type_name(info.t.type));
|
||
|
ok = false;
|
||
|
break;
|
||
|
}
|
||
|
const size_t type_size = ggml_type_size(info.t.type);
|
||
|
const int64_t blck_size = ggml_blck_size(info.t.type);
|
||
|
|
||
|
// check that row size is divisible by block size
|
||
|
if (blck_size == 0 || info.t.ne[0] % blck_size != 0) {
|
||
|
fprintf(stderr, "%s: tensor '%s' of type %d (%s) has %" PRId64 " elements per row, "
|
||
|
"not a multiple of block size (%" PRId64 ")\n",
|
||
|
__func__, info.t.name, (int) info.t.type, ggml_type_name(info.t.type), info.t.ne[0], blck_size);
|
||
|
ok = false;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
// calculate byte offsets given the tensor shape and type
|
||
|
info.t.nb[0] = type_size;
|
||
|
info.t.nb[1] = info.t.nb[0]*(info.t.ne[0]/blck_size);
|
||
|
for (int j = 2; j < GGML_MAX_DIMS; ++j) {
|
||
|
info.t.nb[j] = info.t.nb[j - 1]*info.t.ne[j - 1];
|
||
|
}
|
||
|
}
|
||
|
if (!ok) {
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
// tensor data offset within buffer
|
||
|
ok = ok && gr.read(info.offset);
|
||
|
|
||
|
ctx->info.push_back(info);
|
||
|
}
|
||
|
|
||
|
if (!ok) {
|
||
|
fprintf(stderr, "%s: failed to read tensor info\n", __func__);
|
||
|
gguf_free(ctx);
|
||
|
return nullptr;
|
||
|
}
|
||
|
GGML_ASSERT(int64_t(ctx->info.size()) == n_tensors);
|
||
|
|
||
|
// we require the data section to be aligned, so take into account any padding
|
||
|
if (fseek(file, GGML_PAD(ftell(file), ctx->alignment), SEEK_SET) != 0) {
|
||
|
fprintf(stderr, "%s: failed to seek to beginning of data section\n", __func__);
|
||
|
gguf_free(ctx);
|
||
|
return nullptr;
|
||
|
}
|
||
|
|
||
|
// store the current file offset - this is where the data section starts
|
||
|
ctx->offset = ftell(file);
|
||
|
|
||
|
// compute the total size of the data section, taking into account the alignment
|
||
|
{
|
||
|
ctx->size = 0;
|
||
|
for (size_t i = 0; i < ctx->info.size(); ++i) {
|
||
|
const gguf_tensor_info & ti = ctx->info[i];
|
||
|
if (ti.offset != ctx->size) {
|
||
|
fprintf(stderr, "%s: tensor '%s' has offset %" PRIu64 ", expected %zu\n",
|
||
|
__func__, ti.t.name, ti.offset, ctx->size);
|
||
|
fprintf(stderr, "%s: failed to read tensor data\n", __func__);
|
||
|
gguf_free(ctx);
|
||
|
return nullptr;
|
||
|
}
|
||
|
ctx->size += GGML_PAD(ggml_nbytes(&ti.t), ctx->alignment);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// load the tensor data only if requested
|
||
|
if (params.ctx != nullptr) {
|
||
|
// if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
|
||
|
// otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
|
||
|
// the ggml_tensor structs to the appropriate locations in the binary blob
|
||
|
|
||
|
// compute the exact size needed for the new ggml_context
|
||
|
const size_t mem_size =
|
||
|
params.no_alloc ?
|
||
|
(n_tensors )*ggml_tensor_overhead() :
|
||
|
(n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
|
||
|
|
||
|
struct ggml_init_params pdata = {
|
||
|
/*mem_size =*/ mem_size,
|
||
|
/*mem_buffer =*/ nullptr,
|
||
|
/*no_alloc =*/ params.no_alloc,
|
||
|
};
|
||
|
|
||
|
*params.ctx = ggml_init(pdata);
|
||
|
if (*params.ctx == nullptr) {
|
||
|
fprintf(stderr, "%s: failed to initialize ggml context for storing tensors\n", __func__);
|
||
|
gguf_free(ctx);
|
||
|
return nullptr;
|
||
|
}
|
||
|
|
||
|
struct ggml_context * ctx_data = *params.ctx;
|
||
|
|
||
|
struct ggml_tensor * data = nullptr;
|
||
|
|
||
|
if (!params.no_alloc) {
|
||
|
data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
|
||
|
|
||
|
ok = ok && data != nullptr;
|
||
|
|
||
|
// read the binary blob with the tensor data
|
||
|
ok = ok && gr.read(data->data, ctx->size);
|
||
|
|
||
|
if (!ok) {
|
||
|
fprintf(stderr, "%s: failed to read tensor data binary blob\n", __func__);
|
||
|
ggml_free(ctx_data);
|
||
|
*params.ctx = nullptr;
|
||
|
gguf_free(ctx);
|
||
|
return nullptr;
|
||
|
}
|
||
|
|
||
|
ctx->data = data->data;
|
||
|
}
|
||
|
|
||
|
ggml_set_no_alloc(ctx_data, true);
|
||
|
|
||
|
// create the tensors
|
||
|
for (size_t i = 0; i < ctx->info.size(); ++i) {
|
||
|
const struct gguf_tensor_info & info = ctx->info[i];
|
||
|
|
||
|
struct ggml_tensor * cur = ggml_new_tensor(ctx_data, info.t.type, GGML_MAX_DIMS, info.t.ne);
|
||
|
|
||
|
ok = ok && cur != nullptr;
|
||
|
|
||
|
if (!ok) {
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
ggml_set_name(cur, info.t.name);
|
||
|
|
||
|
// point the data member to the appropriate location in the binary blob using the tensor info
|
||
|
if (!params.no_alloc) {
|
||
|
cur->data = (char *) data->data + info.offset;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!ok) {
|
||
|
fprintf(stderr, "%s: failed to create tensors\n", __func__);
|
||
|
ggml_free(ctx_data);
|
||
|
*params.ctx = nullptr;
|
||
|
gguf_free(ctx);
|
||
|
return nullptr;
|
||
|
}
|
||
|
|
||
|
ggml_set_no_alloc(ctx_data, params.no_alloc);
|
||
|
}
|
||
|
|
||
|
return ctx;
|
||
|
}
|
||
|
|
||
|
struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
|
||
|
FILE * file = ggml_fopen(fname, "rb");
|
||
|
|
||
|
if (!file) {
|
||
|
fprintf(stderr, "%s: failed to open GGUF file '%s'\n", __func__, fname);
|
||
|
return nullptr;
|
||
|
}
|
||
|
|
||
|
struct gguf_context * result = gguf_init_from_file_impl(file, params);
|
||
|
fclose(file);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
void gguf_free(struct gguf_context * ctx) {
|
||
|
if (ctx == nullptr) {
|
||
|
return;
|
||
|
}
|
||
|
delete ctx;
|
||
|
}
|
||
|
|
||
|
const char * gguf_type_name(enum gguf_type type) {
|
||
|
auto it = GGUF_TYPE_NAME.find(type);
|
||
|
return it == GGUF_TYPE_NAME.end() ? nullptr : it->second;
|
||
|
}
|
||
|
|
||
|
uint32_t gguf_get_version(const struct gguf_context * ctx) {
|
||
|
return ctx->version;
|
||
|
}
|
||
|
|
||
|
size_t gguf_get_alignment(const struct gguf_context * ctx) {
|
||
|
return ctx->alignment;
|
||
|
}
|
||
|
|
||
|
size_t gguf_get_data_offset(const struct gguf_context * ctx) {
|
||
|
return ctx->offset;
|
||
|
}
|
||
|
|
||
|
int64_t gguf_get_n_kv(const struct gguf_context * ctx) {
|
||
|
return ctx->kv.size();
|
||
|
}
|
||
|
|
||
|
int64_t gguf_find_key(const struct gguf_context * ctx, const char * key) {
|
||
|
// return -1 if key not found
|
||
|
int64_t keyfound = -1;
|
||
|
|
||
|
const int64_t n_kv = gguf_get_n_kv(ctx);
|
||
|
|
||
|
for (int64_t i = 0; i < n_kv; ++i) {
|
||
|
if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
|
||
|
keyfound = i;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return keyfound;
|
||
|
}
|
||
|
|
||
|
const char * gguf_get_key(const struct gguf_context * ctx, int64_t key_id) {
|
||
|
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||
|
return ctx->kv[key_id].get_key().c_str();
|
||
|
}
|
||
|
|
||
|
enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int64_t key_id) {
|
||
|
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||
|
return ctx->kv[key_id].is_array ? GGUF_TYPE_ARRAY : ctx->kv[key_id].get_type();
|
||
|
}
|
||
|
|
||
|
enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int64_t key_id) {
|
||
|
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||
|
GGML_ASSERT(ctx->kv[key_id].is_array);
|
||
|
return ctx->kv[key_id].get_type();
|
||
|
}
|
||
|
|
||
|
const void * gguf_get_arr_data(const struct gguf_context * ctx, int64_t key_id) {
|
||
|
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||
|
GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING);
|
||
|
return ctx->kv[key_id].data.data();
|
||
|
}
|
||
|
|
||
|
const char * gguf_get_arr_str(const struct gguf_context * ctx, int64_t key_id, size_t i) {
|
||
|
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||
|
GGML_ASSERT(ctx->kv[key_id].get_type() == GGUF_TYPE_STRING);
|
||
|
return ctx->kv[key_id].data_string[i].c_str();
|
||
|
}
|
||
|
|
||
|
size_t gguf_get_arr_n(const struct gguf_context * ctx, int64_t key_id) {
|
||
|
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||
|
|
||
|
if (ctx->kv[key_id].type == GGUF_TYPE_STRING) {
|
||
|
return ctx->kv[key_id].data_string.size();
|
||
|
}
|
||
|
|
||
|
const size_t type_size = gguf_type_size(ctx->kv[key_id].type);
|
||
|
GGML_ASSERT(ctx->kv[key_id].data.size() % type_size == 0);
|
||
|
return ctx->kv[key_id].data.size() / type_size;
|
||
|
}
|
||
|
|
||
|
uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int64_t key_id) {
|
||
|
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||
|
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
|
||
|
return ctx->kv[key_id].get_val<uint8_t>();
|
||
|
}
|
||
|
|
||
|
int8_t gguf_get_val_i8(const struct gguf_context * ctx, int64_t key_id) {
|
||
|
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||
|
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
|
||
|
return ctx->kv[key_id].get_val<int8_t>();
|
||
|
}
|
||
|
|
||
|
uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int64_t key_id) {
|
||
|
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||
|
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
|
||
|
return ctx->kv[key_id].get_val<uint16_t>();
|
||
|
}
|
||
|
|
||
|
int16_t gguf_get_val_i16(const struct gguf_context * ctx, int64_t key_id) {
|
||
|
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||
|
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
|
||
|
return ctx->kv[key_id].get_val<int16_t>();
|
||
|
}
|
||
|
|
||
|
uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int64_t key_id) {
|
||
|
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||
|
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
|
||
|
return ctx->kv[key_id].get_val<uint32_t>();
|
||
|
}
|
||
|
|
||
|
int32_t gguf_get_val_i32(const struct gguf_context * ctx, int64_t key_id) {
|
||
|
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||
|
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
|
||
|
return ctx->kv[key_id].get_val<int32_t>();
|
||
|
}
|
||
|
|
||
|
float gguf_get_val_f32(const struct gguf_context * ctx, int64_t key_id) {
|
||
|
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||
|
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
|
||
|
return ctx->kv[key_id].get_val<float>();
|
||
|
}
|
||
|
|
||
|
uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int64_t key_id) {
|
||
|
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||
|
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
|
||
|
return ctx->kv[key_id].get_val<uint64_t>();
|
||
|
}
|
||
|
|
||
|
int64_t gguf_get_val_i64(const struct gguf_context * ctx, int64_t key_id) {
|
||
|
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||
|
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
|
||
|
return ctx->kv[key_id].get_val<int64_t>();
|
||
|
}
|
||
|
|
||
|
double gguf_get_val_f64(const struct gguf_context * ctx, int64_t key_id) {
|
||
|
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||
|
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
|
||
|
return ctx->kv[key_id].get_val<double>();
|
||
|
}
|
||
|
|
||
|
bool gguf_get_val_bool(const struct gguf_context * ctx, int64_t key_id) {
|
||
|
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||
|
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
|
||
|
return ctx->kv[key_id].get_val<bool>();
|
||
|
}
|
||
|
|
||
|
const char * gguf_get_val_str(const struct gguf_context * ctx, int64_t key_id) {
|
||
|
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||
|
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
|
||
|
return ctx->kv[key_id].get_val<std::string>().c_str();
|
||
|
}
|
||
|
|
||
|
const void * gguf_get_val_data(const struct gguf_context * ctx, int64_t key_id) {
|
||
|
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||
|
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
|
||
|
GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING);
|
||
|
return ctx->kv[key_id].data.data();
|
||
|
}
|
||
|
|
||
|
int64_t gguf_get_n_tensors(const struct gguf_context * ctx) {
|
||
|
return ctx->info.size();
|
||
|
}
|
||
|
|
||
|
int64_t gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
|
||
|
// return -1 if tensor not found
|
||
|
int64_t tensor_id = -1;
|
||
|
|
||
|
const int64_t n_tensors = gguf_get_n_tensors(ctx);
|
||
|
|
||
|
for (int64_t i = 0; i < n_tensors; ++i) {
|
||
|
if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
|
||
|
tensor_id = i;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return tensor_id;
|
||
|
}
|
||
|
|
||
|
size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int64_t tensor_id) {
|
||
|
GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx));
|
||
|
return ctx->info[tensor_id].offset;
|
||
|
}
|
||
|
|
||
|
const char * gguf_get_tensor_name(const struct gguf_context * ctx, int64_t tensor_id) {
|
||
|
GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx));
|
||
|
return ctx->info[tensor_id].t.name;
|
||
|
}
|
||
|
|
||
|
enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int64_t tensor_id) {
|
||
|
GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx));
|
||
|
return ctx->info[tensor_id].t.type;
|
||
|
}
|
||
|
|
||
|
size_t gguf_get_tensor_size(const struct gguf_context * ctx, int64_t tensor_id) {
|
||
|
GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx));
|
||
|
return ggml_nbytes(&ctx->info[tensor_id].t);
|
||
|
}
|
||
|
|
||
|
int64_t gguf_remove_key(struct gguf_context * ctx, const char * key) {
|
||
|
const int64_t key_id = gguf_find_key(ctx, key);
|
||
|
if (key_id >= 0) {
|
||
|
ctx->kv.erase(ctx->kv.begin() + key_id);
|
||
|
}
|
||
|
return key_id;
|
||
|
}
|
||
|
|
||
|
template<typename T>
|
||
|
static void gguf_check_reserved_keys(const std::string & key, const T val) {
|
||
|
if (key == GGUF_KEY_GENERAL_ALIGNMENT) {
|
||
|
if constexpr (std::is_same<T, uint32_t>::value) {
|
||
|
GGML_ASSERT(val > 0 && (val & (val - 1)) == 0 && GGUF_KEY_GENERAL_ALIGNMENT " must be power of 2");
|
||
|
} else {
|
||
|
GGML_ABORT(GGUF_KEY_GENERAL_ALIGNMENT " must be type u32");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
|
||
|
gguf_check_reserved_keys(key, val);
|
||
|
gguf_remove_key(ctx, key);
|
||
|
ctx->kv.emplace_back(key, val);
|
||
|
}
|
||
|
|
||
|
void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
|
||
|
gguf_check_reserved_keys(key, val);
|
||
|
gguf_remove_key(ctx, key);
|
||
|
ctx->kv.emplace_back(key, val);
|
||
|
}
|
||
|
|
||
|
void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
|
||
|
gguf_check_reserved_keys(key, val);
|
||
|
gguf_remove_key(ctx, key);
|
||
|
ctx->kv.emplace_back(key, val);
|
||
|
}
|
||
|
|
||
|
void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
|
||
|
gguf_check_reserved_keys(key, val);
|
||
|
gguf_remove_key(ctx, key);
|
||
|
ctx->kv.emplace_back(key, val);
|
||
|
}
|
||
|
|
||
|
void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
|
||
|
gguf_check_reserved_keys(key, val);
|
||
|
gguf_remove_key(ctx, key);
|
||
|
ctx->kv.emplace_back(key, val);
|
||
|
}
|
||
|
|
||
|
void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
|
||
|
gguf_check_reserved_keys(key, val);
|
||
|
gguf_remove_key(ctx, key);
|
||
|
ctx->kv.emplace_back(key, val);
|
||
|
}
|
||
|
|
||
|
void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
|
||
|
gguf_check_reserved_keys(key, val);
|
||
|
gguf_remove_key(ctx, key);
|
||
|
ctx->kv.emplace_back(key, val);
|
||
|
}
|
||
|
|
||
|
void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
|
||
|
gguf_check_reserved_keys(key, val);
|
||
|
gguf_remove_key(ctx, key);
|
||
|
ctx->kv.emplace_back(key, val);
|
||
|
}
|
||
|
|
||
|
void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
|
||
|
gguf_check_reserved_keys(key, val);
|
||
|
gguf_remove_key(ctx, key);
|
||
|
ctx->kv.emplace_back(key, val);
|
||
|
}
|
||
|
|
||
|
void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
|
||
|
gguf_check_reserved_keys(key, val);
|
||
|
gguf_remove_key(ctx, key);
|
||
|
ctx->kv.emplace_back(key, val);
|
||
|
}
|
||
|
|
||
|
void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
|
||
|
gguf_check_reserved_keys(key, val);
|
||
|
gguf_remove_key(ctx, key);
|
||
|
ctx->kv.emplace_back(key, val);
|
||
|
}
|
||
|
|
||
|
void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
|
||
|
gguf_check_reserved_keys(key, val);
|
||
|
gguf_remove_key(ctx, key);
|
||
|
ctx->kv.emplace_back(key, std::string(val));
|
||
|
}
|
||
|
|
||
|
void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, size_t n) {
|
||
|
gguf_check_reserved_keys(key, data);
|
||
|
gguf_remove_key(ctx, key);
|
||
|
|
||
|
const size_t nbytes = n*gguf_type_size(type);
|
||
|
std::vector<int8_t> tmp(nbytes);
|
||
|
if (!tmp.empty()) {
|
||
|
memcpy(tmp.data(), data, nbytes);
|
||
|
}
|
||
|
ctx->kv.emplace_back(key, tmp);
|
||
|
ctx->kv.back().cast(type);
|
||
|
}
|
||
|
|
||
|
void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, size_t n) {
|
||
|
gguf_check_reserved_keys(key, data);
|
||
|
gguf_remove_key(ctx, key);
|
||
|
|
||
|
std::vector<std::string> tmp(n);
|
||
|
for (size_t i = 0; i < n; ++i) {
|
||
|
tmp[i] = data[i];
|
||
|
}
|
||
|
ctx->kv.emplace_back(key, tmp);
|
||
|
}
|
||
|
|
||
|
// set or add KV pairs from another context
|
||
|
void gguf_set_kv(struct gguf_context * ctx, const struct gguf_context * src) {
|
||
|
const int64_t n_kv = gguf_get_n_kv(src);
|
||
|
for (int64_t i = 0; i < n_kv; ++i) {
|
||
|
const struct gguf_kv & kv = src->kv[i];
|
||
|
|
||
|
if (!kv.is_array) {
|
||
|
switch (kv.get_type()) {
|
||
|
case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, kv.get_key().c_str(), kv.get_val<uint8_t>()); break;
|
||
|
case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, kv.get_key().c_str(), kv.get_val<int8_t>()); break;
|
||
|
case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, kv.get_key().c_str(), kv.get_val<uint16_t>()); break;
|
||
|
case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, kv.get_key().c_str(), kv.get_val<int16_t>()); break;
|
||
|
case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, kv.get_key().c_str(), kv.get_val<uint32_t>()); break;
|
||
|
case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, kv.get_key().c_str(), kv.get_val<int32_t>()); break;
|
||
|
case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, kv.get_key().c_str(), kv.get_val<float>()); break;
|
||
|
case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, kv.get_key().c_str(), kv.get_val<uint64_t>()); break;
|
||
|
case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, kv.get_key().c_str(), kv.get_val<int64_t>()); break;
|
||
|
case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, kv.get_key().c_str(), kv.get_val<double>()); break;
|
||
|
case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, kv.get_key().c_str(), kv.get_val<bool>()); break;
|
||
|
case GGUF_TYPE_STRING: gguf_set_val_str (ctx, kv.get_key().c_str(), kv.get_val<std::string>().c_str()); break;
|
||
|
case GGUF_TYPE_ARRAY:
|
||
|
default: GGML_ABORT("invalid type");
|
||
|
}
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
const size_t ne = kv.get_ne();
|
||
|
|
||
|
switch (kv.get_type()) {
|
||
|
case GGUF_TYPE_UINT8:
|
||
|
case GGUF_TYPE_INT8:
|
||
|
case GGUF_TYPE_UINT16:
|
||
|
case GGUF_TYPE_INT16:
|
||
|
case GGUF_TYPE_UINT32:
|
||
|
case GGUF_TYPE_INT32:
|
||
|
case GGUF_TYPE_FLOAT32:
|
||
|
case GGUF_TYPE_UINT64:
|
||
|
case GGUF_TYPE_INT64:
|
||
|
case GGUF_TYPE_FLOAT64:
|
||
|
case GGUF_TYPE_BOOL: {
|
||
|
gguf_set_arr_data(ctx, kv.get_key().c_str(), kv.get_type(), kv.data.data(), ne);
|
||
|
} break;
|
||
|
case GGUF_TYPE_STRING: {
|
||
|
std::vector<const char *> tmp(ne);
|
||
|
for (size_t j = 0; j < ne; ++j) {
|
||
|
tmp[j] = kv.data_string[j].c_str();
|
||
|
}
|
||
|
gguf_set_arr_str(ctx, kv.get_key().c_str(), tmp.data(), ne);
|
||
|
} break;
|
||
|
case GGUF_TYPE_ARRAY:
|
||
|
default: GGML_ABORT("invalid type");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void gguf_add_tensor(
|
||
|
struct gguf_context * ctx,
|
||
|
const struct ggml_tensor * tensor) {
|
||
|
GGML_ASSERT(tensor);
|
||
|
if (gguf_find_tensor(ctx, tensor->name) != -1) {
|
||
|
GGML_ABORT("duplicate tensor name: %s", tensor->name);
|
||
|
}
|
||
|
|
||
|
struct gguf_tensor_info ti;
|
||
|
ti.t = *tensor;
|
||
|
ti.offset = ctx->info.empty() ? 0 :
|
||
|
ctx->info.back().offset + GGML_PAD(ggml_nbytes(&ctx->info.back().t), ctx->alignment);
|
||
|
ctx->info.push_back(ti);
|
||
|
}
|
||
|
|
||
|
void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
|
||
|
const int64_t tensor_id = gguf_find_tensor(ctx, name);
|
||
|
if (tensor_id < 0) {
|
||
|
GGML_ABORT("tensor not found: %s", name);
|
||
|
}
|
||
|
struct ggml_tensor * tensor = &ctx->info[tensor_id].t;
|
||
|
const size_t type_size = ggml_type_size(type);
|
||
|
const int64_t blck_size = ggml_blck_size(type);
|
||
|
|
||
|
tensor->type = type;
|
||
|
GGML_ASSERT(tensor->ne[0] % blck_size == 0 && "tensor row size not divisible by block size of new type");
|
||
|
|
||
|
tensor->nb[0] = type_size;
|
||
|
tensor->nb[1] = tensor->nb[0]*(tensor->ne[0]/blck_size);
|
||
|
for (int i = 2; i < GGML_MAX_DIMS; i++) {
|
||
|
tensor->nb[i] = tensor->nb[i - 1]*tensor->ne[i - 1];
|
||
|
}
|
||
|
|
||
|
// update offsets
|
||
|
const int64_t n_tensors = gguf_get_n_tensors(ctx);
|
||
|
for (int64_t i = tensor_id + 1; i < n_tensors; ++i) {
|
||
|
ctx->info[i].offset = ctx->info[i - 1].offset + GGML_PAD(ggml_nbytes(&ctx->info[i - 1].t), ctx->alignment);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data) {
|
||
|
const int64_t tensor_id = gguf_find_tensor(ctx, name);
|
||
|
if (tensor_id < 0) {
|
||
|
GGML_ABORT("tensor not found: %s", name);
|
||
|
}
|
||
|
|
||
|
ctx->info[tensor_id].t.data = (void *)(uintptr_t)data; // double cast suppresses warning about casting away const
|
||
|
}
|
||
|
|
||
|
struct gguf_writer {
|
||
|
std::vector<int8_t> & buf;
|
||
|
|
||
|
gguf_writer(std::vector<int8_t> & buf) : buf(buf) {}
|
||
|
|
||
|
template <typename T>
|
||
|
void write(const T & val) const {
|
||
|
for (size_t i = 0; i < sizeof(val); ++i) {
|
||
|
buf.push_back(reinterpret_cast<const int8_t *>(&val)[i]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void write(const std::vector<int8_t> & val) const {
|
||
|
buf.insert(buf.end(), val.begin(), val.end());
|
||
|
}
|
||
|
|
||
|
void write(const bool & val) const {
|
||
|
const int8_t val8 = val ? 1 : 0;
|
||
|
write(val8);
|
||
|
}
|
||
|
|
||
|
void write(const std::string & val) const {
|
||
|
{
|
||
|
const uint64_t n = val.length();
|
||
|
write(n);
|
||
|
}
|
||
|
for (size_t i = 0; i < val.length(); ++i) {
|
||
|
buf.push_back(reinterpret_cast<const int8_t *>(val.data())[i]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void write(const char * val) const {
|
||
|
write(std::string(val));
|
||
|
}
|
||
|
|
||
|
void write(const enum ggml_type & val) const {
|
||
|
write(int32_t(val));
|
||
|
}
|
||
|
|
||
|
void write(const enum gguf_type & val) const {
|
||
|
write(int32_t(val));
|
||
|
}
|
||
|
|
||
|
void write(const struct gguf_kv & kv) const {
|
||
|
const uint64_t ne = kv.get_ne();
|
||
|
|
||
|
write(kv.get_key());
|
||
|
|
||
|
if (kv.is_array) {
|
||
|
write(GGUF_TYPE_ARRAY);
|
||
|
write(kv.get_type());
|
||
|
write(ne);
|
||
|
} else {
|
||
|
write(kv.get_type());
|
||
|
}
|
||
|
|
||
|
switch (kv.get_type()) {
|
||
|
case GGUF_TYPE_UINT8:
|
||
|
case GGUF_TYPE_INT8:
|
||
|
case GGUF_TYPE_UINT16:
|
||
|
case GGUF_TYPE_INT16:
|
||
|
case GGUF_TYPE_UINT32:
|
||
|
case GGUF_TYPE_INT32:
|
||
|
case GGUF_TYPE_FLOAT32:
|
||
|
case GGUF_TYPE_UINT64:
|
||
|
case GGUF_TYPE_INT64:
|
||
|
case GGUF_TYPE_FLOAT64: {
|
||
|
write(kv.data);
|
||
|
} break;
|
||
|
case GGUF_TYPE_BOOL: {
|
||
|
for (size_t i = 0; i < ne; ++i) {
|
||
|
write(kv.get_val<bool>(i));
|
||
|
}
|
||
|
} break;
|
||
|
case GGUF_TYPE_STRING: {
|
||
|
for (size_t i = 0; i < ne; ++i) {
|
||
|
write(kv.get_val<std::string>(i));
|
||
|
}
|
||
|
} break;
|
||
|
case GGUF_TYPE_ARRAY:
|
||
|
default: GGML_ABORT("invalid type");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void write_tensor_meta(const struct gguf_tensor_info & info) const {
|
||
|
write(info.t.name);
|
||
|
|
||
|
const uint32_t n_dims = ggml_n_dims(&info.t);
|
||
|
write(n_dims);
|
||
|
|
||
|
for (uint32_t j = 0; j < n_dims; ++j) {
|
||
|
write(info.t.ne[j]);
|
||
|
}
|
||
|
write(info.t.type);
|
||
|
write(info.offset);
|
||
|
}
|
||
|
|
||
|
void pad(const size_t alignment) const {
|
||
|
while (buf.size() % alignment != 0) {
|
||
|
const int8_t zero = 0;
|
||
|
write(zero);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void write_tensor_data(const struct gguf_tensor_info & info, const size_t offset_data, const size_t alignment) const {
|
||
|
GGML_ASSERT(buf.size() - offset_data == info.offset);
|
||
|
|
||
|
GGML_ASSERT(ggml_is_contiguous(&info.t));
|
||
|
const size_t offset = buf.size();
|
||
|
const size_t nbytes = ggml_nbytes(&info.t);
|
||
|
|
||
|
buf.resize(offset + nbytes);
|
||
|
if (info.t.buffer) {
|
||
|
ggml_backend_tensor_get(&info.t, buf.data() + offset, 0, nbytes);
|
||
|
} else {
|
||
|
GGML_ASSERT(info.t.data);
|
||
|
memcpy(buf.data() + offset, info.t.data, nbytes);
|
||
|
}
|
||
|
|
||
|
pad(alignment);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
void gguf_write_to_buf(const struct gguf_context * ctx, std::vector<int8_t> & buf, bool only_meta) {
|
||
|
const struct gguf_writer gw(buf);
|
||
|
|
||
|
const int64_t n_kv = gguf_get_n_kv(ctx);
|
||
|
const int64_t n_tensors = gguf_get_n_tensors(ctx);
|
||
|
|
||
|
// write header
|
||
|
gw.write(GGUF_MAGIC[0]);
|
||
|
gw.write(GGUF_MAGIC[1]);
|
||
|
gw.write(GGUF_MAGIC[2]);
|
||
|
gw.write(GGUF_MAGIC[3]);
|
||
|
gw.write(ctx->version);
|
||
|
gw.write(n_tensors);
|
||
|
gw.write(n_kv);
|
||
|
|
||
|
// write key-value pairs
|
||
|
for (int64_t i = 0; i < n_kv; ++i) {
|
||
|
gw.write(ctx->kv[i]);
|
||
|
}
|
||
|
|
||
|
// write tensor info
|
||
|
for (int64_t i = 0; i < n_tensors; ++i) {
|
||
|
gw.write_tensor_meta(ctx->info[i]);
|
||
|
}
|
||
|
|
||
|
// we require the data section to be aligned
|
||
|
gw.pad(ctx->alignment);
|
||
|
|
||
|
if (only_meta) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
const size_t offset_data = gw.buf.size();
|
||
|
|
||
|
// write tensor data
|
||
|
for (int64_t i = 0; i < n_tensors; ++i) {
|
||
|
gw.write_tensor_data(ctx->info[i], offset_data, ctx->alignment);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
|
||
|
FILE * file = ggml_fopen(fname, "wb");
|
||
|
|
||
|
if (!file) {
|
||
|
fprintf(stderr, "%s: failed to open file '%s' for writing GGUF data\n", __func__, fname);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
std::vector<int8_t> buf;
|
||
|
gguf_write_to_buf(ctx, buf, only_meta);
|
||
|
const bool ok = fwrite(buf.data(), 1, buf.size(), file) == buf.size();
|
||
|
fclose(file);
|
||
|
return ok;
|
||
|
}
|
||
|
|
||
|
size_t gguf_get_meta_size(const struct gguf_context * ctx) {
|
||
|
// only return size
|
||
|
std::vector<int8_t> buf;
|
||
|
gguf_write_to_buf(ctx, buf, /*only_meta =*/ true);
|
||
|
return buf.size();
|
||
|
}
|
||
|
|
||
|
void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
|
||
|
std::vector<int8_t> buf;
|
||
|
gguf_write_to_buf(ctx, buf, /*only_meta =*/ true);
|
||
|
memcpy(data, buf.data(), buf.size());
|
||
|
}
|