llama.cpp/ggml/src/gguf.cpp

1326 lines
44 KiB
C++
Raw Normal View History

#include "ggml.h"
#include "ggml-backend.h"
#include "ggml-impl.h"
#include "gguf.h"
#include <cinttypes>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <map>
#include <new>
#include <stdexcept>
#include <string>
#include <vector>
template <typename T>
struct type_to_gguf_type;
template <>
struct type_to_gguf_type<uint8_t> {
static constexpr enum gguf_type value = GGUF_TYPE_UINT8;
};
template <>
struct type_to_gguf_type<int8_t> {
static constexpr enum gguf_type value = GGUF_TYPE_INT8;
};
template <>
struct type_to_gguf_type<uint16_t> {
static constexpr enum gguf_type value = GGUF_TYPE_UINT16;
};
template <>
struct type_to_gguf_type<int16_t> {
static constexpr enum gguf_type value = GGUF_TYPE_INT16;
};
template <>
struct type_to_gguf_type<uint32_t> {
static constexpr enum gguf_type value = GGUF_TYPE_UINT32;
};
template <>
struct type_to_gguf_type<int32_t> {
static constexpr enum gguf_type value = GGUF_TYPE_INT32;
};
template <>
struct type_to_gguf_type<float> {
static constexpr enum gguf_type value = GGUF_TYPE_FLOAT32;
};
template <>
struct type_to_gguf_type<bool> {
static constexpr enum gguf_type value = GGUF_TYPE_BOOL;
};
template <>
struct type_to_gguf_type<std::string> {
static constexpr enum gguf_type value = GGUF_TYPE_STRING;
};
template <>
struct type_to_gguf_type<uint64_t> {
static constexpr enum gguf_type value = GGUF_TYPE_UINT64;
};
template <>
struct type_to_gguf_type<int64_t> {
static constexpr enum gguf_type value = GGUF_TYPE_INT64;
};
template <>
struct type_to_gguf_type<double> {
static constexpr enum gguf_type value = GGUF_TYPE_FLOAT64;
};
static const std::map<gguf_type, size_t> GGUF_TYPE_SIZE = {
{GGUF_TYPE_UINT8, sizeof(uint8_t)},
{GGUF_TYPE_INT8, sizeof(int8_t)},
{GGUF_TYPE_UINT16, sizeof(uint16_t)},
{GGUF_TYPE_INT16, sizeof(int16_t)},
{GGUF_TYPE_UINT32, sizeof(uint32_t)},
{GGUF_TYPE_INT32, sizeof(int32_t)},
{GGUF_TYPE_FLOAT32, sizeof(float)},
{GGUF_TYPE_BOOL, sizeof(int8_t)},
{GGUF_TYPE_STRING, 0}, // undefined
{GGUF_TYPE_ARRAY, 0}, // undefined
{GGUF_TYPE_UINT64, sizeof(uint64_t)},
{GGUF_TYPE_INT64, sizeof(int64_t)},
{GGUF_TYPE_FLOAT64, sizeof(double)},
};
static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
static const std::map<gguf_type, const char *> GGUF_TYPE_NAME = {
{GGUF_TYPE_UINT8, "u8"},
{GGUF_TYPE_INT8, "i8"},
{GGUF_TYPE_UINT16, "u16"},
{GGUF_TYPE_INT16, "i16"},
{GGUF_TYPE_UINT32, "u32"},
{GGUF_TYPE_INT32, "i32"},
{GGUF_TYPE_FLOAT32, "f32"},
{GGUF_TYPE_BOOL, "bool"},
{GGUF_TYPE_STRING, "str"},
{GGUF_TYPE_ARRAY, "arr"},
{GGUF_TYPE_UINT64, "u64"},
{GGUF_TYPE_INT64, "i64"},
{GGUF_TYPE_FLOAT64, "f64"},
};
static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
size_t gguf_type_size(enum gguf_type type) {
auto it = GGUF_TYPE_SIZE.find(type);
return it == GGUF_TYPE_SIZE.end() ? 0 : it->second;
}
struct gguf_kv {
std::string key;
bool is_array;
enum gguf_type type;
std::vector<int8_t> data;
std::vector<std::string> data_string;
template <typename T>
gguf_kv(const std::string & key, const T value)
: key(key), is_array(false), type(type_to_gguf_type<T>::value) {
GGML_ASSERT(!key.empty());
data.resize(sizeof(T));
memcpy(data.data(), &value, sizeof(T));
}
template <typename T>
gguf_kv(const std::string & key, const std::vector<T> & value)
: key(key), is_array(true), type(type_to_gguf_type<T>::value) {
GGML_ASSERT(!key.empty());
data.resize(value.size()*sizeof(T));
for (size_t i = 0; i < value.size(); ++i) {
const T tmp = value[i];
memcpy(data.data() + i*sizeof(T), &tmp, sizeof(T));
}
}
gguf_kv(const std::string & key, const std::string & value)
: key(key), is_array(false), type(GGUF_TYPE_STRING) {
GGML_ASSERT(!key.empty());
data_string.push_back(value);
}
gguf_kv(const std::string & key, const std::vector<std::string> & value)
: key(key), is_array(true), type(GGUF_TYPE_STRING) {
GGML_ASSERT(!key.empty());
data_string = value;
}
const std::string & get_key() const {
return key;
}
const enum gguf_type & get_type() const {
return type;
}
size_t get_ne() const {
if (type == GGUF_TYPE_STRING) {
const size_t ne = data_string.size();
GGML_ASSERT(is_array || ne == 1);
return ne;
}
const size_t type_size = gguf_type_size(type);
GGML_ASSERT(data.size() % type_size == 0);
const size_t ne = data.size() / type_size;
GGML_ASSERT(is_array || ne == 1);
return ne;
}
template <typename T>
const T & get_val(const size_t i = 0) const {
GGML_ASSERT(type_to_gguf_type<T>::value == type);
if constexpr (std::is_same<T, std::string>::value) {
GGML_ASSERT(data_string.size() >= i+1);
return data_string[i];
}
const size_t type_size = gguf_type_size(type);
GGML_ASSERT(data.size() % type_size == 0);
GGML_ASSERT(data.size() >= (i+1)*type_size);
return reinterpret_cast<const T *>(data.data())[i];
}
void cast(const enum gguf_type new_type) {
const size_t new_type_size = gguf_type_size(new_type);
GGML_ASSERT(data.size() % new_type_size == 0);
type = new_type;
}
};
struct gguf_tensor_info {
struct ggml_tensor t; // for holding the equivalent info
uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
};
struct gguf_context {
uint32_t version = GGUF_VERSION;
std::vector<struct gguf_kv> kv;
std::vector<struct gguf_tensor_info> info;
size_t alignment = GGUF_DEFAULT_ALIGNMENT;
size_t offset = 0; // offset of `data` from beginning of file
size_t size = 0; // size of `data` in bytes
void * data = nullptr;
};
struct gguf_reader {
FILE * file;
gguf_reader(FILE * file) : file(file) {}
template <typename T>
bool read(T & dst) const {
return fread(&dst, 1, sizeof(dst), file) == sizeof(dst);
}
template <typename T>
bool read(std::vector<T> & dst, const size_t n) const {
dst.resize(n);
for (size_t i = 0; i < dst.size(); ++i) {
if constexpr (std::is_same<T, bool>::value) {
bool tmp;
if (!read(tmp)) {
return false;
}
dst[i] = tmp;
} else {
if (!read(dst[i])) {
return false;
}
}
}
return true;
}
bool read(bool & dst) const {
int8_t tmp = -1;
if (!read(tmp)) {
return false;
}
dst = tmp != 0;
return true;
}
bool read(enum ggml_type & dst) const {
int32_t tmp = -1;
if (!read(tmp)) {
return false;
}
dst = ggml_type(tmp);
return true;
}
bool read(enum gguf_type & dst) const {
int32_t tmp = -1;
if (!read(tmp)) {
return false;
}
dst = gguf_type(tmp);
return true;
}
bool read(std::string & dst) const {
uint64_t size = -1;
if (!read(size)) {
return false;
}
dst.resize(size);
return fread(dst.data(), 1, dst.length(), file) == dst.length();
}
bool read(void * dst, const size_t size) const {
return fread(dst, 1, size, file) == size;
}
};
struct gguf_context * gguf_init_empty(void) {
return new gguf_context;
}
template<typename T>
bool gguf_read_emplace_helper(const struct gguf_reader & gr, std::vector<struct gguf_kv> & kv, const std::string & key, const bool is_array, const size_t n) {
if (is_array) {
std::vector<T> value;
try {
if (!gr.read(value, n)) {
return false;
}
} catch (std::length_error &) {
fprintf(stderr, "%s: encountered length_error while reading value for key '%s'\n", __func__, key.c_str());
return false;
} catch (std::bad_alloc &) {
fprintf(stderr, "%s: encountered bad_alloc error while reading value for key '%s'\n", __func__, key.c_str());
return false;
}
kv.emplace_back(key, value);
} else {
T value;
if (!gr.read(value)) {
return false;
}
kv.emplace_back(key, value);
}
return true;
}
struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_params params) {
const struct gguf_reader gr(file);
struct gguf_context * ctx = new gguf_context;
bool ok = true;
// file magic
{
std::vector<char> magic;
ok = ok && gr.read(magic, 4);
if (!ok) {
fprintf(stderr, "%s: failed to read magic\n", __func__);
gguf_free(ctx);
return nullptr;
}
for (uint32_t i = 0; i < magic.size(); i++) {
if (magic[i] != GGUF_MAGIC[i]) {
fprintf(stderr, "%s: invalid magic characters: '%c%c%c%c', expected 'GGUF'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
gguf_free(ctx);
return nullptr;
}
}
}
// header
int64_t n_kv = 0;
int64_t n_tensors = 0;
if (ok && gr.read(ctx->version)) {
if (ctx->version == 1) {
fprintf(stderr, "%s: GGUFv1 is no longer supported, please use a more up-to-date version\n", __func__);
ok = false;
}
if (ctx->version > GGUF_VERSION) {
fprintf(stderr, "%s: this GGUF file is version %" PRIu32 " but this software only supports up to version %d\n",
__func__, ctx->version, GGUF_VERSION);
ok = false;
}
} else {
ok = false;
}
if (ok && gr.read(n_tensors)) {
static_assert(sizeof(size_t) <= 8 && sizeof(gguf_tensor_info) >= 2, "int64_t insufficient for indexing");
if (n_tensors < 0 || n_tensors > int64_t(SIZE_MAX/sizeof(gguf_tensor_info))) {
fprintf(stderr, "%s: number of tensors is %" PRIi64 " but must be in [0, %zu]\n",
__func__, n_tensors, SIZE_MAX/sizeof(gguf_tensor_info));
ok = false;
}
} else {
ok = false;
}
if (ok && gr.read(n_kv)) {
static_assert(sizeof(size_t) <= 8 && sizeof(gguf_tensor_info) >= 2, "int64_t insufficient for indexing");
if (n_kv < 0 || n_kv > int64_t(SIZE_MAX/sizeof(gguf_kv))) {
fprintf(stderr, "%s: number of key value pairs is %" PRIi64 " but must be in [0, %zu]\n",
__func__, n_kv, SIZE_MAX/sizeof(gguf_kv));
ok = false;
}
} else {
ok = false;
}
if (!ok) {
fprintf(stderr, "%s: failed to read header\n", __func__);
gguf_free(ctx);
return nullptr;
}
// KV pairs
{
for (int64_t i = 0; ok && i < n_kv; ++i) {
std::string key;
gguf_type type = gguf_type(-1);
bool is_array = false;
uint64_t n = 1;
try {
ok = ok && gr.read(key);
} catch (std::length_error &) {
fprintf(stderr, "%s: encountered length_error while reading key %" PRIi64 "\n", __func__, i);
ok = false;
} catch (std::bad_alloc &) {
fprintf(stderr, "%s: encountered bad_alloc error while reading key %" PRIi64 "\n", __func__, i);
ok = false;
}
for (size_t j = 0; ok && j < ctx->kv.size(); ++j) {
if (key == ctx->kv[j].key) {
fprintf(stderr, "%s: duplicate key '%s' for tensors %zu and %" PRIi64 " \n", __func__, key.c_str(), j, i);
ok = false;
}
}
if (!ok) {
break;
}
ok = ok && gr.read(type);
if (type == GGUF_TYPE_ARRAY) {
is_array = true;
ok = ok && gr.read(type);
ok = ok && gr.read(n);
}
if (!ok) {
break;
}
switch (type) {
case GGUF_TYPE_UINT8: ok = ok && gguf_read_emplace_helper<uint8_t> (gr, ctx->kv, key, is_array, n); break;
case GGUF_TYPE_INT8: ok = ok && gguf_read_emplace_helper<int8_t> (gr, ctx->kv, key, is_array, n); break;
case GGUF_TYPE_UINT16: ok = ok && gguf_read_emplace_helper<uint16_t> (gr, ctx->kv, key, is_array, n); break;
case GGUF_TYPE_INT16: ok = ok && gguf_read_emplace_helper<int16_t> (gr, ctx->kv, key, is_array, n); break;
case GGUF_TYPE_UINT32: ok = ok && gguf_read_emplace_helper<uint32_t> (gr, ctx->kv, key, is_array, n); break;
case GGUF_TYPE_INT32: ok = ok && gguf_read_emplace_helper<int32_t> (gr, ctx->kv, key, is_array, n); break;
case GGUF_TYPE_FLOAT32: ok = ok && gguf_read_emplace_helper<float> (gr, ctx->kv, key, is_array, n); break;
case GGUF_TYPE_BOOL: ok = ok && gguf_read_emplace_helper<bool> (gr, ctx->kv, key, is_array, n); break;
case GGUF_TYPE_STRING: ok = ok && gguf_read_emplace_helper<std::string>(gr, ctx->kv, key, is_array, n); break;
case GGUF_TYPE_UINT64: ok = ok && gguf_read_emplace_helper<uint64_t> (gr, ctx->kv, key, is_array, n); break;
case GGUF_TYPE_INT64: ok = ok && gguf_read_emplace_helper<int64_t> (gr, ctx->kv, key, is_array, n); break;
case GGUF_TYPE_FLOAT64: ok = ok && gguf_read_emplace_helper<double> (gr, ctx->kv, key, is_array, n); break;
case GGUF_TYPE_ARRAY:
default:
{
fprintf(stderr, "%s: key '%s' has invalid GGUF type %d\n", __func__, key.c_str(), type);
ok = false;
} break;
}
}
if (!ok) {
fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
gguf_free(ctx);
return nullptr;
}
GGML_ASSERT(int64_t(ctx->kv.size()) == n_kv);
const int alignment_idx = gguf_find_key(ctx, GGUF_KEY_GENERAL_ALIGNMENT);
ctx->alignment = alignment_idx == -1 ? GGUF_DEFAULT_ALIGNMENT : gguf_get_val_u32(ctx, alignment_idx);
if (ctx->alignment == 0 || (ctx->alignment & (ctx->alignment - 1)) != 0) {
fprintf(stderr, "%s: alignment %zu is not a power of 2\n", __func__, ctx->alignment);
gguf_free(ctx);
return nullptr;
}
}
// read the tensor info
for (int64_t i = 0; ok && i < n_tensors; ++i) {
struct gguf_tensor_info info;
// tensor name
{
std::string name;
try {
ok = ok && gr.read(name);
} catch (std::length_error &) {
fprintf(stderr, "%s: encountered length_error while reading tensor name %" PRIi64 "\n", __func__, i);
ok = false;
} catch (std::bad_alloc &) {
fprintf(stderr, "%s: encountered bad_alloc error while reading tensor name %" PRIi64 "\n", __func__, i);
ok = false;
}
if (name.length() >= GGML_MAX_NAME) {
fprintf(stderr, "%s: tensor name %" PRIi64 " is too long: %zu >= %d\n", __func__, i, name.length(), GGML_MAX_NAME);
ok = false;
break;
}
ggml_set_name(&info.t, name.c_str());
// make sure there are no duplicate tensor names
for (int64_t j = 0; ok && j < i; ++j) {
if (strcmp(info.t.name, ctx->info[j].t.name) == 0) {
fprintf(stderr, "%s: duplicate tensor name '%s' for tensors %" PRIi64 " and %" PRIi64 "\n", __func__, info.t.name, j, i);
ok = false;
break;
}
}
}
if (!ok) {
break;
}
// tensor shape
{
uint32_t n_dims = -1;
ok = ok && gr.read(n_dims);
if (n_dims > GGML_MAX_DIMS) {
fprintf(stderr, "%s: tensor '%s' has invalid number of dimensions: %" PRIu32 " > %" PRIu32 "\n",
__func__, info.t.name, n_dims, GGML_MAX_DIMS);
ok = false;
break;
}
for (uint32_t j = 0; ok && j < GGML_MAX_DIMS; ++j) {
info.t.ne[j] = 1;
if (j < n_dims) {
ok = ok && gr.read(info.t.ne[j]);
}
// check that all ne are non-negative
if (info.t.ne[j] < 0) {
fprintf(stderr, "%s: tensor '%s' dimension %" PRIu32 " has invalid number of elements: %" PRIi64 " < 0\n",
__func__, info.t.name, j, info.t.ne[j]);
ok = false;
break;
}
}
// check that the total number of elements is representable
if (ok && ((INT64_MAX/info.t.ne[1] <= info.t.ne[0]) ||
(INT64_MAX/info.t.ne[2] <= info.t.ne[0]*info.t.ne[1]) ||
(INT64_MAX/info.t.ne[3] <= info.t.ne[0]*info.t.ne[1]*info.t.ne[2]))) {
fprintf(stderr, "%s: total number of elements in tensor '%s' with shape "
"(%" PRIi64 ", %" PRIi64 ", %" PRIi64 ", %" PRIi64 ") is >= %" PRIi64 "\n",
__func__, info.t.name, info.t.ne[0], info.t.ne[1], info.t.ne[2], info.t.ne[3], INT64_MAX);
ok = false;
break;
}
}
if (!ok) {
break;
}
// tensor type
{
ok = ok && gr.read(info.t.type);
// check that tensor type is within defined range
if (info.t.type < 0 || info.t.type >= GGML_TYPE_COUNT) {
fprintf(stderr, "%s: tensor '%s' has invalid ggml type %d (%s)\n",
__func__, info.t.name, info.t.type, ggml_type_name(info.t.type));
ok = false;
break;
}
const size_t type_size = ggml_type_size(info.t.type);
const int64_t blck_size = ggml_blck_size(info.t.type);
// check that row size is divisible by block size
if (blck_size == 0 || info.t.ne[0] % blck_size != 0) {
fprintf(stderr, "%s: tensor '%s' of type %d (%s) has %" PRId64 " elements per row, "
"not a multiple of block size (%" PRId64 ")\n",
__func__, info.t.name, (int) info.t.type, ggml_type_name(info.t.type), info.t.ne[0], blck_size);
ok = false;
break;
}
// calculate byte offsets given the tensor shape and type
info.t.nb[0] = type_size;
info.t.nb[1] = info.t.nb[0]*(info.t.ne[0]/blck_size);
for (int j = 2; j < GGML_MAX_DIMS; ++j) {
info.t.nb[j] = info.t.nb[j - 1]*info.t.ne[j - 1];
}
}
if (!ok) {
break;
}
// tensor data offset within buffer
ok = ok && gr.read(info.offset);
ctx->info.push_back(info);
}
if (!ok) {
fprintf(stderr, "%s: failed to read tensor info\n", __func__);
gguf_free(ctx);
return nullptr;
}
GGML_ASSERT(int64_t(ctx->info.size()) == n_tensors);
// we require the data section to be aligned, so take into account any padding
if (fseek(file, GGML_PAD(ftell(file), ctx->alignment), SEEK_SET) != 0) {
fprintf(stderr, "%s: failed to seek to beginning of data section\n", __func__);
gguf_free(ctx);
return nullptr;
}
// store the current file offset - this is where the data section starts
ctx->offset = ftell(file);
// compute the total size of the data section, taking into account the alignment
{
ctx->size = 0;
for (size_t i = 0; i < ctx->info.size(); ++i) {
const gguf_tensor_info & ti = ctx->info[i];
if (ti.offset != ctx->size) {
fprintf(stderr, "%s: tensor '%s' has offset %" PRIu64 ", expected %zu\n",
__func__, ti.t.name, ti.offset, ctx->size);
fprintf(stderr, "%s: failed to read tensor data\n", __func__);
gguf_free(ctx);
return nullptr;
}
ctx->size += GGML_PAD(ggml_nbytes(&ti.t), ctx->alignment);
}
}
// load the tensor data only if requested
if (params.ctx != nullptr) {
// if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
// otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
// the ggml_tensor structs to the appropriate locations in the binary blob
// compute the exact size needed for the new ggml_context
const size_t mem_size =
params.no_alloc ?
(n_tensors )*ggml_tensor_overhead() :
(n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
struct ggml_init_params pdata = {
/*mem_size =*/ mem_size,
/*mem_buffer =*/ nullptr,
/*no_alloc =*/ params.no_alloc,
};
*params.ctx = ggml_init(pdata);
if (*params.ctx == nullptr) {
fprintf(stderr, "%s: failed to initialize ggml context for storing tensors\n", __func__);
gguf_free(ctx);
return nullptr;
}
struct ggml_context * ctx_data = *params.ctx;
struct ggml_tensor * data = nullptr;
if (!params.no_alloc) {
data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
ok = ok && data != nullptr;
// read the binary blob with the tensor data
ok = ok && gr.read(data->data, ctx->size);
if (!ok) {
fprintf(stderr, "%s: failed to read tensor data binary blob\n", __func__);
ggml_free(ctx_data);
*params.ctx = nullptr;
gguf_free(ctx);
return nullptr;
}
ctx->data = data->data;
}
ggml_set_no_alloc(ctx_data, true);
// create the tensors
for (size_t i = 0; i < ctx->info.size(); ++i) {
const struct gguf_tensor_info & info = ctx->info[i];
struct ggml_tensor * cur = ggml_new_tensor(ctx_data, info.t.type, GGML_MAX_DIMS, info.t.ne);
ok = ok && cur != nullptr;
if (!ok) {
break;
}
ggml_set_name(cur, info.t.name);
// point the data member to the appropriate location in the binary blob using the tensor info
if (!params.no_alloc) {
cur->data = (char *) data->data + info.offset;
}
}
if (!ok) {
fprintf(stderr, "%s: failed to create tensors\n", __func__);
ggml_free(ctx_data);
*params.ctx = nullptr;
gguf_free(ctx);
return nullptr;
}
ggml_set_no_alloc(ctx_data, params.no_alloc);
}
return ctx;
}
struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
FILE * file = ggml_fopen(fname, "rb");
if (!file) {
fprintf(stderr, "%s: failed to open GGUF file '%s'\n", __func__, fname);
return nullptr;
}
struct gguf_context * result = gguf_init_from_file_impl(file, params);
fclose(file);
return result;
}
void gguf_free(struct gguf_context * ctx) {
if (ctx == nullptr) {
return;
}
delete ctx;
}
const char * gguf_type_name(enum gguf_type type) {
auto it = GGUF_TYPE_NAME.find(type);
return it == GGUF_TYPE_NAME.end() ? nullptr : it->second;
}
uint32_t gguf_get_version(const struct gguf_context * ctx) {
return ctx->version;
}
size_t gguf_get_alignment(const struct gguf_context * ctx) {
return ctx->alignment;
}
size_t gguf_get_data_offset(const struct gguf_context * ctx) {
return ctx->offset;
}
int64_t gguf_get_n_kv(const struct gguf_context * ctx) {
return ctx->kv.size();
}
int64_t gguf_find_key(const struct gguf_context * ctx, const char * key) {
// return -1 if key not found
int64_t keyfound = -1;
const int64_t n_kv = gguf_get_n_kv(ctx);
for (int64_t i = 0; i < n_kv; ++i) {
if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
keyfound = i;
break;
}
}
return keyfound;
}
const char * gguf_get_key(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
return ctx->kv[key_id].get_key().c_str();
}
enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
return ctx->kv[key_id].is_array ? GGUF_TYPE_ARRAY : ctx->kv[key_id].get_type();
}
enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].is_array);
return ctx->kv[key_id].get_type();
}
const void * gguf_get_arr_data(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING);
return ctx->kv[key_id].data.data();
}
const char * gguf_get_arr_str(const struct gguf_context * ctx, int64_t key_id, size_t i) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_type() == GGUF_TYPE_STRING);
return ctx->kv[key_id].data_string[i].c_str();
}
size_t gguf_get_arr_n(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
if (ctx->kv[key_id].type == GGUF_TYPE_STRING) {
return ctx->kv[key_id].data_string.size();
}
const size_t type_size = gguf_type_size(ctx->kv[key_id].type);
GGML_ASSERT(ctx->kv[key_id].data.size() % type_size == 0);
return ctx->kv[key_id].data.size() / type_size;
}
uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
return ctx->kv[key_id].get_val<uint8_t>();
}
int8_t gguf_get_val_i8(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
return ctx->kv[key_id].get_val<int8_t>();
}
uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
return ctx->kv[key_id].get_val<uint16_t>();
}
int16_t gguf_get_val_i16(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
return ctx->kv[key_id].get_val<int16_t>();
}
uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
return ctx->kv[key_id].get_val<uint32_t>();
}
int32_t gguf_get_val_i32(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
return ctx->kv[key_id].get_val<int32_t>();
}
float gguf_get_val_f32(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
return ctx->kv[key_id].get_val<float>();
}
uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
return ctx->kv[key_id].get_val<uint64_t>();
}
int64_t gguf_get_val_i64(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
return ctx->kv[key_id].get_val<int64_t>();
}
double gguf_get_val_f64(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
return ctx->kv[key_id].get_val<double>();
}
bool gguf_get_val_bool(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
return ctx->kv[key_id].get_val<bool>();
}
const char * gguf_get_val_str(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
return ctx->kv[key_id].get_val<std::string>().c_str();
}
const void * gguf_get_val_data(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING);
return ctx->kv[key_id].data.data();
}
int64_t gguf_get_n_tensors(const struct gguf_context * ctx) {
return ctx->info.size();
}
int64_t gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
// return -1 if tensor not found
int64_t tensor_id = -1;
const int64_t n_tensors = gguf_get_n_tensors(ctx);
for (int64_t i = 0; i < n_tensors; ++i) {
if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
tensor_id = i;
break;
}
}
return tensor_id;
}
size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int64_t tensor_id) {
GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx));
return ctx->info[tensor_id].offset;
}
const char * gguf_get_tensor_name(const struct gguf_context * ctx, int64_t tensor_id) {
GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx));
return ctx->info[tensor_id].t.name;
}
enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int64_t tensor_id) {
GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx));
return ctx->info[tensor_id].t.type;
}
size_t gguf_get_tensor_size(const struct gguf_context * ctx, int64_t tensor_id) {
GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx));
return ggml_nbytes(&ctx->info[tensor_id].t);
}
int64_t gguf_remove_key(struct gguf_context * ctx, const char * key) {
const int64_t key_id = gguf_find_key(ctx, key);
if (key_id >= 0) {
ctx->kv.erase(ctx->kv.begin() + key_id);
}
return key_id;
}
template<typename T>
static void gguf_check_reserved_keys(const std::string & key, const T val) {
if (key == GGUF_KEY_GENERAL_ALIGNMENT) {
if constexpr (std::is_same<T, uint32_t>::value) {
GGML_ASSERT(val > 0 && (val & (val - 1)) == 0 && GGUF_KEY_GENERAL_ALIGNMENT " must be power of 2");
} else {
GGML_ABORT(GGUF_KEY_GENERAL_ALIGNMENT " must be type u32");
}
}
}
void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
gguf_check_reserved_keys(key, val);
gguf_remove_key(ctx, key);
ctx->kv.emplace_back(key, val);
}
void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
gguf_check_reserved_keys(key, val);
gguf_remove_key(ctx, key);
ctx->kv.emplace_back(key, val);
}
void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
gguf_check_reserved_keys(key, val);
gguf_remove_key(ctx, key);
ctx->kv.emplace_back(key, val);
}
void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
gguf_check_reserved_keys(key, val);
gguf_remove_key(ctx, key);
ctx->kv.emplace_back(key, val);
}
void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
gguf_check_reserved_keys(key, val);
gguf_remove_key(ctx, key);
ctx->kv.emplace_back(key, val);
}
void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
gguf_check_reserved_keys(key, val);
gguf_remove_key(ctx, key);
ctx->kv.emplace_back(key, val);
}
void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
gguf_check_reserved_keys(key, val);
gguf_remove_key(ctx, key);
ctx->kv.emplace_back(key, val);
}
void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
gguf_check_reserved_keys(key, val);
gguf_remove_key(ctx, key);
ctx->kv.emplace_back(key, val);
}
void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
gguf_check_reserved_keys(key, val);
gguf_remove_key(ctx, key);
ctx->kv.emplace_back(key, val);
}
void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
gguf_check_reserved_keys(key, val);
gguf_remove_key(ctx, key);
ctx->kv.emplace_back(key, val);
}
void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
gguf_check_reserved_keys(key, val);
gguf_remove_key(ctx, key);
ctx->kv.emplace_back(key, val);
}
void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
gguf_check_reserved_keys(key, val);
gguf_remove_key(ctx, key);
ctx->kv.emplace_back(key, std::string(val));
}
void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, size_t n) {
gguf_check_reserved_keys(key, data);
gguf_remove_key(ctx, key);
const size_t nbytes = n*gguf_type_size(type);
std::vector<int8_t> tmp(nbytes);
if (!tmp.empty()) {
memcpy(tmp.data(), data, nbytes);
}
ctx->kv.emplace_back(key, tmp);
ctx->kv.back().cast(type);
}
void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, size_t n) {
gguf_check_reserved_keys(key, data);
gguf_remove_key(ctx, key);
std::vector<std::string> tmp(n);
for (size_t i = 0; i < n; ++i) {
tmp[i] = data[i];
}
ctx->kv.emplace_back(key, tmp);
}
// set or add KV pairs from another context
void gguf_set_kv(struct gguf_context * ctx, const struct gguf_context * src) {
const int64_t n_kv = gguf_get_n_kv(src);
for (int64_t i = 0; i < n_kv; ++i) {
const struct gguf_kv & kv = src->kv[i];
if (!kv.is_array) {
switch (kv.get_type()) {
case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, kv.get_key().c_str(), kv.get_val<uint8_t>()); break;
case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, kv.get_key().c_str(), kv.get_val<int8_t>()); break;
case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, kv.get_key().c_str(), kv.get_val<uint16_t>()); break;
case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, kv.get_key().c_str(), kv.get_val<int16_t>()); break;
case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, kv.get_key().c_str(), kv.get_val<uint32_t>()); break;
case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, kv.get_key().c_str(), kv.get_val<int32_t>()); break;
case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, kv.get_key().c_str(), kv.get_val<float>()); break;
case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, kv.get_key().c_str(), kv.get_val<uint64_t>()); break;
case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, kv.get_key().c_str(), kv.get_val<int64_t>()); break;
case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, kv.get_key().c_str(), kv.get_val<double>()); break;
case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, kv.get_key().c_str(), kv.get_val<bool>()); break;
case GGUF_TYPE_STRING: gguf_set_val_str (ctx, kv.get_key().c_str(), kv.get_val<std::string>().c_str()); break;
case GGUF_TYPE_ARRAY:
default: GGML_ABORT("invalid type");
}
continue;
}
const size_t ne = kv.get_ne();
switch (kv.get_type()) {
case GGUF_TYPE_UINT8:
case GGUF_TYPE_INT8:
case GGUF_TYPE_UINT16:
case GGUF_TYPE_INT16:
case GGUF_TYPE_UINT32:
case GGUF_TYPE_INT32:
case GGUF_TYPE_FLOAT32:
case GGUF_TYPE_UINT64:
case GGUF_TYPE_INT64:
case GGUF_TYPE_FLOAT64:
case GGUF_TYPE_BOOL: {
gguf_set_arr_data(ctx, kv.get_key().c_str(), kv.get_type(), kv.data.data(), ne);
} break;
case GGUF_TYPE_STRING: {
std::vector<const char *> tmp(ne);
for (size_t j = 0; j < ne; ++j) {
tmp[j] = kv.data_string[j].c_str();
}
gguf_set_arr_str(ctx, kv.get_key().c_str(), tmp.data(), ne);
} break;
case GGUF_TYPE_ARRAY:
default: GGML_ABORT("invalid type");
}
}
}
void gguf_add_tensor(
struct gguf_context * ctx,
const struct ggml_tensor * tensor) {
GGML_ASSERT(tensor);
if (gguf_find_tensor(ctx, tensor->name) != -1) {
GGML_ABORT("duplicate tensor name: %s", tensor->name);
}
struct gguf_tensor_info ti;
ti.t = *tensor;
ti.offset = ctx->info.empty() ? 0 :
ctx->info.back().offset + GGML_PAD(ggml_nbytes(&ctx->info.back().t), ctx->alignment);
ctx->info.push_back(ti);
}
void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
const int64_t tensor_id = gguf_find_tensor(ctx, name);
if (tensor_id < 0) {
GGML_ABORT("tensor not found: %s", name);
}
struct ggml_tensor * tensor = &ctx->info[tensor_id].t;
const size_t type_size = ggml_type_size(type);
const int64_t blck_size = ggml_blck_size(type);
tensor->type = type;
GGML_ASSERT(tensor->ne[0] % blck_size == 0 && "tensor row size not divisible by block size of new type");
tensor->nb[0] = type_size;
tensor->nb[1] = tensor->nb[0]*(tensor->ne[0]/blck_size);
for (int i = 2; i < GGML_MAX_DIMS; i++) {
tensor->nb[i] = tensor->nb[i - 1]*tensor->ne[i - 1];
}
// update offsets
const int64_t n_tensors = gguf_get_n_tensors(ctx);
for (int64_t i = tensor_id + 1; i < n_tensors; ++i) {
ctx->info[i].offset = ctx->info[i - 1].offset + GGML_PAD(ggml_nbytes(&ctx->info[i - 1].t), ctx->alignment);
}
}
void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data) {
const int64_t tensor_id = gguf_find_tensor(ctx, name);
if (tensor_id < 0) {
GGML_ABORT("tensor not found: %s", name);
}
ctx->info[tensor_id].t.data = (void *)(uintptr_t)data; // double cast suppresses warning about casting away const
}
struct gguf_writer {
std::vector<int8_t> & buf;
gguf_writer(std::vector<int8_t> & buf) : buf(buf) {}
template <typename T>
void write(const T & val) const {
for (size_t i = 0; i < sizeof(val); ++i) {
buf.push_back(reinterpret_cast<const int8_t *>(&val)[i]);
}
}
void write(const std::vector<int8_t> & val) const {
buf.insert(buf.end(), val.begin(), val.end());
}
void write(const bool & val) const {
const int8_t val8 = val ? 1 : 0;
write(val8);
}
void write(const std::string & val) const {
{
const uint64_t n = val.length();
write(n);
}
for (size_t i = 0; i < val.length(); ++i) {
buf.push_back(reinterpret_cast<const int8_t *>(val.data())[i]);
}
}
void write(const char * val) const {
write(std::string(val));
}
void write(const enum ggml_type & val) const {
write(int32_t(val));
}
void write(const enum gguf_type & val) const {
write(int32_t(val));
}
void write(const struct gguf_kv & kv) const {
const uint64_t ne = kv.get_ne();
write(kv.get_key());
if (kv.is_array) {
write(GGUF_TYPE_ARRAY);
write(kv.get_type());
write(ne);
} else {
write(kv.get_type());
}
switch (kv.get_type()) {
case GGUF_TYPE_UINT8:
case GGUF_TYPE_INT8:
case GGUF_TYPE_UINT16:
case GGUF_TYPE_INT16:
case GGUF_TYPE_UINT32:
case GGUF_TYPE_INT32:
case GGUF_TYPE_FLOAT32:
case GGUF_TYPE_UINT64:
case GGUF_TYPE_INT64:
case GGUF_TYPE_FLOAT64: {
write(kv.data);
} break;
case GGUF_TYPE_BOOL: {
for (size_t i = 0; i < ne; ++i) {
write(kv.get_val<bool>(i));
}
} break;
case GGUF_TYPE_STRING: {
for (size_t i = 0; i < ne; ++i) {
write(kv.get_val<std::string>(i));
}
} break;
case GGUF_TYPE_ARRAY:
default: GGML_ABORT("invalid type");
}
}
void write_tensor_meta(const struct gguf_tensor_info & info) const {
write(info.t.name);
const uint32_t n_dims = ggml_n_dims(&info.t);
write(n_dims);
for (uint32_t j = 0; j < n_dims; ++j) {
write(info.t.ne[j]);
}
write(info.t.type);
write(info.offset);
}
void pad(const size_t alignment) const {
while (buf.size() % alignment != 0) {
const int8_t zero = 0;
write(zero);
}
}
void write_tensor_data(const struct gguf_tensor_info & info, const size_t offset_data, const size_t alignment) const {
GGML_ASSERT(buf.size() - offset_data == info.offset);
GGML_ASSERT(ggml_is_contiguous(&info.t));
const size_t offset = buf.size();
const size_t nbytes = ggml_nbytes(&info.t);
buf.resize(offset + nbytes);
if (info.t.buffer) {
ggml_backend_tensor_get(&info.t, buf.data() + offset, 0, nbytes);
} else {
GGML_ASSERT(info.t.data);
memcpy(buf.data() + offset, info.t.data, nbytes);
}
pad(alignment);
}
};
void gguf_write_to_buf(const struct gguf_context * ctx, std::vector<int8_t> & buf, bool only_meta) {
const struct gguf_writer gw(buf);
const int64_t n_kv = gguf_get_n_kv(ctx);
const int64_t n_tensors = gguf_get_n_tensors(ctx);
// write header
gw.write(GGUF_MAGIC[0]);
gw.write(GGUF_MAGIC[1]);
gw.write(GGUF_MAGIC[2]);
gw.write(GGUF_MAGIC[3]);
gw.write(ctx->version);
gw.write(n_tensors);
gw.write(n_kv);
// write key-value pairs
for (int64_t i = 0; i < n_kv; ++i) {
gw.write(ctx->kv[i]);
}
// write tensor info
for (int64_t i = 0; i < n_tensors; ++i) {
gw.write_tensor_meta(ctx->info[i]);
}
// we require the data section to be aligned
gw.pad(ctx->alignment);
if (only_meta) {
return;
}
const size_t offset_data = gw.buf.size();
// write tensor data
for (int64_t i = 0; i < n_tensors; ++i) {
gw.write_tensor_data(ctx->info[i], offset_data, ctx->alignment);
}
}
bool gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
FILE * file = ggml_fopen(fname, "wb");
if (!file) {
fprintf(stderr, "%s: failed to open file '%s' for writing GGUF data\n", __func__, fname);
return false;
}
std::vector<int8_t> buf;
gguf_write_to_buf(ctx, buf, only_meta);
const bool ok = fwrite(buf.data(), 1, buf.size(), file) == buf.size();
fclose(file);
return ok;
}
size_t gguf_get_meta_size(const struct gguf_context * ctx) {
// only return size
std::vector<int8_t> buf;
gguf_write_to_buf(ctx, buf, /*only_meta =*/ true);
return buf.size();
}
void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
std::vector<int8_t> buf;
gguf_write_to_buf(ctx, buf, /*only_meta =*/ true);
memcpy(data, buf.data(), buf.size());
}