2023-09-15 22:59:49 +02:00
# include "common.h"
2023-05-20 10:06:11 +02:00
# include "llama.h"
2023-03-10 19:40:58 +01:00
# include <cstdio>
2023-06-10 09:59:17 +02:00
# include <cstring>
2023-06-13 12:23:23 +02:00
# include <vector>
2023-03-10 19:40:58 +01:00
# include <string>
2024-01-14 08:45:56 +01:00
# include <unordered_map>
# include <fstream>
# include <cmath>
2023-03-21 18:21:50 +01:00
2023-06-13 12:23:23 +02:00
struct quant_option {
std : : string name ;
llama_ftype ftype ;
std : : string desc ;
2023-04-26 18:43:27 +02:00
} ;
2023-06-13 12:23:23 +02:00
static const std : : vector < struct quant_option > QUANT_OPTIONS = {
2024-06-22 15:16:10 +02:00
{ " Q4_0 " , LLAMA_FTYPE_MOSTLY_Q4_0 , " 4.34G, +0.4685 ppl @ Llama-3-8B " , } ,
{ " Q4_1 " , LLAMA_FTYPE_MOSTLY_Q4_1 , " 4.78G, +0.4511 ppl @ Llama-3-8B " , } ,
{ " Q5_0 " , LLAMA_FTYPE_MOSTLY_Q5_0 , " 5.21G, +0.1316 ppl @ Llama-3-8B " , } ,
{ " Q5_1 " , LLAMA_FTYPE_MOSTLY_Q5_1 , " 5.65G, +0.1062 ppl @ Llama-3-8B " , } ,
2024-01-14 08:45:56 +01:00
{ " IQ2_XXS " , LLAMA_FTYPE_MOSTLY_IQ2_XXS , " 2.06 bpw quantization " , } ,
{ " IQ2_XS " , LLAMA_FTYPE_MOSTLY_IQ2_XS , " 2.31 bpw quantization " , } ,
2024-02-26 17:28:38 +01:00
{ " IQ2_S " , LLAMA_FTYPE_MOSTLY_IQ2_S , " 2.5 bpw quantization " , } ,
{ " IQ2_M " , LLAMA_FTYPE_MOSTLY_IQ2_M , " 2.7 bpw quantization " , } ,
2024-02-18 17:16:55 +01:00
{ " IQ1_S " , LLAMA_FTYPE_MOSTLY_IQ1_S , " 1.56 bpw quantization " , } ,
2024-03-26 15:21:27 +01:00
{ " IQ1_M " , LLAMA_FTYPE_MOSTLY_IQ1_M , " 1.75 bpw quantization " , } ,
2024-06-22 15:16:10 +02:00
{ " Q2_K " , LLAMA_FTYPE_MOSTLY_Q2_K , " 2.96G, +3.5199 ppl @ Llama-3-8B " , } ,
{ " Q2_K_S " , LLAMA_FTYPE_MOSTLY_Q2_K_S , " 2.96G, +3.1836 ppl @ Llama-3-8B " , } ,
2024-01-30 14:14:12 +01:00
{ " IQ3_XXS " , LLAMA_FTYPE_MOSTLY_IQ3_XXS , " 3.06 bpw quantization " , } ,
2024-02-24 15:23:52 +01:00
{ " IQ3_S " , LLAMA_FTYPE_MOSTLY_IQ3_S , " 3.44 bpw quantization " , } ,
2024-02-26 17:28:38 +01:00
{ " IQ3_M " , LLAMA_FTYPE_MOSTLY_IQ3_M , " 3.66 bpw quantization mix " , } ,
2024-06-22 15:16:10 +02:00
{ " Q3_K " , LLAMA_FTYPE_MOSTLY_Q3_K_M , " alias for Q3_K_M " } ,
{ " IQ3_XS " , LLAMA_FTYPE_MOSTLY_IQ3_XS , " 3.3 bpw quantization " , } ,
{ " Q3_K_S " , LLAMA_FTYPE_MOSTLY_Q3_K_S , " 3.41G, +1.6321 ppl @ Llama-3-8B " , } ,
{ " Q3_K_M " , LLAMA_FTYPE_MOSTLY_Q3_K_M , " 3.74G, +0.6569 ppl @ Llama-3-8B " , } ,
{ " Q3_K_L " , LLAMA_FTYPE_MOSTLY_Q3_K_L , " 4.03G, +0.5562 ppl @ Llama-3-8B " , } ,
2024-02-27 15:34:24 +01:00
{ " IQ4_NL " , LLAMA_FTYPE_MOSTLY_IQ4_NL , " 4.50 bpw non-linear quantization " , } ,
{ " IQ4_XS " , LLAMA_FTYPE_MOSTLY_IQ4_XS , " 4.25 bpw non-linear quantization " , } ,
2024-06-22 15:16:10 +02:00
{ " Q4_K " , LLAMA_FTYPE_MOSTLY_Q4_K_M , " alias for Q4_K_M " , } ,
{ " Q4_K_S " , LLAMA_FTYPE_MOSTLY_Q4_K_S , " 4.37G, +0.2689 ppl @ Llama-3-8B " , } ,
{ " Q4_K_M " , LLAMA_FTYPE_MOSTLY_Q4_K_M , " 4.58G, +0.1754 ppl @ Llama-3-8B " , } ,
{ " Q5_K " , LLAMA_FTYPE_MOSTLY_Q5_K_M , " alias for Q5_K_M " , } ,
{ " Q5_K_S " , LLAMA_FTYPE_MOSTLY_Q5_K_S , " 5.21G, +0.1049 ppl @ Llama-3-8B " , } ,
{ " Q5_K_M " , LLAMA_FTYPE_MOSTLY_Q5_K_M , " 5.33G, +0.0569 ppl @ Llama-3-8B " , } ,
{ " Q6_K " , LLAMA_FTYPE_MOSTLY_Q6_K , " 6.14G, +0.0217 ppl @ Llama-3-8B " , } ,
{ " Q8_0 " , LLAMA_FTYPE_MOSTLY_Q8_0 , " 7.96G, +0.0026 ppl @ Llama-3-8B " , } ,
{ " F16 " , LLAMA_FTYPE_MOSTLY_F16 , " 14.00G, +0.0020 ppl @ Mistral-7B " , } ,
{ " BF16 " , LLAMA_FTYPE_MOSTLY_BF16 , " 14.00G, -0.0050 ppl @ Mistral-7B " , } ,
{ " F32 " , LLAMA_FTYPE_ALL_F32 , " 26.00G @ 7B " , } ,
2023-09-01 16:02:48 +02:00
// Note: Ensure COPY comes after F32 to avoid ftype 0 from matching.
2024-06-22 15:16:10 +02:00
{ " COPY " , LLAMA_FTYPE_ALL_F32 , " only copy tensors, no quantizing " , } ,
2023-06-13 12:23:23 +02:00
} ;
2024-04-26 20:06:33 +02:00
static const char * const LLM_KV_QUANTIZE_IMATRIX_FILE = " quantize.imatrix.file " ;
static const char * const LLM_KV_QUANTIZE_IMATRIX_DATASET = " quantize.imatrix.dataset " ;
static const char * const LLM_KV_QUANTIZE_IMATRIX_N_ENTRIES = " quantize.imatrix.entries_count " ;
static const char * const LLM_KV_QUANTIZE_IMATRIX_N_CHUNKS = " quantize.imatrix.chunks_count " ;
2023-06-13 12:23:23 +02:00
2023-09-15 21:38:27 +02:00
static bool try_parse_ftype ( const std : : string & ftype_str_in , llama_ftype & ftype , std : : string & ftype_str_out ) {
2023-06-13 12:23:23 +02:00
std : : string ftype_str ;
for ( auto ch : ftype_str_in ) {
ftype_str . push_back ( std : : toupper ( ch ) ) ;
}
for ( auto & it : QUANT_OPTIONS ) {
if ( it . name = = ftype_str ) {
ftype = it . ftype ;
ftype_str_out = it . name ;
return true ;
}
2023-05-05 00:58:56 +02:00
}
try {
int ftype_int = std : : stoi ( ftype_str ) ;
2023-06-13 12:23:23 +02:00
for ( auto & it : QUANT_OPTIONS ) {
if ( it . ftype = = ftype_int ) {
ftype = it . ftype ;
ftype_str_out = it . name ;
2023-05-05 00:58:56 +02:00
return true ;
}
}
}
catch ( . . . ) {
// stoi failed
}
return false ;
}
2023-03-10 19:40:58 +01:00
// usage:
2023-10-29 17:32:28 +01:00
// ./quantize [--allow-requantize] [--leave-output-tensor] [--pure] models/llama/ggml-model.gguf [models/llama/ggml-model-quant.gguf] type [nthreads]
2023-03-10 19:40:58 +01:00
//
2023-09-28 23:41:44 +02:00
[[noreturn]]
2023-09-15 21:38:27 +02:00
static void usage ( const char * executable ) {
2024-03-26 13:09:30 +01:00
printf ( " usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] [--imatrix] [--include-weights] [--exclude-weights] [--output-tensor-type] [--token-embedding-type] [--override-kv] model-f32.gguf [model-quant.gguf] type [nthreads] \n \n " , executable ) ;
2023-09-01 16:02:48 +02:00
printf ( " --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit \n " ) ;
printf ( " --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing \n " ) ;
2023-10-29 17:32:28 +01:00
printf ( " --pure: Disable k-quant mixtures and quantize all tensors to the same type \n " ) ;
2024-01-14 15:21:12 +01:00
printf ( " --imatrix file_name: use data in file_name as importance matrix for quant optimizations \n " ) ;
2024-01-14 08:45:56 +01:00
printf ( " --include-weights tensor_name: use importance matrix for this/these tensor(s) \n " ) ;
printf ( " --exclude-weights tensor_name: use importance matrix for this/these tensor(s) \n " ) ;
2024-03-26 13:09:30 +01:00
printf ( " --output-tensor-type ggml_type: use this ggml_type for the output.weight tensor \n " ) ;
printf ( " --token-embedding-type ggml_type: use this ggml_type for the token embeddings tensor \n " ) ;
2024-04-25 12:29:35 +02:00
printf ( " --keep-split: will generate quatized model in the same shards as input " ) ;
2024-03-26 13:09:30 +01:00
printf ( " --override-kv KEY=TYPE:VALUE \n " ) ;
printf ( " Advanced option to override model metadata by key in the quantized model. May be specified multiple times. \n " ) ;
2024-01-14 08:45:56 +01:00
printf ( " Note: --include-weights and --exclude-weights cannot be used together \n " ) ;
2023-09-01 16:02:48 +02:00
printf ( " \n Allowed quantization types: \n " ) ;
2023-06-13 12:23:23 +02:00
for ( auto & it : QUANT_OPTIONS ) {
2023-09-01 16:02:48 +02:00
if ( it . name ! = " COPY " ) {
printf ( " %2d or " , it . ftype ) ;
} else {
printf ( " " ) ;
}
2024-01-14 08:45:56 +01:00
printf ( " %-7s : %s \n " , it . name . c_str ( ) , it . desc . c_str ( ) ) ;
2023-06-10 09:59:17 +02:00
}
exit ( 1 ) ;
}
2024-04-26 20:06:33 +02:00
static int load_imatrix ( const std : : string & imatrix_file , std : : string & imatrix_dataset , std : : unordered_map < std : : string , std : : vector < float > > & imatrix_data ) {
2024-01-14 08:45:56 +01:00
std : : ifstream in ( imatrix_file . c_str ( ) , std : : ios : : binary ) ;
if ( ! in ) {
2024-03-26 13:09:30 +01:00
printf ( " %s: failed to open %s \n " , __func__ , imatrix_file . c_str ( ) ) ;
2024-04-03 15:07:05 +02:00
exit ( 1 ) ;
2024-01-14 08:45:56 +01:00
}
int n_entries ;
2024-03-26 13:09:30 +01:00
in . read ( ( char * ) & n_entries , sizeof ( n_entries ) ) ;
2024-01-14 08:45:56 +01:00
if ( in . fail ( ) | | n_entries < 1 ) {
printf ( " %s: no data in file %s \n " , __func__ , imatrix_file . c_str ( ) ) ;
2024-04-03 15:07:05 +02:00
exit ( 1 ) ;
2024-01-14 08:45:56 +01:00
}
for ( int i = 0 ; i < n_entries ; + + i ) {
int len ; in . read ( ( char * ) & len , sizeof ( len ) ) ;
std : : vector < char > name_as_vec ( len + 1 ) ;
in . read ( ( char * ) name_as_vec . data ( ) , len ) ;
if ( in . fail ( ) ) {
2024-03-26 13:09:30 +01:00
printf ( " %s: failed reading name for entry %d from %s \n " , __func__ , i + 1 , imatrix_file . c_str ( ) ) ;
2024-04-03 15:07:05 +02:00
exit ( 1 ) ;
2024-01-14 08:45:56 +01:00
}
name_as_vec [ len ] = 0 ;
std : : string name { name_as_vec . data ( ) } ;
2024-04-03 15:07:05 +02:00
auto & e = imatrix_data [ name ] ;
2024-01-14 08:45:56 +01:00
int ncall ;
2024-03-26 13:09:30 +01:00
in . read ( ( char * ) & ncall , sizeof ( ncall ) ) ;
2024-01-14 08:45:56 +01:00
int nval ;
in . read ( ( char * ) & nval , sizeof ( nval ) ) ;
if ( in . fail ( ) | | nval < 1 ) {
2024-03-26 13:09:30 +01:00
printf ( " %s: failed reading number of values for entry %d \n " , __func__ , i ) ;
2024-01-14 08:45:56 +01:00
imatrix_data = { } ;
2024-04-03 15:07:05 +02:00
exit ( 1 ) ;
2024-01-14 08:45:56 +01:00
}
e . resize ( nval ) ;
2024-03-26 13:09:30 +01:00
in . read ( ( char * ) e . data ( ) , nval * sizeof ( float ) ) ;
2024-01-14 08:45:56 +01:00
if ( in . fail ( ) ) {
2024-03-26 13:09:30 +01:00
printf ( " %s: failed reading data for entry %d \n " , __func__ , i ) ;
2024-01-14 08:45:56 +01:00
imatrix_data = { } ;
2024-04-03 15:07:05 +02:00
exit ( 1 ) ;
2024-01-14 08:45:56 +01:00
}
if ( ncall > 0 ) {
for ( auto & v : e ) v / = ncall ;
2024-04-03 15:07:05 +02:00
}
if ( getenv ( " LLAMA_TRACE " ) ) {
printf ( " %s: loaded data (size = %6d, ncall = %6d) for '%s' \n " , __func__ , int ( e . size ( ) ) , ncall , name . c_str ( ) ) ;
2024-01-14 08:45:56 +01:00
}
}
2024-04-26 20:06:33 +02:00
// latest imatrix version contains the dataset filename at the end of the file
int m_last_call = 0 ;
if ( in . peek ( ) ! = EOF ) {
in . read ( ( char * ) & m_last_call , sizeof ( m_last_call ) ) ;
int dataset_len ;
in . read ( ( char * ) & dataset_len , sizeof ( dataset_len ) ) ;
std : : vector < char > dataset_as_vec ( dataset_len ) ;
in . read ( dataset_as_vec . data ( ) , dataset_len ) ;
imatrix_dataset . assign ( dataset_as_vec . begin ( ) , dataset_as_vec . end ( ) ) ;
printf ( " %s: imatrix dataset='%s' \n " , __func__ , imatrix_dataset . c_str ( ) ) ;
}
printf ( " %s: loaded %d importance matrix entries from %s computed on %d chunks \n " , __func__ , int ( imatrix_data . size ( ) ) , imatrix_file . c_str ( ) , m_last_call ) ;
return m_last_call ;
2024-01-14 08:45:56 +01:00
}
2024-04-26 20:06:33 +02:00
static int prepare_imatrix ( const std : : string & imatrix_file ,
std : : string & imatrix_dataset ,
2024-03-26 13:09:30 +01:00
const std : : vector < std : : string > & included_weights ,
const std : : vector < std : : string > & excluded_weights ,
std : : unordered_map < std : : string , std : : vector < float > > & imatrix_data ) {
2024-04-26 20:06:33 +02:00
int m_last_call = - 1 ;
2024-01-14 08:45:56 +01:00
if ( ! imatrix_file . empty ( ) ) {
2024-04-26 20:06:33 +02:00
m_last_call = load_imatrix ( imatrix_file , imatrix_dataset , imatrix_data ) ;
2024-01-14 08:45:56 +01:00
}
if ( imatrix_data . empty ( ) ) {
2024-04-26 20:06:33 +02:00
return m_last_call ;
2024-01-14 08:45:56 +01:00
}
if ( ! excluded_weights . empty ( ) ) {
for ( auto & name : excluded_weights ) {
for ( auto it = imatrix_data . begin ( ) ; it ! = imatrix_data . end ( ) ; ) {
auto pos = it - > first . find ( name ) ;
if ( pos ! = std : : string : : npos ) it = imatrix_data . erase ( it ) ;
else + + it ;
}
}
}
if ( ! included_weights . empty ( ) ) {
std : : unordered_map < std : : string , std : : vector < float > > tmp ;
for ( auto & name : included_weights ) {
for ( auto & e : imatrix_data ) {
auto pos = e . first . find ( name ) ;
if ( pos ! = std : : string : : npos ) {
tmp . emplace ( std : : move ( e ) ) ;
}
}
}
imatrix_data = std : : move ( tmp ) ;
}
if ( ! imatrix_data . empty ( ) ) {
printf ( " %s: have %d importance matrix entries \n " , __func__ , int ( imatrix_data . size ( ) ) ) ;
}
2024-04-26 20:06:33 +02:00
return m_last_call ;
2024-01-14 08:45:56 +01:00
}
2024-03-22 19:47:14 +01:00
static ggml_type parse_ggml_type ( const char * arg ) {
ggml_type result = GGML_TYPE_COUNT ;
for ( int j = 0 ; j < GGML_TYPE_COUNT ; + + j ) {
auto type = ggml_type ( j ) ;
const auto * name = ggml_type_name ( type ) ;
if ( name & & strcmp ( arg , name ) = = 0 ) {
result = type ; break ;
}
}
return result ;
}
2023-03-10 19:40:58 +01:00
int main ( int argc , char * * argv ) {
2023-05-05 00:58:56 +02:00
if ( argc < 3 ) {
2023-06-10 09:59:17 +02:00
usage ( argv [ 0 ] ) ;
}
llama_model_quantize_params params = llama_model_quantize_default_params ( ) ;
int arg_idx = 1 ;
2024-01-14 08:45:56 +01:00
std : : string imatrix_file ;
std : : vector < std : : string > included_weights , excluded_weights ;
2024-03-26 13:09:30 +01:00
std : : vector < llama_model_kv_override > kv_overrides ;
2023-06-10 09:59:17 +02:00
for ( ; arg_idx < argc & & strncmp ( argv [ arg_idx ] , " -- " , 2 ) = = 0 ; arg_idx + + ) {
if ( strcmp ( argv [ arg_idx ] , " --leave-output-tensor " ) = = 0 ) {
params . quantize_output_tensor = false ;
2024-03-22 19:47:14 +01:00
} else if ( strcmp ( argv [ arg_idx ] , " --output-tensor-type " ) = = 0 ) {
if ( arg_idx < argc - 1 ) {
params . output_tensor_type = parse_ggml_type ( argv [ + + arg_idx ] ) ;
} else {
usage ( argv [ 0 ] ) ;
}
} else if ( strcmp ( argv [ arg_idx ] , " --token-embedding-type " ) = = 0 ) {
if ( arg_idx < argc - 1 ) {
params . token_embedding_type = parse_ggml_type ( argv [ + + arg_idx ] ) ;
} else {
usage ( argv [ 0 ] ) ;
}
2024-03-26 13:09:30 +01:00
} else if ( strcmp ( argv [ arg_idx ] , " --override-kv " ) = = 0 ) {
2024-05-22 19:04:20 +02:00
if ( arg_idx = = argc - 1 | | ! string_parse_kv_override ( argv [ + + arg_idx ] , kv_overrides ) ) {
2024-03-26 13:09:30 +01:00
usage ( argv [ 0 ] ) ;
}
2023-06-10 09:59:17 +02:00
} else if ( strcmp ( argv [ arg_idx ] , " --allow-requantize " ) = = 0 ) {
params . allow_requantize = true ;
2023-10-29 17:32:28 +01:00
} else if ( strcmp ( argv [ arg_idx ] , " --pure " ) = = 0 ) {
params . pure = true ;
2024-01-14 08:45:56 +01:00
} else if ( strcmp ( argv [ arg_idx ] , " --imatrix " ) = = 0 ) {
if ( arg_idx < argc - 1 ) {
imatrix_file = argv [ + + arg_idx ] ;
} else {
usage ( argv [ 0 ] ) ;
}
} else if ( strcmp ( argv [ arg_idx ] , " --include-weights " ) = = 0 ) {
if ( arg_idx < argc - 1 ) {
2024-02-03 12:23:37 +01:00
included_weights . emplace_back ( argv [ + + arg_idx ] ) ;
2024-01-14 08:45:56 +01:00
} else {
usage ( argv [ 0 ] ) ;
}
} else if ( strcmp ( argv [ arg_idx ] , " --exclude-weights " ) = = 0 ) {
if ( arg_idx < argc - 1 ) {
2024-02-03 12:23:37 +01:00
excluded_weights . emplace_back ( argv [ + + arg_idx ] ) ;
2024-01-14 08:45:56 +01:00
} else {
usage ( argv [ 0 ] ) ;
}
2024-05-19 18:37:04 +02:00
} else if ( strcmp ( argv [ arg_idx ] , " --keep-split " ) = = 0 ) {
2024-04-25 12:29:35 +02:00
params . keep_split = true ;
2023-06-10 09:59:17 +02:00
} else {
usage ( argv [ 0 ] ) ;
2023-04-26 18:43:27 +02:00
}
2023-06-10 09:59:17 +02:00
}
2023-08-28 08:32:25 +02:00
if ( argc - arg_idx < 2 ) {
2024-01-14 08:45:56 +01:00
printf ( " %s: bad arguments \n " , argv [ 0 ] ) ;
usage ( argv [ 0 ] ) ;
}
if ( ! included_weights . empty ( ) & & ! excluded_weights . empty ( ) ) {
2023-06-10 09:59:17 +02:00
usage ( argv [ 0 ] ) ;
2023-03-10 19:40:58 +01:00
}
2024-04-26 20:06:33 +02:00
std : : string imatrix_dataset ;
2024-01-14 08:45:56 +01:00
std : : unordered_map < std : : string , std : : vector < float > > imatrix_data ;
2024-04-26 20:06:33 +02:00
int m_last_call = prepare_imatrix ( imatrix_file , imatrix_dataset , included_weights , excluded_weights , imatrix_data ) ;
2024-01-14 08:45:56 +01:00
if ( ! imatrix_data . empty ( ) ) {
params . imatrix = & imatrix_data ;
2024-04-26 20:06:33 +02:00
{
llama_model_kv_override kvo ;
std : : strcpy ( kvo . key , LLM_KV_QUANTIZE_IMATRIX_FILE ) ;
kvo . tag = LLAMA_KV_OVERRIDE_TYPE_STR ;
strncpy ( kvo . val_str , imatrix_file . c_str ( ) , 127 ) ;
kvo . val_str [ 127 ] = ' \0 ' ;
kv_overrides . emplace_back ( std : : move ( kvo ) ) ;
}
if ( ! imatrix_dataset . empty ( ) ) {
llama_model_kv_override kvo ;
std : : strcpy ( kvo . key , LLM_KV_QUANTIZE_IMATRIX_DATASET ) ;
kvo . tag = LLAMA_KV_OVERRIDE_TYPE_STR ;
strncpy ( kvo . val_str , imatrix_dataset . c_str ( ) , 127 ) ;
kvo . val_str [ 127 ] = ' \0 ' ;
kv_overrides . emplace_back ( std : : move ( kvo ) ) ;
}
{
llama_model_kv_override kvo ;
std : : strcpy ( kvo . key , LLM_KV_QUANTIZE_IMATRIX_N_ENTRIES ) ;
kvo . tag = LLAMA_KV_OVERRIDE_TYPE_INT ;
kvo . val_i64 = imatrix_data . size ( ) ;
kv_overrides . emplace_back ( std : : move ( kvo ) ) ;
}
if ( m_last_call > 0 ) {
llama_model_kv_override kvo ;
std : : strcpy ( kvo . key , LLM_KV_QUANTIZE_IMATRIX_N_CHUNKS ) ;
kvo . tag = LLAMA_KV_OVERRIDE_TYPE_INT ;
kvo . val_i64 = m_last_call ;
kv_overrides . emplace_back ( std : : move ( kvo ) ) ;
}
2024-01-14 08:45:56 +01:00
}
2024-03-26 13:09:30 +01:00
if ( ! kv_overrides . empty ( ) ) {
kv_overrides . emplace_back ( ) ;
kv_overrides . back ( ) . key [ 0 ] = 0 ;
params . kv_overrides = & kv_overrides ;
}
2024-01-14 08:45:56 +01:00
2024-02-16 10:31:07 +01:00
llama_backend_init ( ) ;
2023-03-11 16:40:14 +01:00
2023-05-05 00:58:56 +02:00
// parse command line arguments
2023-06-10 09:59:17 +02:00
const std : : string fname_inp = argv [ arg_idx ] ;
arg_idx + + ;
2023-05-05 00:58:56 +02:00
std : : string fname_out ;
std : : string ftype_str ;
2024-04-25 12:29:35 +02:00
std : : string suffix = " .gguf " ;
2023-06-10 09:59:17 +02:00
if ( try_parse_ftype ( argv [ arg_idx ] , params . ftype , ftype_str ) ) {
2023-05-05 00:58:56 +02:00
std : : string fpath ;
2023-08-28 08:32:25 +02:00
const size_t pos = fname_inp . find_last_of ( " / \\ " ) ;
2023-05-05 00:58:56 +02:00
if ( pos ! = std : : string : : npos ) {
fpath = fname_inp . substr ( 0 , pos + 1 ) ;
}
2024-04-25 12:29:35 +02:00
// export as [inp path]/ggml-model-[ftype]. Only add extension if there is no splitting
fname_out = fpath + " ggml-model- " + ftype_str ;
if ( ! params . keep_split ) {
fname_out + = suffix ;
}
2023-05-05 00:58:56 +02:00
arg_idx + + ;
2023-09-01 16:02:48 +02:00
if ( ftype_str = = " COPY " ) {
params . only_copy = true ;
}
2024-03-26 13:09:30 +01:00
} else {
2023-05-05 00:58:56 +02:00
fname_out = argv [ arg_idx ] ;
2024-04-25 12:29:35 +02:00
if ( params . keep_split & & fname_out . find ( suffix ) ! = std : : string : : npos ) {
fname_out = fname_out . substr ( 0 , fname_out . length ( ) - suffix . length ( ) ) ;
}
2023-05-05 00:58:56 +02:00
arg_idx + + ;
2023-03-10 19:40:58 +01:00
2023-05-05 00:58:56 +02:00
if ( argc < = arg_idx ) {
fprintf ( stderr , " %s: missing ftype \n " , __func__ ) ;
return 1 ;
}
2023-06-10 09:59:17 +02:00
if ( ! try_parse_ftype ( argv [ arg_idx ] , params . ftype , ftype_str ) ) {
2023-05-05 00:58:56 +02:00
fprintf ( stderr , " %s: invalid ftype '%s' \n " , __func__ , argv [ 3 ] ) ;
return 1 ;
2023-09-07 19:22:29 +02:00
}
if ( ftype_str = = " COPY " ) {
params . only_copy = true ;
2023-05-05 00:58:56 +02:00
}
arg_idx + + ;
}
// parse nthreads
if ( argc > arg_idx ) {
try {
2023-06-10 09:59:17 +02:00
params . nthread = std : : stoi ( argv [ arg_idx ] ) ;
2023-05-05 00:58:56 +02:00
}
catch ( const std : : exception & e ) {
fprintf ( stderr , " %s: invalid nthread '%s' (%s) \n " , __func__ , argv [ arg_idx ] , e . what ( ) ) ;
2023-04-26 18:43:27 +02:00
return 1 ;
}
}
2024-02-18 17:16:55 +01:00
if ( ( params . ftype = = LLAMA_FTYPE_MOSTLY_IQ2_XS | | params . ftype = = LLAMA_FTYPE_MOSTLY_IQ2_XXS | |
2024-02-26 17:28:38 +01:00
params . ftype = = LLAMA_FTYPE_MOSTLY_IQ2_S | |
2024-03-26 15:21:27 +01:00
params . ftype = = LLAMA_FTYPE_MOSTLY_Q2_K_S | |
params . ftype = = LLAMA_FTYPE_MOSTLY_IQ1_S | |
params . ftype = = LLAMA_FTYPE_MOSTLY_IQ1_M ) & & imatrix_data . empty ( ) ) {
fprintf ( stderr , " \n ========================================================================================================== \n " ) ;
fprintf ( stderr , " Please do not use IQ1_S, IQ1_M, IQ2_S, IQ2_XXS, IQ2_XS or Q2_K_S quantization without an importance matrix \n " ) ;
fprintf ( stderr , " ========================================================================================================== \n \n \n " ) ;
2024-01-14 08:45:56 +01:00
return 1 ;
}
2023-09-15 22:59:49 +02:00
print_build_info ( ) ;
2023-05-01 18:23:47 +02:00
2023-05-05 00:58:56 +02:00
fprintf ( stderr , " %s: quantizing '%s' to '%s' as %s " , __func__ , fname_inp . c_str ( ) , fname_out . c_str ( ) , ftype_str . c_str ( ) ) ;
2023-06-10 09:59:17 +02:00
if ( params . nthread > 0 ) {
fprintf ( stderr , " using %d threads " , params . nthread ) ;
2023-05-05 00:58:56 +02:00
}
fprintf ( stderr , " \n " ) ;
2023-03-10 19:40:58 +01:00
2023-05-20 10:06:11 +02:00
const int64_t t_main_start_us = llama_time_us ( ) ;
2023-03-10 19:40:58 +01:00
int64_t t_quantize_us = 0 ;
// load the model
{
2023-05-20 10:06:11 +02:00
const int64_t t_start_us = llama_time_us ( ) ;
2023-03-10 19:40:58 +01:00
2023-06-10 09:59:17 +02:00
if ( llama_model_quantize ( fname_inp . c_str ( ) , fname_out . c_str ( ) , & params ) ) {
2023-03-10 19:40:58 +01:00
fprintf ( stderr , " %s: failed to quantize model from '%s' \n " , __func__ , fname_inp . c_str ( ) ) ;
return 1 ;
}
2023-05-20 10:06:11 +02:00
t_quantize_us = llama_time_us ( ) - t_start_us ;
2023-03-10 19:40:58 +01:00
}
// report timing
{
2023-05-20 10:06:11 +02:00
const int64_t t_main_end_us = llama_time_us ( ) ;
2023-03-10 19:40:58 +01:00
printf ( " \n " ) ;
2023-03-28 18:48:20 +02:00
printf ( " %s: quantize time = %8.2f ms \n " , __func__ , t_quantize_us / 1000.0 ) ;
printf ( " %s: total time = %8.2f ms \n " , __func__ , ( t_main_end_us - t_main_start_us ) / 1000.0 ) ;
2023-03-10 19:40:58 +01:00
}
2023-07-10 17:49:56 +02:00
llama_backend_free ( ) ;
2023-03-10 19:40:58 +01:00
return 0 ;
}