151 lines
5.8 KiB
JavaScript
Raw Normal View History

import sse from 'k6/x/sse'
import {check, sleep} from 'k6'
import {SharedArray} from 'k6/data'
import {Counter, Rate, Trend} from 'k6/metrics'
import exec from 'k6/execution';
// Server chat completions prefix
const server_url = __ENV.SERVER_BENCH_URL ? __ENV.SERVER_BENCH_URL : 'http://localhost:8080/v1'
// Number of total prompts in the dataset - default 10m / 10 seconds/request * number of users
const n_prompt = __ENV.SERVER_BENCH_N_PROMPTS ? parseInt(__ENV.SERVER_BENCH_N_PROMPTS) : 600 / 10 * 8
// Model name to request
const model = __ENV.SERVER_BENCH_MODEL_ALIAS ? __ENV.SERVER_BENCH_MODEL_ALIAS : 'my-model'
// Dataset path
const dataset_path = __ENV.SERVER_BENCH_DATASET ? __ENV.SERVER_BENCH_DATASET : './ShareGPT_V3_unfiltered_cleaned_split.json'
// Max tokens to predict
const max_tokens = __ENV.SERVER_BENCH_MAX_TOKENS ? parseInt(__ENV.SERVER_BENCH_MAX_TOKENS) : 512
// Max prompt tokens
const n_prompt_tokens = __ENV.SERVER_BENCH_MAX_PROMPT_TOKENS ? parseInt(__ENV.SERVER_BENCH_MAX_PROMPT_TOKENS) : 1024
// Max slot context
const n_ctx_slot = __ENV.SERVER_BENCH_MAX_CONTEXT ? parseInt(__ENV.SERVER_BENCH_MAX_CONTEXT) : 2048
export function setup() {
console.info(`Benchmark config: server_url=${server_url} n_prompt=${n_prompt} model=${model} dataset_path=${dataset_path} max_tokens=${max_tokens}`)
}
const data = new SharedArray('conversations', function () {
const tokenizer = (message) => message.split(/[\s,'".?]/)
return JSON.parse(open(dataset_path))
// Filter out the conversations with less than 2 turns.
.filter(data => data["conversations"].length >= 2)
.filter(data => data["conversations"][0]["from"] === "human")
.map(data => {
return {
prompt: data["conversations"][0]["value"],
n_prompt_tokens: tokenizer(data["conversations"][0]["value"]).length,
n_completion_tokens: tokenizer(data["conversations"][1]["value"]).length,
}
})
// Filter out too short sequences
.filter(conv => conv.n_prompt_tokens >= 4 && conv.n_completion_tokens >= 4)
// Filter out too long sequences.
.filter(conv => conv.n_prompt_tokens <= n_prompt_tokens && conv.n_prompt_tokens + conv.n_completion_tokens <= n_ctx_slot)
// Keep only first n prompts
.slice(0, n_prompt)
})
const llamacpp_prompt_tokens = new Trend('llamacpp_prompt_tokens')
const llamacpp_completion_tokens = new Trend('llamacpp_completion_tokens')
const llamacpp_tokens_second = new Trend('llamacpp_tokens_second')
const llamacpp_prompt_processing_second = new Trend('llamacpp_prompt_processing_second')
const llamacpp_prompt_tokens_total_counter = new Counter('llamacpp_prompt_tokens_total_counter')
const llamacpp_completion_tokens_total_counter = new Counter('llamacpp_completion_tokens_total_counter')
const llamacpp_completions_truncated_rate = new Rate('llamacpp_completions_truncated_rate')
const llamacpp_completions_stop_rate = new Rate('llamacpp_completions_stop_rate')
export const options = {
thresholds: {
llamacpp_completions_truncated_rate: [
// more than 80% of truncated input will abort the test
{threshold: 'rate < 0.8', abortOnFail: true, delayAbortEval: '1m'},
],
},
duration: '10m',
vus: 8,
}
export default function () {
const conversation = data[exec.scenario.iterationInInstance % data.length]
const payload = {
"messages": [
{
"role": "system",
"content": "You are ChatGPT, an AI assistant.",
},
{
"role": "user",
"content": conversation.prompt,
}
],
"model": model,
"stream": true,
"seed": 42,
"max_tokens": max_tokens,
"stop": ["<|im_end|>"] // This is temporary for phi-2 base (i.e. not instructed) since the server expects that the model always to emit BOS
}
const params = {method: 'POST', body: JSON.stringify(payload)};
const startTime = new Date()
let promptEvalEndTime = null
let prompt_tokens = 0
let completions_tokens = 0
let finish_reason = null
const res = sse.open(`${server_url}/chat/completions`, params, function (client) {
client.on('event', function (event) {
if (promptEvalEndTime == null) {
promptEvalEndTime = new Date()
}
let chunk = JSON.parse(event.data)
let choice = chunk.choices[0]
if (choice.finish_reason) {
finish_reason = choice.finish_reason
}
if (chunk.usage) {
prompt_tokens = chunk.usage.prompt_tokens
llamacpp_prompt_tokens.add(prompt_tokens)
llamacpp_prompt_tokens_total_counter.add(prompt_tokens)
completions_tokens = chunk.usage.completion_tokens
llamacpp_completion_tokens.add(completions_tokens)
llamacpp_completion_tokens_total_counter.add(completions_tokens)
}
})
client.on('error', function (e) {
console.log('An unexpected error occurred: ', e.error());
throw e;
})
})
check(res, {'success completion': (r) => r.status === 200})
const endTime = new Date()
const promptEvalTime = promptEvalEndTime - startTime
if (promptEvalTime > 0) {
llamacpp_prompt_processing_second.add(prompt_tokens / (promptEvalEndTime - startTime) * 1.e3)
}
const completion_time = endTime - promptEvalEndTime
if (completions_tokens > 0 && completion_time > 0) {
llamacpp_tokens_second.add(completions_tokens / completion_time * 1.e3)
}
llamacpp_completions_truncated_rate.add(finish_reason === 'length')
llamacpp_completions_stop_rate.add(finish_reason === 'stop')
sleep(0.3)
}