2023-03-28 13:51:29 -04:00
# Author: github.com/ductai199x
import argparse
import os
import struct
import numpy as np
import torch
from numba import njit
from tqdm . auto import tqdm
def read_header ( fin ) :
values = struct . unpack ( " i " * 9 , fin . read ( 4 * 9 ) )
_ , _ , vocab_size , dim , multiple_of , n_heads , n_layers , rot , ftype = values
return {
" vocab_size " : vocab_size ,
" dim " : dim ,
" multiple_of " : multiple_of ,
" n_heads " : n_heads ,
" n_layers " : n_layers ,
} , ftype
def read_tokens ( fin , vocab_size ) :
tokens = [ ]
for _ in range ( vocab_size ) :
text_len = struct . unpack ( " i " , fin . read ( 4 ) ) [ 0 ]
text_bytes = fin . read ( text_len )
try :
2023-03-29 21:31:24 +02:00
text = text_bytes . decode ( )
2023-03-28 13:51:29 -04:00
except UnicodeDecodeError :
2023-03-29 21:31:24 +02:00
text = text_bytes . decode ( errors = " replace " )
2023-03-28 13:51:29 -04:00
score = struct . unpack ( " f " , fin . read ( 4 ) ) [ 0 ]
tokens . append ( ( text , score ) )
return tokens
@njit
def dequantize_weights_numba ( fin_data , n_rows , n_cols ) :
qk = 32
nb = n_cols / / qk
bs = 4 + ( qk / / 2 )
weights = np . zeros ( ( n_rows , n_cols ) , dtype = np . float32 )
data_pos = 0
for row in range ( n_rows ) :
for block in range ( nb ) :
d = np . frombuffer ( fin_data [ data_pos : data_pos + 4 ] , dtype = np . float32 ) [ 0 ]
data_pos + = 4
packed_values = fin_data [ data_pos : data_pos + ( qk / / 2 ) ]
data_pos + = qk / / 2
for i in range ( qk / / 2 ) :
packed_value = packed_values [ i ]
v0 = np . float32 ( ( packed_value & 0b00001111 ) - 8 ) * d
v1 = np . float32 ( ( packed_value >> 4 ) - 8 ) * d
weights [ row , block * qk + 2 * i ] = v0
weights [ row , block * qk + 2 * i + 1 ] = v1
return weights
def dequantize_weights ( fin , n_rows , n_cols ) :
qk = 32
nb = n_cols / / qk
data_size = n_rows * n_cols / / 2 + n_rows * nb * 4
fin_data = fin . read ( data_size )
return dequantize_weights_numba ( fin_data , n_rows , n_cols )
def read_variables ( fin ) :
model = { }
pbar = tqdm ( total = os . path . getsize ( fin . name ) , unit = " B " , unit_scale = True , desc = " Reading variables " )
while True :
start_pos = fin . tell ( )
try :
n_dims , name_length , ftype_cur = struct . unpack ( " iii " , fin . read ( 4 * 3 ) )
except struct . error :
break
shape = tuple ( struct . unpack ( " i " * n_dims , fin . read ( 4 * n_dims ) ) )
shape = shape [ : : - 1 ]
2023-03-29 21:31:24 +02:00
name = fin . read ( name_length ) . decode ( )
2023-03-28 13:51:29 -04:00
2023-03-29 13:51:37 -07:00
# ensure tensor data is aligned
tensor_data_offset = fin . tell ( )
tensor_data_offset = ( tensor_data_offset + 31 ) & - 32
fin . seek ( tensor_data_offset )
2023-03-28 13:51:29 -04:00
if ftype_cur == 2 :
# 4-bit quantized weights
dtype = np . uint8
data = dequantize_weights ( fin , shape [ 0 ] , shape [ 1 ] )
data = data . reshape ( shape )
elif ftype_cur == 0 :
dtype = np . float32
data_size = np . prod ( shape )
data = np . fromfile ( fin , dtype = dtype , count = data_size ) . reshape ( shape )
elif ftype_cur == 1 :
dtype = np . float16
data_size = np . prod ( shape )
data = np . fromfile ( fin , dtype = dtype , count = data_size ) . reshape ( shape )
model [ name ] = torch . tensor ( data , dtype = torch . float32 if dtype == np . float32 else torch . float16 )
pbar . update ( fin . tell ( ) - start_pos )
return model
def convert_to_hf_format ( model , hparams ) :
# This works for llama 7B, need to test with other models
n_layers = hparams [ " n_layers " ]
n_heads = hparams [ " n_heads " ]
dim = hparams [ " dim " ]
dims_per_head = dim / / n_heads
base = 10000.0
inv_freq = 1.0 / ( base * * ( torch . arange ( 0 , dims_per_head , 2 ) . float ( ) / dims_per_head ) )
# permute for sliced rotary
def permute ( w ) :
return w . view ( n_heads , dim / / n_heads / / 2 , 2 , dim ) . transpose ( 1 , 2 ) . reshape ( dim , dim )
state_dict = { }
for layer_i in range ( n_layers ) :
state_dict . update (
{
f " model.layers. { layer_i } .self_attn.q_proj.weight " : permute (
model [ f " layers. { layer_i } .attention.wq.weight " ]
) ,
f " model.layers. { layer_i } .self_attn.k_proj.weight " : permute (
model [ f " layers. { layer_i } .attention.wk.weight " ]
) ,
f " model.layers. { layer_i } .self_attn.v_proj.weight " : model [
f " layers. { layer_i } .attention.wv.weight "
] ,
f " model.layers. { layer_i } .self_attn.o_proj.weight " : model [
f " layers. { layer_i } .attention.wo.weight "
] ,
f " model.layers. { layer_i } .mlp.gate_proj.weight " : model [
f " layers. { layer_i } .feed_forward.w1.weight "
] ,
f " model.layers. { layer_i } .mlp.down_proj.weight " : model [
f " layers. { layer_i } .feed_forward.w2.weight "
] ,
f " model.layers. { layer_i } .mlp.up_proj.weight " : model [
f " layers. { layer_i } .feed_forward.w3.weight "
] ,
f " model.layers. { layer_i } .input_layernorm.weight " : model [
f " layers. { layer_i } .attention_norm.weight "
] ,
f " model.layers. { layer_i } .post_attention_layernorm.weight " : model [
f " layers. { layer_i } .ffn_norm.weight "
] ,
}
)
state_dict [ f " model.layers. { layer_i } .self_attn.rotary_emb.inv_freq " ] = inv_freq
state_dict . update (
{
" model.embed_tokens.weight " : model [ " tok_embeddings.weight " ] ,
" model.norm.weight " : model [ " norm.weight " ] ,
" lm_head.weight " : model [ " output.weight " ] ,
}
)
return state_dict
def chat ( model , hparams , llama_dir ) :
from transformers import ( GenerationConfig , LlamaForCausalLM ,
LlamaTokenizer , StoppingCriteria ,
StoppingCriteriaList )
from transformers . models . llama . configuration_llama import LlamaConfig
class StoppingCriteriaSub ( StoppingCriteria ) :
def __init__ ( self ) :
super ( ) . __init__ ( )
def __call__ ( self , input_ids : torch . LongTensor , scores : torch . FloatTensor , stops = [ ] ) :
print ( tokenizer . decode ( input_ids [ 0 ] ) , end = " " , flush = True )
if input_ids [ 0 ] [ - 1 ] == 13 :
return True
return False
config = LlamaConfig (
vocab_size = hparams [ " vocab_size " ] ,
dim = hparams [ " dim " ] ,
num_hidden_layers = hparams [ " n_layers " ] ,
num_attention_heads = hparams [ " n_heads " ] ,
)
llama = LlamaForCausalLM ( config = config )
llama . load_state_dict ( state_dict = model , strict = True )
tokenizer = LlamaTokenizer . from_pretrained ( llama_dir )
device = torch . device ( " cpu " )
llama = llama . to ( device )
2023-03-29 21:31:24 +02:00
ctx = """ You are AI.
2023-03-28 13:51:29 -04:00
This is a dialog , where User interacts with AI . AI is helpful , kind , obedient , honest , respectful , direct , concise , should try to protect User ' s privacy, and knows its own limits. Also, AI must answer User and AI cannot stop the conversation by itself.
User : Hello , AI .
AI : Hello ! How can I assist you today ?
"""
print ( ctx . rstrip ( " \n " ) )
while True :
print ( " - " * 60 )
2023-03-29 21:31:24 +02:00
prompt = input ( " User: " )
2023-03-28 13:51:29 -04:00
if ctx != " " :
2023-03-29 21:31:24 +02:00
ctx = f " { ctx } User: { prompt } \n "
2023-03-28 13:51:29 -04:00
else :
2023-03-29 21:31:24 +02:00
ctx = f " { prompt } \n AI: "
2023-03-28 13:51:29 -04:00
ctx = ( ctx [ - 1920 : ] ) if len ( ctx ) > = 2048 else ctx
print ( " - " * 60 )
if len ( ctx . strip ( ) ) > 0 :
input_ids = tokenizer ( ctx , return_tensors = " pt " ) [ " input_ids " ] . to ( device )
generation_config = GenerationConfig (
temperature = 0.8 ,
top_p = 0.95 ,
top_k = 50 ,
repetition_penalty = 1.1764 ,
)
with torch . no_grad ( ) :
generation_output = llama . generate (
input_ids = input_ids ,
generation_config = generation_config ,
return_dict_in_generate = True ,
output_scores = True ,
max_length = 2048 ,
do_sample = True ,
stopping_criteria = StoppingCriteriaList ( [ StoppingCriteriaSub ( ) ] ) ,
)
s = generation_output . sequences [ 0 ]
decoded = tokenizer . decode ( s )
2023-03-29 21:31:24 +02:00
ctx = f " { decoded } \n "
2023-03-28 13:51:29 -04:00
def main ( ) :
parser = argparse . ArgumentParser ( )
parser . add_argument (
" --input_dir " , " -i " , type = str , required = True , help = " The input directory containing the ggml files. "
)
parser . add_argument (
" --prefix " ,
" -p " ,
type = str ,
required = True ,
help = " The prefix of the ggml files (ggml-model-f16 or ggml-model-q4_0). " ,
)
parser . add_argument (
" --hf " ,
action = " store_true " ,
help = " Whether to save the model in the huggingface format. (default: False) " ,
)
parser . add_argument (
" --chat " , " -c " , action = " store_true " , help = " Whether to open a chat with the model. (default: False) "
)
args = parser . parse_args ( )
llama_dir = os . path . abspath ( f " { args . input_dir } /../ " )
ggml_files = sorted (
[ f " { args . input_dir } / { f } " for f in os . listdir ( args . input_dir ) if f . startswith ( args . prefix ) ]
)
fin = open ( ggml_files [ 0 ] , " rb " )
hparams , ftype = read_header ( fin )
tokens = read_tokens ( fin , hparams [ " vocab_size " ] )
model = read_variables ( fin )
for f in tqdm ( ggml_files [ 1 : ] ) :
fin = open ( f , " rb " )
read_header ( fin )
read_tokens ( fin , hparams [ " vocab_size " ] )
model . update ( read_variables ( fin ) )
if args . hf :
model = convert_to_hf_format ( model , hparams )
pth_ckpt = {
" state_dict " : model ,
" hparams " : hparams ,
" tokens " : tokens ,
}
torch . save ( pth_ckpt , f " { args . input_dir } / { args . prefix } -to-torch.pth " )
if args . chat :
if not args . hf :
model = convert_to_hf_format ( model , hparams )
chat ( model , hparams , llama_dir )
if __name__ == " __main__ " :
main ( )