2023-08-23 10:29:09 -04:00
|
|
|
#!/usr/bin/env python3
|
2023-08-21 23:07:43 +03:00
|
|
|
# HF gptneox--> gguf conversion
|
|
|
|
|
|
|
|
import gguf
|
|
|
|
import os
|
|
|
|
import sys
|
|
|
|
import struct
|
|
|
|
import json
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from typing import Any, List
|
|
|
|
from pathlib import Path
|
|
|
|
from transformers import AutoTokenizer
|
|
|
|
|
|
|
|
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
|
|
|
|
|
|
|
|
|
|
|
def bytes_to_unicode():
|
|
|
|
"""
|
|
|
|
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
|
|
|
The reversible bpe codes work on unicode strings.
|
|
|
|
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
|
|
|
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
|
|
|
This is a significant percentage of your normal, say, 32K bpe vocab.
|
|
|
|
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
|
|
|
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
|
|
|
"""
|
|
|
|
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
|
|
|
cs = bs[:]
|
|
|
|
n = 0
|
|
|
|
for b in range(2**8):
|
|
|
|
if b not in bs:
|
|
|
|
bs.append(b)
|
|
|
|
cs.append(2**8+n)
|
|
|
|
n += 1
|
|
|
|
cs = [chr(n) for n in cs]
|
|
|
|
return dict(zip(bs, cs))
|
|
|
|
|
|
|
|
|
|
|
|
def count_model_parts(dir_model: str) -> int:
|
|
|
|
num_parts = 0
|
|
|
|
for filename in os.listdir(dir_model):
|
|
|
|
if filename.startswith("pytorch_model-"):
|
|
|
|
num_parts += 1
|
|
|
|
|
|
|
|
if num_parts > 0:
|
|
|
|
print("gguf: found " + str(num_parts) + " model parts")
|
|
|
|
return num_parts
|
|
|
|
|
|
|
|
|
|
|
|
if len(sys.argv) < 3:
|
2023-08-29 15:51:02 +02:00
|
|
|
print(f"Usage: python {sys.argv[0]} dir-model ftype\n")
|
2023-08-21 23:07:43 +03:00
|
|
|
print(" ftype == 0 -> float32")
|
|
|
|
print(" ftype == 1 -> float16")
|
|
|
|
sys.exit(1)
|
|
|
|
|
|
|
|
|
|
|
|
# output in the same directory as the model
|
|
|
|
dir_model = sys.argv[1]
|
|
|
|
last_dir = os.path.basename(os.path.normpath(dir_model))
|
|
|
|
|
|
|
|
# possible tensor data types
|
|
|
|
# ftype == 0 -> float32
|
|
|
|
# ftype == 1 -> float16
|
|
|
|
|
|
|
|
# map from ftype to string
|
|
|
|
ftype_str = ["f32", "f16"]
|
|
|
|
|
|
|
|
ftype = 1
|
|
|
|
if len(sys.argv) > 2:
|
|
|
|
ftype = int(sys.argv[2])
|
|
|
|
if ftype < 0 or ftype > 1:
|
|
|
|
print("Invalid ftype: " + str(ftype))
|
|
|
|
|
|
|
|
sys.exit(1)
|
|
|
|
|
|
|
|
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
|
|
|
|
|
|
|
|
print("gguf: loading model "+last_dir)
|
|
|
|
|
|
|
|
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
|
|
|
|
hparams = json.load(f)
|
|
|
|
|
|
|
|
if hparams["architectures"][0] != "GPTNeoXForCausalLM":
|
|
|
|
print("Model architecture not supported: " + hparams["architectures"][0])
|
|
|
|
|
|
|
|
sys.exit()
|
|
|
|
|
|
|
|
# get number of model parts
|
|
|
|
num_parts = count_model_parts(dir_model)
|
|
|
|
|
|
|
|
ARCH=gguf.MODEL_ARCH.GPTNEOX
|
|
|
|
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
|
|
|
|
|
|
|
|
print("gguf: get model metadata")
|
|
|
|
|
|
|
|
block_count = hparams["num_hidden_layers"]
|
|
|
|
|
|
|
|
gguf_writer.add_name(last_dir)
|
|
|
|
gguf_writer.add_context_length(hparams["max_position_embeddings"])
|
|
|
|
gguf_writer.add_embedding_length(hparams["hidden_size"])
|
|
|
|
gguf_writer.add_block_count(block_count)
|
|
|
|
gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
|
|
|
|
gguf_writer.add_rope_dimension_count(int(hparams["rotary_pct"]*(hparams["hidden_size"]//hparams["num_attention_heads"])))
|
|
|
|
gguf_writer.add_head_count(hparams["num_attention_heads"])
|
|
|
|
gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
|
|
|
|
gguf_writer.add_layer_norm_eps(hparams["layer_norm_eps"])
|
|
|
|
|
|
|
|
# TOKENIZATION
|
|
|
|
|
|
|
|
print("gguf: get tokenizer metadata")
|
|
|
|
|
|
|
|
tokens: List[str] = []
|
|
|
|
merges: List[str] = []
|
|
|
|
|
|
|
|
|
|
|
|
if Path(dir_model + "/tokenizer.json").is_file():
|
|
|
|
# gpt2 tokenizer
|
|
|
|
gguf_writer.add_tokenizer_model("gpt2")
|
|
|
|
|
|
|
|
print("gguf: get gpt2 tokenizer merges")
|
|
|
|
|
|
|
|
with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
|
|
|
|
tokenizer_json = json.load(f)
|
|
|
|
merges = tokenizer_json["model"]["merges"]
|
|
|
|
|
|
|
|
gguf_writer.add_token_merges(merges)
|
|
|
|
|
|
|
|
print("gguf: get gpt2 tokenizer vocab")
|
|
|
|
|
|
|
|
vocab_size = len(tokenizer_json["model"]["vocab"])
|
|
|
|
|
|
|
|
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
|
|
|
|
|
|
|
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
|
|
|
|
byte_encoder = bytes_to_unicode()
|
|
|
|
byte_decoder = {v: k for k, v in byte_encoder.items()}
|
|
|
|
|
|
|
|
for i in range(vocab_size):
|
|
|
|
if i in reverse_vocab:
|
|
|
|
try:
|
|
|
|
text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
|
|
|
|
except KeyError:
|
|
|
|
text = bytearray()
|
|
|
|
for c in reverse_vocab[i]:
|
|
|
|
if ord(c) < 256: # single byte character
|
|
|
|
text.append(byte_decoder[ord(c)])
|
|
|
|
else: # multibyte special token character
|
|
|
|
text.extend(c.encode('utf-8'))
|
|
|
|
else:
|
|
|
|
print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
|
|
|
|
pad_token = f"[PAD{i}]".encode("utf8")
|
|
|
|
text = bytearray(pad_token)
|
|
|
|
|
|
|
|
tokens.append(text)
|
|
|
|
|
|
|
|
gguf_writer.add_token_list(tokens)
|
|
|
|
|
|
|
|
if "added_tokens" in tokenizer_json and Path(dir_model + "/tokenizer_config.json").is_file():
|
|
|
|
print("gguf: get special token ids")
|
|
|
|
|
|
|
|
with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f:
|
|
|
|
tokenizer_config = json.load(f)
|
|
|
|
|
|
|
|
# find special token ids
|
|
|
|
|
|
|
|
if "bos_token" in tokenizer_config:
|
|
|
|
for key in tokenizer_json["added_tokens"]:
|
|
|
|
if key["content"] == tokenizer_config["bos_token"]:
|
|
|
|
gguf_writer.add_bos_token_id(key["id"])
|
|
|
|
|
|
|
|
if "eos_token" in tokenizer_config:
|
|
|
|
for key in tokenizer_json["added_tokens"]:
|
|
|
|
if key["content"] == tokenizer_config["eos_token"]:
|
|
|
|
gguf_writer.add_eos_token_id(key["id"])
|
|
|
|
|
|
|
|
if "unk_token" in tokenizer_config:
|
|
|
|
for key in tokenizer_json["added_tokens"]:
|
|
|
|
if key["content"] == tokenizer_config["unk_token"]:
|
|
|
|
gguf_writer.add_unk_token_id(key["id"])
|
|
|
|
|
|
|
|
if "sep_token" in tokenizer_config:
|
|
|
|
for key in tokenizer_json["added_tokens"]:
|
|
|
|
if key["content"] == tokenizer_config["sep_token"]:
|
|
|
|
gguf_writer.add_sep_token_id(key["id"])
|
|
|
|
|
|
|
|
if "pad_token" in tokenizer_config:
|
|
|
|
for key in tokenizer_json["added_tokens"]:
|
|
|
|
if key["content"] == tokenizer_config["pad_token"]:
|
|
|
|
gguf_writer.add_pad_token_id(key["id"])
|
|
|
|
|
|
|
|
|
|
|
|
# TENSORS
|
|
|
|
|
|
|
|
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
|
|
|
|
|
|
|
|
# tensor info
|
|
|
|
print("gguf: get tensor metadata")
|
|
|
|
|
|
|
|
if num_parts == 0:
|
|
|
|
part_names = ("pytorch_model.bin",)
|
|
|
|
else:
|
|
|
|
part_names = (
|
|
|
|
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
|
|
|
|
)
|
|
|
|
|
|
|
|
for part_name in part_names:
|
|
|
|
print("gguf: loading model part '" + part_name + "'")
|
|
|
|
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
|
|
|
|
|
|
|
|
for name in model_part.keys():
|
|
|
|
data = model_part[name]
|
|
|
|
|
|
|
|
# we don't need these
|
|
|
|
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
|
|
|
|
continue
|
|
|
|
|
|
|
|
old_dtype = data.dtype
|
|
|
|
|
|
|
|
# convert any unsupported data types to float32
|
|
|
|
if data.dtype != torch.float16 and data.dtype != torch.float32:
|
|
|
|
data = data.to(torch.float32)
|
|
|
|
|
|
|
|
data = data.squeeze().numpy()
|
|
|
|
|
|
|
|
# map tensor names
|
|
|
|
if name.endswith(".weight") and name[:-7] in tensor_map:
|
|
|
|
name = tensor_map[name[:-7]] + ".weight"
|
|
|
|
elif name.endswith(".bias") and name[:-5] in tensor_map:
|
|
|
|
name = tensor_map[name[:-5]] + ".bias"
|
|
|
|
else:
|
|
|
|
print("Can not map tensor '" + name + "'")
|
|
|
|
sys.exit()
|
|
|
|
|
|
|
|
n_dims = len(data.shape)
|
|
|
|
data_dtype = data.dtype
|
|
|
|
|
|
|
|
# if f32 desired, convert any float16 to float32
|
|
|
|
if ftype == 0 and data_dtype == np.float16:
|
|
|
|
data = data.astype(np.float32)
|
|
|
|
|
|
|
|
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
|
|
|
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
|
|
|
data = data.astype(np.float32)
|
|
|
|
|
|
|
|
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
|
|
|
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
|
|
|
data = data.astype(np.float16)
|
|
|
|
|
|
|
|
print(name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
|
|
|
|
|
|
|
|
gguf_writer.add_tensor(name, data)
|
|
|
|
|
|
|
|
|
|
|
|
print("gguf: write header")
|
|
|
|
gguf_writer.write_header_to_file()
|
|
|
|
print("gguf: write metadata")
|
|
|
|
gguf_writer.write_kv_data_to_file()
|
|
|
|
print("gguf: write tensors")
|
|
|
|
gguf_writer.write_tensors_to_file()
|
|
|
|
|
|
|
|
gguf_writer.close()
|
|
|
|
|
|
|
|
print("gguf: model successfully exported to '" + fname_out + "'")
|
|
|
|
print("")
|