llama.cpp/convert-gptneox-h5-to-gguf.py

177 lines
5.0 KiB
Python
Raw Normal View History

2023-07-30 15:05:37 +02:00
# Quick and dirty HF gptneox--> gguf conversion
import gguf
import sys
import struct
import json
import numpy as np
from typing import Any, List
from pathlib import Path
from transformers import AutoModelForCausalLM
if len(sys.argv) < 3:
print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
print(" ftype == 0 -> float32")
print(" ftype == 1 -> float16")
sys.exit(1)
# output in the same directory as the model
dir_model = sys.argv[1]
fname_out = sys.argv[1] + "/ggml-model.bin"
# possible tensor data types
# ftype == 0 -> float32
# ftype == 1 -> float16
#
# map from ftype to string
ftype_str = ["f32", "f16"]
ftype = 1
if len(sys.argv) > 2:
ftype = int(sys.argv[2])
if ftype < 0 or ftype > 1:
print("Invalid ftype: " + str(ftype))
sys.exit(1)
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
2023-07-31 03:00:20 +02:00
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
if hparams["architectures"][0] != "GPTNeoXForCausalLM":
print("Model architecture not supported: " + hparams["architectures"][0] )
sys.exit()
2023-07-30 15:05:37 +02:00
model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True, trust_remote_code=True)
list_vars = model.state_dict()
# count tensors to be converted
tensor_count = 0
for name in list_vars.keys():
# we don't need these
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
continue
tensor_count += 1
gguf_writer = gguf.GGUFWriter.open(fname_out)
2023-07-30 17:31:11 +02:00
# This must be changed when adding/deleting kv
2023-07-30 15:05:37 +02:00
kv_count = 14
print("tensors " + str(tensor_count) + " kv " + str(kv_count))
print("write gguf header")
gguf_writer.write_header(tensor_count, kv_count)
print("write gguf hparams")
llm_arch = "gptneox"
gguf_writer.write_name("pythia-70b-deduped")
gguf_writer.write_description("gguf test model")
gguf_writer.write_architecture(llm_arch)
gguf_writer.write_context_length(llm_arch, hparams["max_position_embeddings"])
gguf_writer.write_embedding_length(llm_arch, hparams["hidden_size"])
gguf_writer.write_layer_count(llm_arch, hparams["num_hidden_layers"])
gguf_writer.write_feed_forward_length(llm_arch, hparams["intermediate_size"])
gguf_writer.write_rope_dimension_count(llm_arch, int( hparams["rotary_pct"]*(hparams["hidden_size"]//hparams["num_attention_heads"])) )
gguf_writer.write_head_count(llm_arch, hparams["num_attention_heads"])
gguf_writer.write_parallel_residual(llm_arch, hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
gguf_writer.write_layer_norm_eps(llm_arch, hparams["layer_norm_eps"])
# TOKENIZATION
print("write gguf tokenizer")
tokens: List[str] = []
merges: List[str] = []
if Path(dir_model + "/tokenizer.json").is_file():
# vocab type gpt2
print("Adding gpt2 tokenizer vocab")
with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
tokenizer = json.load(f)
for key in tokenizer["model"]["vocab"]:
tokens.append(key)
merges = tokenizer["model"]["merges"]
gguf_writer.write_tokenizer_model("gpt2")
gguf_writer.write_token_list(tokens)
gguf_writer.write_token_merges(merges)
# TENSORS
# tensor info
print("write gguf tensor info")
for name in list_vars.keys():
data = list_vars[name].squeeze().numpy()
# we don't need these
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
continue
n_dims = len(data.shape)
# ftype == 0 -> float32, ftype == 1 -> float16
ftype_cur = 0
if ftype != 0:
if name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
ftype_cur = 1
else:
data = data.astype(np.float32)
ftype_cur = 0
else:
if data.dtype != np.float32:
data = data.astype(np.float32)
ftype_cur = 0
gguf_writer.write_tensor_info(name, data)
# tensor data
print("write gguf tensor data")
for name in list_vars.keys():
data = list_vars[name].squeeze().numpy()
print("Process tensor: " + name + " with shape: ", data.shape)
# we don't need these
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
print(" Skip tensor: " + name)
continue
n_dims = len(data.shape)
# ftype == 0 -> float32, ftype == 1 -> float16
ftype_cur = 0
if ftype != 0:
if name.endswith(".weight") and n_dims == 2:
print(" Converting to float16")
data = data.astype(np.float16)
ftype_cur = 1
else:
print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
else:
if data.dtype != np.float32:
print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
gguf_writer.write_tensor(data)
gguf_writer.close()
print("Done. Output file: " + fname_out)
print("")