llama.cpp/convert-pth-to-ggml.py

182 lines
5.2 KiB
Python
Raw Permalink Normal View History

2023-03-10 19:40:58 +01:00
# Convert a LLaMA model checkpoint to a ggml compatible file
#
# Load the model using Torch
# Iterate over all variables and write them to a binary file.
#
# For each variable, write the following:
# - Number of dimensions (int)
# - Name length (int)
# - Dimensions (int[n_dims])
# - Name (char[name_length])
# - Data (float[n_dims])
#
# At the start of the ggml file we write the model parameters
# and vocabulary.
#
import argparse
import os
2023-03-10 19:40:58 +01:00
import sys
import json
import struct
import numpy as np
import torch
2023-03-10 19:40:58 +01:00
from sentencepiece import SentencePieceProcessor
def parse_args():
2023-03-10 19:40:58 +01:00
parser = argparse.ArgumentParser(description='Convert a LLaMA model checkpoint to a ggml compatible file')
parser.add_argument('dir_model', help='directory containing the model checkpoint')
parser.add_argument('ftype', help='file type (0: float32, 1: float16)', type=int, choices=[0, 1], default=1)
parser.add_argument('vocab_only', help='only write vocab to file', type=int, default=0, nargs='?')
return parser.parse_args()
2023-03-10 19:40:58 +01:00
def get_n_parts(dim):
2023-03-19 18:33:18 +01:00
mappings = {4096: 1, 5120: 2, 6656: 4, 8192: 8}
n_parts = mappings.get(dim)
if n_parts is None:
print(f"Invalid dim: {dim}")
sys.exit(1)
print(f"n_parts = {n_parts}\n")
return n_parts
2023-03-10 19:40:58 +01:00
def load_hparams_and_tokenizer(dir_model):
2023-03-19 18:33:18 +01:00
# `dir_model` is something like `models/7B` or `models/7B/`.
# "tokenizer.model" is expected under model's parent dir.
# When `dir_model` is a symlink, f"{dir_model}/../tokenizer.model" would not be found.
# Let's use the model's parent dir directly.
model_parent_dir = os.path.dirname(os.path.normpath(dir_model))
fname_hparams = f"{dir_model}/params.json"
fname_tokenizer = f"{model_parent_dir}/tokenizer.model"
2023-03-10 19:40:58 +01:00
with open(fname_hparams, "r") as f:
hparams = json.load(f)
print(hparams)
2023-03-10 19:40:58 +01:00
tokenizer = SentencePieceProcessor(fname_tokenizer)
hparams.update({"vocab_size": tokenizer.vocab_size()})
return hparams, tokenizer
2023-03-10 19:40:58 +01:00
def write_header(fout, hparams, ftype):
2023-03-19 18:33:18 +01:00
keys = ["vocab_size", "dim", "multiple_of", "n_heads", "n_layers"]
values = [
2023-03-21 16:49:43 +01:00
0x67676d66, # magic: ggmf in hex
1, # file version
*[hparams[key] for key in keys],
hparams["dim"] // hparams["n_heads"], # rot (obsolete)
ftype
]
fout.write(struct.pack("i" * len(values), *values))
def write_tokens(fout, tokenizer):
for i in range(tokenizer.vocab_size()):
if tokenizer.is_unknown(i):
text = " \u2047 ".encode("utf-8")
elif tokenizer.is_control(i):
text = b""
elif tokenizer.is_byte(i):
piece = tokenizer.id_to_piece(i)
if len(piece) != 6:
print(f"Invalid token: {piece}")
sys.exit(1)
byte_value = int(piece[3:-1], 16)
text = struct.pack("B", byte_value)
else:
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
fout.write(struct.pack("i", len(text)))
fout.write(text)
fout.write(struct.pack("f", tokenizer.get_score(i)))
def process_and_write_variables(fout, model, ftype):
2023-03-19 18:33:18 +01:00
for name, datao in model.items():
if name.endswith("freqs"):
continue
2023-03-19 18:33:18 +01:00
shape = datao.shape
print(f"Processing variable: {name} with shape: {shape} and type: {datao.dtype}")
data = datao.numpy().squeeze()
n_dims = len(shape)
# default type is fp16
ftype_cur = 1
if ftype == 0 or n_dims == 1:
print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
# header
sname = name.encode('utf-8')
fout.write(struct.pack("iii", len(data.shape), len(sname), ftype_cur))
for dim in reversed(data.shape):
fout.write(struct.pack("i", dim))
fout.write(sname)
2023-03-19 18:33:18 +01:00
# data output to file
data.tofile(fout)
def main():
args = parse_args()
dir_model = args.dir_model
ftype = args.ftype
ftype_str = ["f32", "f16"]
hparams, tokenizer = load_hparams_and_tokenizer(dir_model)
print(args)
# if only writing vocab to file
if args.vocab_only:
fname_model = f"{dir_model}/consolidated.00.pth"
fname_out = f"{dir_model}/ggml-vocab.bin"
print(f"Extracting only the vocab from '{fname_model}'\n")
model = torch.load(fname_model, map_location="cpu")
with open(fname_out, "wb") as fout:
fout.write(struct.pack("i", hparams["vocab_size"]))
write_tokens(fout, tokenizer)
del model
print(f"Done. Output file: {fname_out}\n")
return
n_parts = get_n_parts(hparams["dim"])
for p in range(n_parts):
print(f"Processing part {p}\n")
2023-03-19 18:33:18 +01:00
fname_model = f"{dir_model}/consolidated.0{p}.pth"
fname_out = f"{dir_model}/ggml-model-{ftype_str[ftype]}.bin{'' if p == 0 else '.' + str(p)}"
model = torch.load(fname_model, map_location="cpu")
with open(fname_out, "wb") as fout:
write_header(fout, hparams, ftype)
write_tokens(fout, tokenizer)
process_and_write_variables(fout, model, ftype)
del model
print(f"Done. Output file: {fname_out}, (part {p})\n")
if __name__ == "__main__":
main()