2023-10-12 18:23:18 +03:00
# LLaVA
2024-02-14 15:49:42 +01:00
Currently this implementation supports [llava-v1.5 ](https://huggingface.co/liuhaotian/llava-v1.5-7b ) variants,
as well as llava-1.6 [llava-v1.6 ](https://huggingface.co/collections/liuhaotian/llava-16-65b9e40155f60fd046a5ccf2 ) variants.
2023-10-12 18:23:18 +03:00
The pre-converted [7b ](https://huggingface.co/mys/ggml_llava-v1.5-7b )
and [13b ](https://huggingface.co/mys/ggml_llava-v1.5-13b )
models are available.
2024-02-14 15:49:42 +01:00
For llava-1.6 a variety of prepared gguf models are available as well [7b-34b ](https://huggingface.co/cmp-nct/llava-1.6-gguf )
2023-10-12 18:23:18 +03:00
After API is confirmed, more models will be supported / uploaded.
## Usage
2023-11-06 22:36:23 +01:00
Build with cmake or run `make llava-cli` to build it.
2023-10-12 18:23:18 +03:00
2023-11-06 22:36:23 +01:00
After building, run: `./llava-cli` to see the usage. For example:
2023-10-12 18:23:18 +03:00
```sh
2024-02-08 15:20:03 +01:00
./llava-cli -m ../llava-v1.5-7b/ggml-model-f16.gguf --mmproj ../llava-v1.5-7b/mmproj-model-f16.gguf --image path/to/an/image.jpg
2023-10-12 18:23:18 +03:00
```
**note**: A lower temperature like 0.1 is recommended for better quality. add `--temp 0.1` to the command to do so.
2024-02-14 15:49:42 +01:00
**note**: For GPU offloading ensure to use the `-ngl` flag just like usual
2023-10-12 18:23:18 +03:00
llava : support v1.6 (#5267)
* Create llava-survery-v2.py
* Update convert-image-encoder-to-gguf.py
* Update convert-image-encoder-to-gguf.py
* Rename llava-survery-v2.py to llava-surgery-v2.py
* Update convert-image-encoder-to-gguf.py
will now search for projector
* Update convert-image-encoder-to-gguf.py
whoops
* Update llava-surgery-v2.py
* Clip: Bugfix for normalization (it did not loat the 3 std and mean values)
Clip: bicubic resize function
Clip: added save-to-bmp/pil for debugging and conversion from/to 32/8 images
Clip: added normalization with FP16 precision simulation (image tensors match HF implementation, can be switched off, only used for llava-1.6)
Clip: added newline tensor, mergetype kv, image-grid kv, new resize-pad function with resolution from gridpoints
Clip: clip_image_preprocess now returns a float * vector instead of float, this way llava 1.5 and 1.6 is supported
llava: added ggml cpu graph for embedding patching, added spatial_unpad preliminary support, added a lot of comments that need to be cleaned when all is final
convert-image-encoder: fixed image-grid flattening
* whitespace corrections
* ws
* Tensors are now properly permuted.
Before the embeddings were inserted 1:1, now they are split into the 24x24 patches as in reference.
* ws
* added verbose_prompt support into cli
added stopwords for llava-1.6 into cli
* moved llava functions to llava.cpp, made clip.h C compatible API, replaced vector style functions with pointers, added a debug define to remove functions from compilation while not needed
* ws
* convert : skip unknown tensors (need for LLaVA)
* llava : update readme
* llava : fix compile warnings
* llava : style
* convert : add --skip-unknown CLI arg
* server : remove clip structs
* bugfix for non llava-1.6
It should now work with llava-1.5 as well
* clip : minor code rearrange
* llava : update readme a bit
---------
Co-authored-by: John <cmt-nct@users.noreply.github.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-14 08:38:35 +01:00
## LLaVA 1.5
2023-10-12 18:23:18 +03:00
llava : support v1.6 (#5267)
* Create llava-survery-v2.py
* Update convert-image-encoder-to-gguf.py
* Update convert-image-encoder-to-gguf.py
* Rename llava-survery-v2.py to llava-surgery-v2.py
* Update convert-image-encoder-to-gguf.py
will now search for projector
* Update convert-image-encoder-to-gguf.py
whoops
* Update llava-surgery-v2.py
* Clip: Bugfix for normalization (it did not loat the 3 std and mean values)
Clip: bicubic resize function
Clip: added save-to-bmp/pil for debugging and conversion from/to 32/8 images
Clip: added normalization with FP16 precision simulation (image tensors match HF implementation, can be switched off, only used for llava-1.6)
Clip: added newline tensor, mergetype kv, image-grid kv, new resize-pad function with resolution from gridpoints
Clip: clip_image_preprocess now returns a float * vector instead of float, this way llava 1.5 and 1.6 is supported
llava: added ggml cpu graph for embedding patching, added spatial_unpad preliminary support, added a lot of comments that need to be cleaned when all is final
convert-image-encoder: fixed image-grid flattening
* whitespace corrections
* ws
* Tensors are now properly permuted.
Before the embeddings were inserted 1:1, now they are split into the 24x24 patches as in reference.
* ws
* added verbose_prompt support into cli
added stopwords for llava-1.6 into cli
* moved llava functions to llava.cpp, made clip.h C compatible API, replaced vector style functions with pointers, added a debug define to remove functions from compilation while not needed
* ws
* convert : skip unknown tensors (need for LLaVA)
* llava : update readme
* llava : fix compile warnings
* llava : style
* convert : add --skip-unknown CLI arg
* server : remove clip structs
* bugfix for non llava-1.6
It should now work with llava-1.5 as well
* clip : minor code rearrange
* llava : update readme a bit
---------
Co-authored-by: John <cmt-nct@users.noreply.github.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-14 08:38:35 +01:00
- Clone a LLaVA and a CLIP model ([available options ](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md )). For example:
2023-10-12 18:23:18 +03:00
```sh
git clone https://huggingface.co/liuhaotian/llava-v1.5-7b
git clone https://huggingface.co/openai/clip-vit-large-patch14-336
```
2024-02-09 14:00:59 +01:00
2. Install the required Python packages:
```sh
pip install -r examples/llava/requirements.txt
```
3. Use `llava-surgery.py` to split the LLaVA model to LLaMA and multimodel projector constituents:
2023-10-12 18:23:18 +03:00
```sh
python ./examples/llava/llava-surgery.py -m ../llava-v1.5-7b
```
2024-02-09 14:00:59 +01:00
4. Use `convert-image-encoder-to-gguf.py` to convert the LLaVA image encoder to GGUF:
2023-10-12 18:23:18 +03:00
```sh
2024-02-08 15:20:03 +01:00
python ./examples/llava/convert-image-encoder-to-gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
2023-10-12 18:23:18 +03:00
```
2024-02-09 14:00:59 +01:00
5. Use `convert.py` to convert the LLaMA part of LLaVA to GGUF:
2023-10-12 18:23:18 +03:00
```sh
2024-02-18 17:19:23 +01:00
python ./convert.py ../llava-v1.5-7b --skip-unknown
2023-10-12 18:23:18 +03:00
```
Now both the LLaMA part and the image encoder is in the `llava-v1.5-7b` directory.
2024-02-14 15:49:42 +01:00
## LLaVA 1.6 gguf conversion
2024-02-20 18:30:27 +01:00
1) First clone a LLaVA 1.6 model:
```console
git clone https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b
```
2024-02-21 14:36:57 +01:00
2) Use `llava-surgery-v2.py` which also supports llava-1.5 variants pytorch as well as safetensor models:
2024-02-20 18:30:27 +01:00
```console
python examples/llava/llava-surgery-v2.py -C -m ../llava-v1.6-vicuna-7b/
```
2024-02-14 15:49:42 +01:00
- you will find a llava.projector and a llava.clip file in your model directory
2024-02-21 14:36:57 +01:00
3) Copy the llava.clip file into a subdirectory (like vit), rename it to pytorch_model.bin and add a fitting vit configuration to the directory:
2024-02-20 18:30:27 +01:00
```console
mkdir vit
cp ../llava-v1.6-vicuna-7b/llava.clip vit/pytorch_model.bin
cp ../llava-v1.6-vicuna-7b/llava.projector vit/
curl -s -q https://huggingface.co/cmp-nct/llava-1.6-gguf/raw/main/config_vit.json -o vit/config.json
```
2024-02-21 14:36:57 +01:00
4) Create the visual gguf model:
2024-02-20 18:30:27 +01:00
```console
python ./examples/llava/convert-image-encoder-to-gguf.py -m vit --llava-projector vit/llava.projector --output-dir vit --clip-model-is-vision
```
2024-02-14 15:49:42 +01:00
- This is similar to llava-1.5, the difference is that we tell the encoder that we are working with the pure vision model part of CLIP
2024-02-20 18:30:27 +01:00
2024-02-21 14:36:57 +01:00
5) Then convert the model to gguf format:
2024-02-20 18:30:27 +01:00
```console
2024-02-21 14:36:57 +01:00
python ./convert.py ../llava-v1.6-vicuna-7b/ --skip-unknown
2024-02-20 18:30:27 +01:00
```
2024-02-21 14:36:57 +01:00
6) And finally we can run the llava-cli using the 1.6 model version:
2024-02-20 18:30:27 +01:00
```console
./llava-cli -m ../llava-v1.6-vicuna-7b/ggml-model-f16.gguf --mmproj vit/mmproj-model-f16.gguf --image some-image.jpg -c 4096
```
2024-02-14 15:49:42 +01:00
**note** llava-1.6 needs more context than llava-1.5, at least 3000 is needed (just run it at -c 4096)
**note** llava-1.6 greatly benefits from batched prompt processing (defaults work)
## llava-cli templating and llava-1.6 prompting
llava-1.5 models all use the same vicuna prompt, here you can just add your image question like `-p "Provide a full description."`
For llava-1.5 models which are not vicuna (mistral and Yi) you need to adapt system prompt as well as user prompt, for this purpose llava-cli has a basic templating system:
**For Mistral and using llava-cli binary:**
Add this: `-p "<image>\nUSER:\nProvide a full description.\nASSISTANT:\n"`
The mistral template for llava-1.6 seems to be no system print and a USER/ASSISTANT role
**For the 34B this should work:**
Add this: `-e -p <|im_start|>system\nAnswer the questions.<|im_end|><|im_start|>user\n<image>\nProvide a full description.<|im_end|><|im_start|>assistant\n`
## How to know if you are running in llava-1.5 or llava-1.6 mode
When running llava-cli you will see a visual information right before the prompt is being processed:
**Llava-1.5:**
`encode_image_with_clip: image embedding created: 576 tokens`
**Llava-1.6 (anything above 576):**
`encode_image_with_clip: image embedding created: 2880 tokens`
Alternatively just pay notice to how many "tokens" have been used for your prompt, it will also show 1000+ tokens for llava-1.6
llava : support v1.6 (#5267)
* Create llava-survery-v2.py
* Update convert-image-encoder-to-gguf.py
* Update convert-image-encoder-to-gguf.py
* Rename llava-survery-v2.py to llava-surgery-v2.py
* Update convert-image-encoder-to-gguf.py
will now search for projector
* Update convert-image-encoder-to-gguf.py
whoops
* Update llava-surgery-v2.py
* Clip: Bugfix for normalization (it did not loat the 3 std and mean values)
Clip: bicubic resize function
Clip: added save-to-bmp/pil for debugging and conversion from/to 32/8 images
Clip: added normalization with FP16 precision simulation (image tensors match HF implementation, can be switched off, only used for llava-1.6)
Clip: added newline tensor, mergetype kv, image-grid kv, new resize-pad function with resolution from gridpoints
Clip: clip_image_preprocess now returns a float * vector instead of float, this way llava 1.5 and 1.6 is supported
llava: added ggml cpu graph for embedding patching, added spatial_unpad preliminary support, added a lot of comments that need to be cleaned when all is final
convert-image-encoder: fixed image-grid flattening
* whitespace corrections
* ws
* Tensors are now properly permuted.
Before the embeddings were inserted 1:1, now they are split into the 24x24 patches as in reference.
* ws
* added verbose_prompt support into cli
added stopwords for llava-1.6 into cli
* moved llava functions to llava.cpp, made clip.h C compatible API, replaced vector style functions with pointers, added a debug define to remove functions from compilation while not needed
* ws
* convert : skip unknown tensors (need for LLaVA)
* llava : update readme
* llava : fix compile warnings
* llava : style
* convert : add --skip-unknown CLI arg
* server : remove clip structs
* bugfix for non llava-1.6
It should now work with llava-1.5 as well
* clip : minor code rearrange
* llava : update readme a bit
---------
Co-authored-by: John <cmt-nct@users.noreply.github.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-14 08:38:35 +01:00
2023-10-12 18:23:18 +03:00
## TODO
llava : support v1.6 (#5267)
* Create llava-survery-v2.py
* Update convert-image-encoder-to-gguf.py
* Update convert-image-encoder-to-gguf.py
* Rename llava-survery-v2.py to llava-surgery-v2.py
* Update convert-image-encoder-to-gguf.py
will now search for projector
* Update convert-image-encoder-to-gguf.py
whoops
* Update llava-surgery-v2.py
* Clip: Bugfix for normalization (it did not loat the 3 std and mean values)
Clip: bicubic resize function
Clip: added save-to-bmp/pil for debugging and conversion from/to 32/8 images
Clip: added normalization with FP16 precision simulation (image tensors match HF implementation, can be switched off, only used for llava-1.6)
Clip: added newline tensor, mergetype kv, image-grid kv, new resize-pad function with resolution from gridpoints
Clip: clip_image_preprocess now returns a float * vector instead of float, this way llava 1.5 and 1.6 is supported
llava: added ggml cpu graph for embedding patching, added spatial_unpad preliminary support, added a lot of comments that need to be cleaned when all is final
convert-image-encoder: fixed image-grid flattening
* whitespace corrections
* ws
* Tensors are now properly permuted.
Before the embeddings were inserted 1:1, now they are split into the 24x24 patches as in reference.
* ws
* added verbose_prompt support into cli
added stopwords for llava-1.6 into cli
* moved llava functions to llava.cpp, made clip.h C compatible API, replaced vector style functions with pointers, added a debug define to remove functions from compilation while not needed
* ws
* convert : skip unknown tensors (need for LLaVA)
* llava : update readme
* llava : fix compile warnings
* llava : style
* convert : add --skip-unknown CLI arg
* server : remove clip structs
* bugfix for non llava-1.6
It should now work with llava-1.5 as well
* clip : minor code rearrange
* llava : update readme a bit
---------
Co-authored-by: John <cmt-nct@users.noreply.github.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-14 08:38:35 +01:00
- [x] Support non-CPU backend for the image encoding part.
2023-10-12 18:23:18 +03:00
- [ ] Support different sampling methods.
- [ ] Support more model variants.