diff --git a/.devops/nix/docker.nix b/.devops/nix/docker.nix new file mode 100644 index 000000000..d607b4575 --- /dev/null +++ b/.devops/nix/docker.nix @@ -0,0 +1,37 @@ +{ + lib, + dockerTools, + buildEnv, + llama-cpp, + interactive ? true, + coreutils, +}: + +# A tar that can be fed into `docker load`: +# +# $ nix build .#llamaPackages.docker +# $ docker load < result + +# For details and variations cf. +# - https://nixos.org/manual/nixpkgs/unstable/#ssec-pkgs-dockerTools-buildLayeredImage +# - https://discourse.nixos.org/t/a-faster-dockertools-buildimage-prototype/16922 +# - https://nixery.dev/ + +# Approximate (compressed) sizes, at the time of writing, are: +# +# .#llamaPackages.docker: 125M; +# .#llamaPackagesCuda.docker: 537M; +# .#legacyPackages.aarch64-linux.llamaPackagesXavier.docker: 415M. + +dockerTools.buildLayeredImage { + name = llama-cpp.pname; + tag = "latest"; + + contents = + [ llama-cpp ] + ++ lib.optionals interactive [ + coreutils + dockerTools.binSh + dockerTools.caCertificates + ]; +} diff --git a/.devops/nix/package.nix b/.devops/nix/package.nix index ad23f7dd7..815db6a2d 100644 --- a/.devops/nix/package.nix +++ b/.devops/nix/package.nix @@ -255,11 +255,11 @@ effectiveStdenv.mkDerivation ( # Configurations we don't want even the CI to evaluate. Results in the # "unsupported platform" messages. This is mostly a no-op, because # cudaPackages would've refused to evaluate anyway. - badPlatforms = optionals (useCuda || useOpenCL || useVulkan) lib.platforms.darwin; + badPlatforms = optionals (useCuda || useOpenCL) lib.platforms.darwin; # Configurations that are known to result in build failures. Can be # overridden by importing Nixpkgs with `allowBroken = true`. - broken = (useMetalKit && !effectiveStdenv.isDarwin) || (useVulkan && effectiveStdenv.isDarwin); + broken = (useMetalKit && !effectiveStdenv.isDarwin); description = "Inference of LLaMA model in pure C/C++${descriptionSuffix}"; homepage = "https://github.com/ggerganov/llama.cpp/"; diff --git a/.devops/nix/scope.nix b/.devops/nix/scope.nix index d295995a4..78530c9e8 100644 --- a/.devops/nix/scope.nix +++ b/.devops/nix/scope.nix @@ -12,5 +12,8 @@ lib.makeScope newScope ( self: { inherit llamaVersion; llama-cpp = self.callPackage ./package.nix { }; + docker = self.callPackage ./docker.nix { }; + docker-min = self.callPackage ./docker.nix { interactive = false; }; + sif = self.callPackage ./sif.nix { }; } ) diff --git a/.devops/nix/sif.nix b/.devops/nix/sif.nix new file mode 100644 index 000000000..7a5e1dd0f --- /dev/null +++ b/.devops/nix/sif.nix @@ -0,0 +1,27 @@ +{ + lib, + singularity-tools, + llama-cpp, + bashInteractive, + interactive ? false, +}: + +let + optionalInt = cond: x: if cond then x else 0; +in +singularity-tools.buildImage rec { + inherit (llama-cpp) name; + contents = [ llama-cpp ] ++ lib.optionals interactive [ bashInteractive ]; + + # These are excessive (but safe) for most variants. Building singularity + # images requires superuser privileges, so we build them inside a VM in a + # writable image of pre-determined size. + # + # ROCm is currently affected by https://github.com/NixOS/nixpkgs/issues/276846 + # + # Expected image sizes: + # - cpu/blas: 150M, + # - cuda, all gencodes: 560M, + diskSize = 4096 + optionalInt llama-cpp.useRocm 16384; + memSize = diskSize; +} diff --git a/.github/ISSUE_TEMPLATE/bug.md b/.github/ISSUE_TEMPLATE/bug.md index ce69e6395..49812832c 100644 --- a/.github/ISSUE_TEMPLATE/bug.md +++ b/.github/ISSUE_TEMPLATE/bug.md @@ -7,3 +7,5 @@ assignees: '' --- Please include information about your system, the steps to reproduce the bug, and the version of llama.cpp that you are using. If possible, please provide a minimal code example that reproduces the bug. + +If the bug concerns the server, please try to reproduce it first using the [server test scenario framework](https://github.com/ggerganov/llama.cpp/tree/master/examples/server/tests). diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index 03d76d455..9144f9266 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -145,6 +145,28 @@ jobs: cd build ctest -L main --verbose + ubuntu-22-cmake-vulkan: + runs-on: ubuntu-22.04 + + steps: + - name: Clone + id: checkout + uses: actions/checkout@v3 + + - name: Dependencies + id: depends + run: | + sudo apt-get update + sudo apt-get install build-essential libvulkan-dev + + - name: Build + id: cmake_build + run: | + mkdir build + cd build + cmake -DLLAMA_VULKAN=ON .. + cmake --build . --config Release -j $(nproc) + ubuntu-22-cmake-sycl: runs-on: ubuntu-22.04 @@ -669,8 +691,7 @@ jobs: run: | cd examples/llama.android - # Skip armeabi-v7a for now (https://github.com/llvm/llvm-project/issues/65820). - ./gradlew build --no-daemon -Pskip-armeabi-v7a + ./gradlew build --no-daemon # freeBSD-latest: # runs-on: macos-12 diff --git a/.github/workflows/nix-ci-aarch64.yml b/.github/workflows/nix-ci-aarch64.yml index 0c6cf5f09..8d0a3fd7f 100644 --- a/.github/workflows/nix-ci-aarch64.yml +++ b/.github/workflows/nix-ci-aarch64.yml @@ -19,7 +19,6 @@ on: jobs: nix-build-aarch64: - if: ${{ vars.CACHIX_NAME != '' }} runs-on: ubuntu-latest steps: - name: Checkout repository @@ -37,8 +36,8 @@ jobs: extra-conf: | extra-platforms = aarch64-linux extra-system-features = nixos-test kvm - extra-substituters = https://${{ vars.CACHIX_NAME }}.cachix.org https://cuda-maintainers.cachix.org - extra-trusted-public-keys = ${{ vars.CACHIX_PUBLIC_KEY }} cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E= + extra-substituters = https://llama-cpp.cachix.org https://cuda-maintainers.cachix.org + extra-trusted-public-keys = llama-cpp.cachix.org-1:H75X+w83wUKTIPSO1KWy9ADUrzThyGs8P5tmAbkWhQc= cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E= - uses: DeterminateSystems/magic-nix-cache-action@v2 with: upstream-cache: https://${{ matrix.cachixName }}.cachix.org @@ -46,7 +45,7 @@ jobs: uses: cachix/cachix-action@v13 with: authToken: '${{ secrets.CACHIX_AUTH_TOKEN }}' - name: ${{ vars.CACHIX_NAME }} + name: llama-cpp - name: Show all output paths run: > nix run github:nix-community/nix-eval-jobs diff --git a/.github/workflows/nix-ci.yml b/.github/workflows/nix-ci.yml index d19c7a576..01c5a9d5a 100644 --- a/.github/workflows/nix-ci.yml +++ b/.github/workflows/nix-ci.yml @@ -23,8 +23,8 @@ jobs: with: github-token: ${{ secrets.GITHUB_TOKEN }} extra-conf: | - extra-substituters = https://${{ vars.CACHIX_NAME }}.cachix.org https://cuda-maintainers.cachix.org - extra-trusted-public-keys = ${{ vars.CACHIX_PUBLIC_KEY }} cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E= + extra-substituters = https://llama-cpp.cachix.org https://cuda-maintainers.cachix.org + extra-trusted-public-keys = llama-cpp.cachix.org-1:H75X+w83wUKTIPSO1KWy9ADUrzThyGs8P5tmAbkWhQc= cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E= - uses: DeterminateSystems/magic-nix-cache-action@v2 with: upstream-cache: https://${{ matrix.cachixName }}.cachix.org @@ -37,7 +37,6 @@ jobs: --flake ".#packages.$(nix eval --raw --impure --expr builtins.currentSystem)" nix-build: - if: ${{ vars.CACHIX_NAME != '' }} strategy: fail-fast: false matrix: @@ -51,8 +50,8 @@ jobs: with: github-token: ${{ secrets.GITHUB_TOKEN }} extra-conf: | - extra-substituters = https://${{ vars.CACHIX_NAME }}.cachix.org https://cuda-maintainers.cachix.org - extra-trusted-public-keys = ${{ vars.CACHIX_PUBLIC_KEY }} cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E= + extra-substituters = https://llama-cpp.cachix.org https://cuda-maintainers.cachix.org + extra-trusted-public-keys = llama-cpp.cachix.org-1:H75X+w83wUKTIPSO1KWy9ADUrzThyGs8P5tmAbkWhQc= cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E= - uses: DeterminateSystems/magic-nix-cache-action@v2 with: upstream-cache: https://${{ matrix.cachixName }}.cachix.org @@ -60,7 +59,7 @@ jobs: uses: cachix/cachix-action@v13 with: authToken: '${{ secrets.CACHIX_AUTH_TOKEN }}' - name: ${{ vars.CACHIX_NAME }} + name: llama-cpp - name: Build run: > nix run github:Mic92/nix-fast-build diff --git a/.github/workflows/python-check-requirements.yml b/.github/workflows/python-check-requirements.yml index 92e1108b3..b82205992 100644 --- a/.github/workflows/python-check-requirements.yml +++ b/.github/workflows/python-check-requirements.yml @@ -3,12 +3,14 @@ name: Python check requirements.txt on: push: paths: + - '.github/workflows/python-check-requirements.yml' - 'scripts/check-requirements.sh' - 'convert*.py' - 'requirements.txt' - 'requirements/*.txt' pull_request: paths: + - '.github/workflows/python-check-requirements.yml' - 'scripts/check-requirements.sh' - 'convert*.py' - 'requirements.txt' @@ -26,4 +28,4 @@ jobs: with: python-version: "3.11" - name: Run check-requirements.sh script - run: bash scripts/check-requirements.sh nocleanup + run: bash scripts/check-requirements.sh diff --git a/.github/workflows/server.yml b/.github/workflows/server.yml new file mode 100644 index 000000000..04e3fc0c1 --- /dev/null +++ b/.github/workflows/server.yml @@ -0,0 +1,91 @@ +# Server build and tests +name: Server + +on: + workflow_dispatch: # allows manual triggering + inputs: + slow_tests: + description: 'Run slow tests' + required: true + type: boolean + push: + branches: + - master + paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/tests/**.*'] + pull_request: + types: [opened, synchronize, reopened] + paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/tests/**.*'] + schedule: + - cron: '0 0 * * *' + +jobs: + server: + runs-on: ubuntu-latest + + strategy: + matrix: + sanitizer: [ADDRESS, THREAD, UNDEFINED] + build_type: [Debug, Release] + include: + - build_type: Release + sanitizer: "" + exclude: + - build_type: Release + sanitizer: ADDRESS + - build_type: Release + sanitizer: THREAD + - build_type: Release + sanitizer: UNDEFINED + + container: + image: ubuntu:latest + ports: + - 8888 + options: --cpus 4 + + steps: + - name: Clone + id: checkout + uses: actions/checkout@v3 + + - name: Dependencies + id: depends + run: | + apt-get update + apt-get -y install \ + build-essential \ + git \ + cmake \ + python3-pip \ + wget \ + psmisc + + - name: Build + id: cmake_build + run: | + mkdir build + cd build + cmake .. \ + -DLLAMA_NATIVE=OFF \ + -DLLAMA_BUILD_SERVER=ON \ + -DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \ + -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON ; + cmake --build . --config ${{ matrix.build_type }} -j $(nproc) --target server + + - name: Tests dependencies + id: test_dependencies + run: | + pip install -r examples/server/tests/requirements.txt + + - name: Tests + id: server_integration_tests + run: | + cd examples/server/tests + PORT=8888 ./tests.sh + + - name: Slow tests + id: server_integration_tests_slow + if: ${{ github.event.schedule != '' && matrix.build_type == 'Release' || github.event.inputs.slow_tests == 'true' }} + run: | + cd examples/server/tests + PORT=8888 ./tests.sh --stop --no-skipped --no-capture --tags slow diff --git a/CMakeLists.txt b/CMakeLists.txt index 40a098d01..48880f720 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -110,6 +110,7 @@ option(LLAMA_VULKAN_RUN_TESTS "llama: run Vulkan tests" option(LLAMA_METAL "llama: use Metal" ${LLAMA_METAL_DEFAULT}) option(LLAMA_METAL_NDEBUG "llama: disable Metal debugging" OFF) option(LLAMA_METAL_SHADER_DEBUG "llama: compile Metal with -fno-fast-math" OFF) +option(LLAMA_METAL_EMBED_LIBRARY "llama: embed Metal library" OFF) option(LLAMA_KOMPUTE "llama: use Kompute" OFF) option(LLAMA_MPI "llama: use MPI" OFF) option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF) @@ -145,14 +146,6 @@ set(THREADS_PREFER_PTHREAD_FLAG ON) find_package(Threads REQUIRED) include(CheckCXXCompilerFlag) -if (LLAMA_FATAL_WARNINGS) - if (CMAKE_CXX_COMPILER_ID MATCHES "GNU" OR CMAKE_CXX_COMPILER_ID MATCHES "Clang") - add_compile_options(-Werror) - elseif (CMAKE_CXX_COMPILER_ID STREQUAL "MSVC") - add_compile_options(/WX) - endif() -endif() - # enable libstdc++ assertions for debug builds if (CMAKE_SYSTEM_NAME MATCHES "Linux") add_compile_definitions($<$:_GLIBCXX_ASSERTIONS>) @@ -209,6 +202,29 @@ if (LLAMA_METAL) # copy ggml-metal.metal to bin directory configure_file(ggml-metal.metal ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal COPYONLY) + if (LLAMA_METAL_EMBED_LIBRARY) + enable_language(ASM) + add_compile_definitions(GGML_METAL_EMBED_LIBRARY) + + set(METALLIB_SOURCE "${CMAKE_SOURCE_DIR}/ggml-metal.metal") + file(MAKE_DIRECTORY "${CMAKE_BINARY_DIR}/autogenerated") + set(EMBED_METALLIB_ASSEMBLY "${CMAKE_BINARY_DIR}/autogenerated/ggml-embed-metallib.s") + + add_custom_command( + OUTPUT ${EMBED_METALLIB_ASSEMBLY} + COMMAND echo ".section __DATA,__ggml_metallib" > ${EMBED_METALLIB_ASSEMBLY} + COMMAND echo ".globl _ggml_metallib_start" >> ${EMBED_METALLIB_ASSEMBLY} + COMMAND echo "_ggml_metallib_start:" >> ${EMBED_METALLIB_ASSEMBLY} + COMMAND echo ".incbin \\\"${METALLIB_SOURCE}\\\"" >> ${EMBED_METALLIB_ASSEMBLY} + COMMAND echo ".globl _ggml_metallib_end" >> ${EMBED_METALLIB_ASSEMBLY} + COMMAND echo "_ggml_metallib_end:" >> ${EMBED_METALLIB_ASSEMBLY} + DEPENDS ${METALLIB_SOURCE} + COMMENT "Generate assembly for embedded Metal library" + ) + + set(GGML_SOURCES_METAL ${GGML_SOURCES_METAL} ${EMBED_METALLIB_ASSEMBLY}) + endif() + if (LLAMA_METAL_SHADER_DEBUG) # custom command to do the following: # xcrun -sdk macosx metal -fno-fast-math -c ggml-metal.metal -o ggml-metal.air @@ -747,15 +763,24 @@ function(get_flags CCID CCVER) set(GF_CXX_FLAGS ${CXX_FLAGS} PARENT_SCOPE) endfunction() +if (LLAMA_FATAL_WARNINGS) + if (CMAKE_CXX_COMPILER_ID MATCHES "GNU" OR CMAKE_CXX_COMPILER_ID MATCHES "Clang") + list(APPEND C_FLAGS -Werror) + list(APPEND CXX_FLAGS -Werror) + elseif (CMAKE_CXX_COMPILER_ID STREQUAL "MSVC") + add_compile_options(/WX) + endif() +endif() + if (LLAMA_ALL_WARNINGS) if (NOT MSVC) - set(WARNING_FLAGS -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function) - set(C_FLAGS -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes - -Werror=implicit-int -Werror=implicit-function-declaration) - set(CXX_FLAGS -Wmissing-declarations -Wmissing-noreturn) + list(APPEND WARNING_FLAGS -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function) + list(APPEND C_FLAGS -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes + -Werror=implicit-int -Werror=implicit-function-declaration) + list(APPEND CXX_FLAGS -Wmissing-declarations -Wmissing-noreturn) - set(C_FLAGS ${WARNING_FLAGS} ${C_FLAGS}) - set(CXX_FLAGS ${WARNING_FLAGS} ${CXX_FLAGS}) + list(APPEND C_FLAGS ${WARNING_FLAGS}) + list(APPEND CXX_FLAGS ${WARNING_FLAGS}) get_flags(${CMAKE_CXX_COMPILER_ID} ${CMAKE_CXX_COMPILER_VERSION}) @@ -773,6 +798,10 @@ set(CUDA_CXX_FLAGS "") if (LLAMA_CUBLAS) set(CUDA_FLAGS -use_fast_math) + if (LLAMA_FATAL_WARNINGS) + list(APPEND CUDA_FLAGS -Werror all-warnings) + endif() + if (LLAMA_ALL_WARNINGS AND NOT MSVC) set(NVCC_CMD ${CMAKE_CUDA_COMPILER} .c) if (NOT CMAKE_CUDA_HOST_COMPILER STREQUAL "") @@ -907,10 +936,16 @@ if (CMAKE_OSX_ARCHITECTURES STREQUAL "arm64" OR CMAKE_GENERATOR_PLATFORM_LWR STR list(APPEND ARCH_FLAGS -mfpu=neon-fp-armv8 -mno-unaligned-access) endif() if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv7") - # Raspberry Pi 2 - list(APPEND ARCH_FLAGS -mfpu=neon-fp-armv8 -mno-unaligned-access -funsafe-math-optimizations) + if ("${CMAKE_SYSTEM_NAME}" STREQUAL "Android") + # Android armeabi-v7a + list(APPEND ARCH_FLAGS -mfpu=neon-vfpv4 -mno-unaligned-access -funsafe-math-optimizations) + else() + # Raspberry Pi 2 + list(APPEND ARCH_FLAGS -mfpu=neon-fp-armv8 -mno-unaligned-access -funsafe-math-optimizations) + endif() endif() if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv8") + # Android arm64-v8a # Raspberry Pi 3, 4, Zero 2 (32-bit) list(APPEND ARCH_FLAGS -mno-unaligned-access) endif() diff --git a/Makefile b/Makefile index 59352eb53..4f26c0463 100644 --- a/Makefile +++ b/Makefile @@ -97,9 +97,10 @@ endif # # keep standard at C11 and C++11 -MK_CPPFLAGS = -I. -Icommon -MK_CFLAGS = -std=c11 -fPIC -MK_CXXFLAGS = -std=c++11 -fPIC +MK_CPPFLAGS = -I. -Icommon +MK_CFLAGS = -std=c11 -fPIC +MK_CXXFLAGS = -std=c++11 -fPIC +MK_NVCCFLAGS = -std=c++11 # -Ofast tends to produce faster code, but may not be available for some compilers. ifdef LLAMA_FAST @@ -172,7 +173,7 @@ ifdef LLAMA_DEBUG MK_LDFLAGS += -g ifeq ($(UNAME_S),Linux) - MK_CXXFLAGS += -Wp,-D_GLIBCXX_ASSERTIONS + MK_CPPFLAGS += -D_GLIBCXX_ASSERTIONS endif else MK_CPPFLAGS += -DNDEBUG @@ -216,7 +217,7 @@ MK_CFLAGS += $(WARN_FLAGS) -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmis MK_CXXFLAGS += $(WARN_FLAGS) -Wmissing-declarations -Wmissing-noreturn ifeq ($(LLAMA_FATAL_WARNINGS),1) - MK_CFLAGS += -Werror + MK_CFLAGS += -Werror MK_CXXFLAGS += -Werror endif @@ -380,10 +381,18 @@ ifdef LLAMA_BLIS endif # LLAMA_BLIS ifdef LLAMA_CUBLAS - MK_CPPFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include - MK_LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib + ifneq ('', '$(wildcard /opt/cuda)') + CUDA_PATH ?= /opt/cuda + else + CUDA_PATH ?= /usr/local/cuda + endif + MK_CPPFLAGS += -DGGML_USE_CUBLAS -I$(CUDA_PATH)/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include + MK_LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L$(CUDA_PATH)/lib64 -L/usr/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib -L/usr/lib/wsl/lib OBJS += ggml-cuda.o MK_NVCCFLAGS += -use_fast_math +ifdef LLAMA_FATAL_WARNINGS + MK_NVCCFLAGS += -Werror all-warnings +endif # LLAMA_FATAL_WARNINGS ifndef JETSON_EOL_MODULE_DETECT MK_NVCCFLAGS += --forward-unknown-to-host-compiler endif # JETSON_EOL_MODULE_DETECT @@ -442,9 +451,9 @@ ifdef LLAMA_CUDA_CCBIN endif ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ifdef JETSON_EOL_MODULE_DETECT - $(NVCC) -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/usr/local/cuda/targets/aarch64-linux/include -std=c++11 -O3 $(NVCCFLAGS) -Xcompiler "$(CUDA_CXXFLAGS)" -c $< -o $@ + $(NVCC) -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/usr/local/cuda/targets/aarch64-linux/include -std=c++11 -O3 $(NVCCFLAGS) $(CPPFLAGS) -Xcompiler "$(CUDA_CXXFLAGS)" -c $< -o $@ else - $(NVCC) $(NVCCFLAGS) -Xcompiler "$(CUDA_CXXFLAGS)" -c $< -o $@ + $(NVCC) $(NVCCFLAGS) $(CPPFLAGS) -Xcompiler "$(CUDA_CXXFLAGS)" -c $< -o $@ endif # JETSON_EOL_MODULE_DETECT endif # LLAMA_CUBLAS @@ -529,11 +538,29 @@ ifdef LLAMA_METAL ifdef LLAMA_METAL_NDEBUG MK_CPPFLAGS += -DGGML_METAL_NDEBUG endif +ifdef LLAMA_METAL_EMBED_LIBRARY + MK_CPPFLAGS += -DGGML_METAL_EMBED_LIBRARY + OBJS += ggml-metal-embed.o +endif endif # LLAMA_METAL ifdef LLAMA_METAL ggml-metal.o: ggml-metal.m ggml-metal.h $(CC) $(CFLAGS) -c $< -o $@ + +ifdef LLAMA_METAL_EMBED_LIBRARY +ggml-metal-embed.o: ggml-metal.metal + @echo "Embedding Metal library" + $(eval TEMP_ASSEMBLY=$(shell mktemp)) + @echo ".section __DATA, __ggml_metallib" > $(TEMP_ASSEMBLY) + @echo ".globl _ggml_metallib_start" >> $(TEMP_ASSEMBLY) + @echo "_ggml_metallib_start:" >> $(TEMP_ASSEMBLY) + @echo ".incbin \"$<\"" >> $(TEMP_ASSEMBLY) + @echo ".globl _ggml_metallib_end" >> $(TEMP_ASSEMBLY) + @echo "_ggml_metallib_end:" >> $(TEMP_ASSEMBLY) + @$(AS) $(TEMP_ASSEMBLY) -o $@ + @rm -f ${TEMP_ASSEMBLY} +endif endif # LLAMA_METAL ifdef LLAMA_MPI @@ -545,9 +572,10 @@ GF_CC := $(CC) include scripts/get-flags.mk # combine build flags with cmdline overrides -override CFLAGS := $(MK_CPPFLAGS) $(CPPFLAGS) $(MK_CFLAGS) $(GF_CFLAGS) $(CFLAGS) -BASE_CXXFLAGS := $(MK_CPPFLAGS) $(CPPFLAGS) $(MK_CXXFLAGS) $(CXXFLAGS) -override CXXFLAGS := $(BASE_CXXFLAGS) $(HOST_CXXFLAGS) $(GF_CXXFLAGS) +override CPPFLAGS := $(MK_CPPFLAGS) $(CPPFLAGS) +override CFLAGS := $(CPPFLAGS) $(MK_CFLAGS) $(GF_CFLAGS) $(CFLAGS) +BASE_CXXFLAGS := $(MK_CXXFLAGS) $(CXXFLAGS) +override CXXFLAGS := $(BASE_CXXFLAGS) $(HOST_CXXFLAGS) $(GF_CXXFLAGS) $(CPPFLAGS) override NVCCFLAGS := $(MK_NVCCFLAGS) $(NVCCFLAGS) override LDFLAGS := $(MK_LDFLAGS) $(LDFLAGS) @@ -574,7 +602,7 @@ $(info I CC: $(shell $(CC) --version | head -n 1)) $(info I CXX: $(shell $(CXX) --version | head -n 1)) ifdef LLAMA_CUBLAS $(info I NVCC: $(shell $(NVCC) --version | tail -n 1)) -CUDA_VERSION := $(shell nvcc --version | grep -oP 'release (\K[0-9]+\.[0-9])') +CUDA_VERSION := $(shell $(NVCC) --version | grep -oP 'release (\K[0-9]+\.[0-9])') ifeq ($(shell awk -v "v=$(CUDA_VERSION)" 'BEGIN { print (v < 11.7) }'),1) ifndef CUDA_DOCKER_ARCH ifndef CUDA_POWER_ARCH @@ -696,7 +724,7 @@ save-load-state: examples/save-load-state/save-load-state.cpp ggml.o llama.o $(C $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) -server: examples/server/server.cpp examples/server/oai.hpp examples/server/utils.hpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp examples/llava/clip.cpp examples/llava/clip.h common/stb_image.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS) +server: examples/server/server.cpp examples/server/oai.hpp examples/server/utils.hpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp examples/llava/clip.cpp examples/llava/clip.h examples/llava/llava.h examples/llava/llava.cpp common/stb_image.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) -c examples/llava/clip.cpp -o $(call GET_OBJ_FILE, examples/llava/clip.cpp) -Wno-cast-qual $(CXX) $(CXXFLAGS) -Iexamples/server $(filter-out %.h %.hpp $< examples/llava/clip.cpp,$^) $(call GET_OBJ_FILE, $<) $(call GET_OBJ_FILE, examples/llava/clip.cpp) -o $@ $(LDFLAGS) $(LWINSOCK2) diff --git a/README-sycl.md b/README-sycl.md index e3a8e726e..85eb16f2b 100644 --- a/README-sycl.md +++ b/README-sycl.md @@ -1,6 +1,7 @@ # llama.cpp for SYCL - [Background](#background) +- [News](#news) - [OS](#os) - [Intel GPU](#intel-gpu) - [Docker](#docker) @@ -25,6 +26,21 @@ The llama.cpp for SYCL is used to support Intel GPUs. For Intel CPU, recommend to use llama.cpp for X86 (Intel MKL building). +## News + +- 2024.3 + - Support multiple cards: **--split-mode**: [none|layer]; not support [row], it's on developing. + - Support to assign main GPU by **--main-gpu**, replace $GGML_SYCL_DEVICE. + - Support detecting all GPUs with level-zero and same top **Max compute units**. + - Support OPs + - hardsigmoid + - hardswish + - pool2d + +- 2024.1 + - Create SYCL backend for Intel GPU. + - Support Windows build + ## OS |OS|Status|Verified| @@ -272,7 +288,7 @@ Please install [Visual Studio](https://visualstudio.microsoft.com/) which impact a. Please follow the procedure in [Get the Intel® oneAPI Base Toolkit ](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html). -Recommend to install to default folder: **/opt/intel/oneapi**. +Recommend to install to default folder: **C:\Program Files (x86)\Intel\oneAPI**. Following guide uses the default folder as example. If you use other folder, please modify the following guide info with your folder. @@ -449,6 +465,7 @@ Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device |-|-|-| |GGML_SYCL_DEVICE|0 (default) or 1|Set the device id used. Check the device ids by default running output| |GGML_SYCL_DEBUG|0 (default) or 1|Enable log function by macro: GGML_SYCL_DEBUG| +|ZES_ENABLE_SYSMAN| 0 (default) or 1|Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.
Recommended to use when --split-mode = layer| ## Known Issue @@ -458,6 +475,10 @@ Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device Solution: add **--no-mmap** or **--mmap 0**. +- Split-mode: [row] is not supported + + It's on developing. + ## Q&A - Error: `error while loading shared libraries: libsycl.so.7: cannot open shared object file: No such file or directory`. diff --git a/README.md b/README.md index 70866e249..45c5d06f3 100644 --- a/README.md +++ b/README.md @@ -8,15 +8,16 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others) in pure C/C++ +### Recent API changes + +- [2024 Mar 3] `struct llama_context_params` https://github.com/ggerganov/llama.cpp/pull/5849 + ### Hot topics -- Remove LLAMA_MAX_DEVICES and LLAMA_SUPPORTS_GPU_OFFLOAD: https://github.com/ggerganov/llama.cpp/pull/5240 -- Incoming backends: https://github.com/ggerganov/llama.cpp/discussions/5138 - - [SYCL backend](README-sycl.md) is ready (1/28/2024), support Linux/Windows in Intel GPUs (iGPU, Arc/Flex/Max series) -- New SOTA quantized models, including pure 2-bits: https://huggingface.co/ikawrakow -- Collecting Apple Silicon performance stats: - - M-series: https://github.com/ggerganov/llama.cpp/discussions/4167 - - A-series: https://github.com/ggerganov/llama.cpp/discussions/4508 +- The `api_like_OAI.py` script has been removed - use `server` instead ([#5766](https://github.com/ggerganov/llama.cpp/issues/5766#issuecomment-1969037761)) +- Support for chat templates: [Wiki (contributions welcome)](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template) +- Support for Gemma models: https://github.com/ggerganov/llama.cpp/pull/5631 +- Non-linear quantization IQ4_NL: https://github.com/ggerganov/llama.cpp/pull/5590 - Looking for contributions to improve and maintain the `server` example: https://github.com/ggerganov/llama.cpp/issues/4216 ---- @@ -107,16 +108,20 @@ Typically finetunes of the base models below are supported as well. - [x] [Orion 14B](https://github.com/ggerganov/llama.cpp/pull/5118) - [x] [InternLM2](https://huggingface.co/models?search=internlm2) - [x] [CodeShell](https://github.com/WisdomShell/codeshell) +- [x] [Gemma](https://ai.google.dev/gemma) **Multimodal models:** -- [x] [LLaVA 1.5 models](https://huggingface.co/collections/liuhaotian/llava-15-653aac15d994e992e2677a7e) +- [x] [LLaVA 1.5 models](https://huggingface.co/collections/liuhaotian/llava-15-653aac15d994e992e2677a7e), [LLaVA 1.6 models](https://huggingface.co/collections/liuhaotian/llava-16-65b9e40155f60fd046a5ccf2) - [x] [BakLLaVA](https://huggingface.co/models?search=SkunkworksAI/Bakllava) - [x] [Obsidian](https://huggingface.co/NousResearch/Obsidian-3B-V0.5) - [x] [ShareGPT4V](https://huggingface.co/models?search=Lin-Chen/ShareGPT4V) - [x] [MobileVLM 1.7B/3B models](https://huggingface.co/models?search=mobileVLM) - [x] [Yi-VL](https://huggingface.co/models?search=Yi-VL) +**HTTP server** + +[llama.cpp web server](./examples/server) is a lightweight [OpenAI API](https://github.com/openai/openai-openapi) compatible HTTP server that can be used to serve local models and easily connect them to existing clients. **Bindings:** @@ -145,6 +150,7 @@ Unless otherwise noted these projects are open-source with permissive licensing: - [nat/openplayground](https://github.com/nat/openplayground) - [Faraday](https://faraday.dev/) (proprietary) - [LMStudio](https://lmstudio.ai/) (proprietary) +- [LocalAI](https://github.com/mudler/LocalAI) (MIT) - [LostRuins/koboldcpp](https://github.com/LostRuins/koboldcpp) (AGPL) - [Mozilla-Ocho/llamafile](https://github.com/Mozilla-Ocho/llamafile) - [nomic-ai/gpt4all](https://github.com/nomic-ai/gpt4all) @@ -156,6 +162,9 @@ Unless otherwise noted these projects are open-source with permissive licensing: - [pythops/tenere](https://github.com/pythops/tenere) (AGPL) - [semperai/amica](https://github.com/semperai/amica) - [withcatai/catai](https://github.com/withcatai/catai) +- [Mobile-Artificial-Intelligence/maid](https://github.com/Mobile-Artificial-Intelligence/maid) (MIT) +- [Msty](https://msty.app) (proprietary) +- [LLMFarm](https://github.com/guinmoon/LLMFarm?tab=readme-ov-file) (MIT) --- @@ -781,7 +790,7 @@ And after 4.45 hours, you will have the final perplexity. ### Interactive mode If you want a more ChatGPT-like experience, you can run in interactive mode by passing `-i` as a parameter. -In this mode, you can always interrupt generation by pressing Ctrl+C and entering one or more lines of text, which will be converted into tokens and appended to the current context. You can also specify a *reverse prompt* with the parameter `-r "reverse prompt string"`. This will result in user input being prompted whenever the exact tokens of the reverse prompt string are encountered in the generation. A typical use is to use a prompt that makes LLaMa emulate a chat between multiple users, say Alice and Bob, and pass `-r "Alice:"`. +In this mode, you can always interrupt generation by pressing Ctrl+C and entering one or more lines of text, which will be converted into tokens and appended to the current context. You can also specify a *reverse prompt* with the parameter `-r "reverse prompt string"`. This will result in user input being prompted whenever the exact tokens of the reverse prompt string are encountered in the generation. A typical use is to use a prompt that makes LLaMA emulate a chat between multiple users, say Alice and Bob, and pass `-r "Alice:"`. Here is an example of a few-shot interaction, invoked with the command @@ -845,7 +854,7 @@ Sample run: ``` == Running in interactive mode. == - Press Ctrl+C to interject at any time. - - Press Return to return control to LLaMa. + - Press Return to return control to LLaMA. - If you want to submit another line, end your input in '\'. Below is an instruction that describes a task. Write a response that appropriately completes the request. diff --git a/awq-py/README.md b/awq-py/README.md deleted file mode 100644 index 16e68d027..000000000 --- a/awq-py/README.md +++ /dev/null @@ -1,116 +0,0 @@ -# AWQ: Activation-aware Weight Quantization for LLM - version apply to llamacpp -[[Paper](https://arxiv.org/abs/2306.00978)][[Original Repo](https://github.com/mit-han-lab/llm-awq)][[Easy-to-use Repo](https://github.com/casper-hansen/AutoAWQ)] - -**Supported models:** - -- [X] LLaMA -- [x] LLaMA 2 -- [X] MPT -- [X] Mistral AI v0.1 -- [ ] Bloom -- [ ] Mixtral MoE - -**TODO:** -- [x] Update version work with both MPT and MPT-AWQ model -- [ ] Add OPT model -- [ ] Add Bloom model -- [ ] Add Mixtral MoE -- [ ] Support w3, w2 - - -## Contents - -- [Install](##Install) -- [Convert](##Convert) -- [Quantize](##Quantize) -- [Test](##Test) -- [Benchmark](##Benchmark) -- [Results](##Results) - -## Install -Install requirements -```bash -pip install -r requirements.txt -``` -Get the pre-computed AWQ search results for multiple model families, including LLaMA, LLaMA2, MPT, OPT -```bash -git clone https://huggingface.co/datasets/mit-han-lab/awq-model-zoo awq_cache -``` - -## Convert -Example for llama model -```bash -# For llama7b and llama2 models -python convert.py models/llama-7b/ --awq-path awq_cache/llama-7b-w4-g128.pt --outfile models/llama_7b_fp16.gguf -# For mistral and mpt models -python convert-hf-to-gguf.py models/mpt-7b/ --awq-path awq_cache/mpt-7b-w4-g128.pt --outfile models/mpt_7b_fp16.gguf -``` - -## Quantize -```bash -# We only benchmark and confirm the results on q4_0, q4_1, and q2_k types. -./quantize models/llama_7b_fp16.gguf models/llama_7b_q4_0.gguf q4_0 -``` - -## Test -```bash -# For all models. -./build/bin/main -m models/llama_7b_q4_0.gguf -n 128 --prompt "Once upon a time" -``` - -## Benchmark -The perplexity measurements in table above are done against the `wikitext2` test dataset (https://paperswithcode.com/dataset/wikitext-2), with context length of 512. -```bash -# For llama and llama2, and mistral models. -./perplexity -m models/llama_7b_q4_0.gguf -f datasets/wikitext-2-raw/wiki.test.raw -``` - -## Results -Results are run on OpenBLAS (CPU) and CuBLAS (GPU) for fair comparison -We use three types of llamacpp quantization methods to work with our version, including q4_0, q4_1, and q2_k - -### Llama 7B (Build with OpenBLAS) - -| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K | -|-----------:|--------------|-------:|-------:|-------:|-------:| -|Llama 7B | perplexity | 5.9066 | 6.1214 | 6.0643 | 6.5808 | -|Llama 7B | file size | 12.9G | 3.5G | 3.9G | 2.7G | -|Llama 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 | -|AWQ-LLama 7B| perplexity | 5.9175 | 6.0252 | 5.9987 | 6.3692 | -|AWQ-LLama 7B| file size | 12.9G | 3.5G | 3.9G | 2.7G | -|AWQ-LLama 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 | - - -### Llama2 7B (Build with CuBLAS) - -| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K | -|------------:|--------------|-------:|-------:|-------:|-------:| -|Llama2 7B | perplexity | 5.8664 | 6.0260 | 6.0656 | 6.4496 | -|Llama2 7B | file size | 12.9G | 3.5G | 3.9G | 2.7G | -|Llama2 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 | -|AWQ-LLama2 7B| perplexity | 5.8801 | 6.0054 | 5.9849 | 6.3650 | -|AWQ-LLama2 7B| file size | 12.9G | 3.5G | 3.9G | 2.7G | -|AWQ-LLama2 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 | - - -### Mistral 7B v0.1 (Build with CuBLAS) - -| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K | -|-------------:|--------------|-------:|-------:|-------:|-------:| -|Mistral 7B | perplexity | 5.6931 | 5.8202 | 5.8268 | 6.1645 | -|Mistral 7B | file size | 14.5G | 4.1G | 4.5G | 3.1G | -|Mistral 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 | -|AWQ-Mistral 7B| perplexity | 5.6934 | 5.8020 | 5.7691 | 6.0426 | -|AWQ-Mistral 7B| file size | 14.5G | 4.1G | 4.5G | 3.1G | -|AWQ-Mistral 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 | - -### MPT 7B (Build with OpenBLAS) - -| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K | -|---------:|--------------|-------:|-------:|-------:|--------:| -|MPT 7B | perplexity | 8.4369 | 8.7956 | 8.6265 | 11.4913 | -|MPT 7B | file size | 13.7G | 3.9G | 4.3G | 2.8G | -|MPT 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 | -|AWQ-MPT 7B| perplexity | 8.4944 | 8.7053 | 8.6750 | 10.2873| -|AWQ-MPT 7B| file size | 13.7G | 3.9G | 4.3G | 2.8G | -|AWQ-MPT 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 | diff --git a/awq-py/awq/apply_awq.py b/awq-py/awq/apply_awq.py deleted file mode 100644 index 11132c5d2..000000000 --- a/awq-py/awq/apply_awq.py +++ /dev/null @@ -1,254 +0,0 @@ -""" -Implements the AWQ for llama.cpp use cases. -Original paper: https://arxiv.org/abs/2306.00978 - -This code is based on versions of the AWQ implementation found in the following repositories: -* https://github.com/mit-han-lab/llm-awq -* https://github.com/casper-hansen/AutoAWQ -""" - -import os -import torch -import torch.nn as nn - -from transformers import AutoModelForCausalLM, AutoConfig -from transformers.models.bloom.modeling_bloom import BloomGelu -from transformers.models.llama.modeling_llama import LlamaRMSNorm -from transformers.activations import GELUActivation - - -class ScaledActivation(nn.Module): - """ - ScaledActivation module wraps an existing activation function and applies a - scale factor to its output. - - Args: - module (nn.Module): The activation function to be scaled. - scales (torch.Tensor): A tensor of size (num_features,) containing the initial - scale factors for each feature. - - Returns: - torch.Tensor: The scaled output of the activation function. - """ - - def __init__(self, module, scales): - super().__init__() - self.act = module - self.scales = nn.Parameter(scales.data) - - def forward(self, x): - return self.act(x) / self.scales.view(1, 1, -1).to(x.device) - - -def set_op_by_name(layer, name, new_module): - """ - Set the new module for given module's name. - - Args: - layer (nn.Module): The layer in which to replace the submodule. - name (str): The path to the submodule to be replaced, using dot notation - to access nested modules. - new_module (nn.Module): The new module to replace the existing one. - """ - levels = name.split(".") - if len(levels) > 1: - mod_ = layer - for l_idx in range(len(levels) - 1): - if levels[l_idx].isdigit(): - mod_ = mod_[int(levels[l_idx])] - else: - mod_ = getattr(mod_, levels[l_idx]) - setattr(mod_, levels[-1], new_module) - else: - setattr(layer, name, new_module) - - -def get_op_by_name(module, op_name): - """ - Retrieves a submodule within a given layer based on its name. - - Args: - module (nn.Module): The layer containing the submodule to find. - op_name (str): The name of the submodule. - - Returns: - nn.Module: The requested submodule found within the given layer. - - Raises: - ValueError: If the specified submodule cannot be found within the layer. - """ - for name, m in module.named_modules(): - if name == op_name: - return m - raise ValueError(f"Cannot find op {op_name} in module {module}") - - -@torch.no_grad() -def scale_ln_fcs(ln, fcs, scales): - """ - Scales the weights of a LayerNorm and a list of fully-connected layers proportionally. - - Args: - ln (nn.LayerNorm): The LayerNorm module to be scaled. - fcs (List[nn.Linear]): A list of fully-connected layers to be scaled. - scales (torch.Tensor): A 1D tensor of size (num_features,). - """ - - if not isinstance(fcs, list): - fcs = [fcs] - - scales = scales.to(ln.weight.device) - - ln.weight.div_(scales) - if hasattr(ln, "bias") and ln.bias is not None: - ln.bias.div_(scales) - - for fc in fcs: - fc.weight.mul_(scales.view(1, -1)) - - for p in ln.parameters(): - assert torch.isnan(p).sum() == 0 - for fc in fcs: - for p in fc.parameters(): - assert torch.isnan(p).sum() == 0 - - -@torch.no_grad() -def scale_fc_fc(fc1, fc2, scales): - """ - Scales the weights of two fully-connected layers in a specific pattern. - - Args: - fc1 (nn.Linear): The first fully-connected layer to be scaled. - fc2 (nn.Linear): The second fully-connected layer to be scaled. - scales (torch.Tensor): A 1D tensor of size (num_features,). - """ - assert isinstance(fc1, nn.Linear) - assert isinstance(fc2, nn.Linear) - - scales = scales.to(fc1.weight.device) - - fc1.weight[-scales.size(0):].div_(scales.view(-1, 1)) - if fc1.bias is not None: - fc1.bias.div_(scales.view(-1)) - - fc2.weight.mul_(scales.view(1, -1)) - - for p in fc1.parameters(): - assert torch.isnan(p).sum() == 0 - for p in fc2.parameters(): - assert torch.isnan(p).sum() == 0 - - -@torch.no_grad() -def scale_gelu_fc(gelu, fc, scales): - """ - Scales the weight of a GELU activation and a fully-connected layer proportionally. - - Args: - gelu (Union[nn.GELU, BloomGelu, GELUActivation]): The GELU activation module to be scaled. - fc (nn.Linear): The fully-connected layer to be scaled. - scales (torch.Tensor): A 1D tensor of size (num_features,). - - Raises: - TypeError: If the `gelu` module is not of type `nn.GELU`, `BloomGelu`, or `GELUActivation`. - TypeError: If the `fc` module is not of type `nn.Linear`. - """ - assert isinstance(gelu, (nn.GELU, BloomGelu, GELUActivation)) - assert isinstance(fc, nn.Linear) - - fc.weight.mul_(scales.view(1, -1).to(fc.weight.device)) - - for p in fc.parameters(): - assert torch.isnan(p).sum() == 0 - - -def apply_scale(module, scales_list, input_feat_dict=None): - """ - Applies different scaling strategies to layers based on their type and hierarchy within a given module. - - Args: - module (nn.Module): The module containing the layers to be scaled. - scales_list (List[Tuple[str, List[str], torch.Tensor]]): A list of tuples containing: - * prev_op_name (str): The name of the preceding operation or module, - relative to which the layers to be scaled are located. - * layer_names (List[str]): A list of names of the layers to be scaled, relative to the preceding operation. - * scales (torch.Tensor): A 1D tensor of size (num_features,) containing the scaling factors for each feature. - input_feat_dict (Optional[Dict[str, torch.Tensor]]): A dictionary mapping layer names to their corresponding - input features (optional). - """ - for prev_op_name, layer_names, scales in scales_list: - prev_op = get_op_by_name(module, prev_op_name) - layers = [get_op_by_name(module, name) for name in layer_names] - - prev_op.cuda() - for layer in layers: - layer.cuda() - scales.cuda() - - if isinstance(prev_op, nn.Linear): - assert len(layers) == 1 - scale_fc_fc(prev_op, layers[0], scales) - elif isinstance(prev_op, (nn.LayerNorm, LlamaRMSNorm)) or "rmsnorm" in str(prev_op.__class__).lower(): - scale_ln_fcs(prev_op, layers, scales) - elif isinstance(prev_op, (nn.GELU, BloomGelu, GELUActivation)): - new_module = ScaledActivation(prev_op, scales) - set_op_by_name(module, prev_op_name, new_module) - scale_gelu_fc(prev_op, layers[0], scales) - else: - raise NotImplementedError(f"prev_op {type(prev_op)} not supported yet!") - - # apply the scaling to input feat if given; prepare it for clipping - if input_feat_dict is not None: - for layer_name in layer_names: - inp = input_feat_dict[layer_name] - inp.div_(scales.view(1, -1).to(inp.device)) - - prev_op.cpu() - for layer in layers: - layer.cpu() - scales.cpu() - - -@torch.no_grad() -def apply_clip(module, clip_list): - """ - Applies element-wise clipping to the weight of a specific layer within a given module. - - Args: - module (nn.Module): The module containing the layer to be clipped. - clip_list (List[Tuple[str, torch.Tensor]]): A list of tuples containing: - * name (str): The name of the layer to be clipped, relative to the root of the module. - * max_val (torch.Tensor): A 1D or 2D tensor defining the upper bound for each element of the layer's weight. - """ - for name, max_val in clip_list: - layer = get_op_by_name(module, name) - layer.cuda() - max_val = max_val.to(layer.weight.device) - org_shape = layer.weight.shape - layer.weight.data = layer.weight.data.reshape(*max_val.shape[:2], -1) - layer.weight.data = torch.clamp(layer.weight.data, -max_val, max_val) - layer.weight.data = layer.weight.data.reshape(org_shape) - layer.cpu() - - -def add_scale_weights(model_path, scale_path, tmp_path): - """ - Adds pre-computed Activation Weight Quantization (AWQ) results to a model, - including scaling factors and clipping bounds. - - Args: - model_path (str): Path to the pre-trained model to be equipped with AWQ. - scale_path (str): Path to the AWQ scale factors (.pt file). - tmp_path (str): Path to the temporary directory where the equipped model will be saved. - """ - config = AutoConfig.from_pretrained(model_path, trust_remote_code=True) - model = AutoModelForCausalLM.from_pretrained( - model_path, config=config, trust_remote_code=True - ) - model.eval() - awq_results = torch.load(str(scale_path), map_location="cpu") - apply_scale(model, awq_results["scale"]) - apply_clip(model, awq_results["clip"]) - model.save_pretrained(str(tmp_path)) - os.system(f"cp {str(model_path)}/tokenizer* {str(tmp_path)}") diff --git a/awq-py/requirements.txt b/awq-py/requirements.txt deleted file mode 100644 index 991896116..000000000 --- a/awq-py/requirements.txt +++ /dev/null @@ -1,2 +0,0 @@ -torch>=2.1.1 -transformers>=4.32.0 diff --git a/build.zig b/build.zig index 699738f3d..c0af454dc 100644 --- a/build.zig +++ b/build.zig @@ -123,6 +123,7 @@ pub fn build(b: *std.build.Builder) !void { const grammar_parser = make.obj("grammar-parser", "common/grammar-parser.cpp"); const train = make.obj("train", "common/train.cpp"); const clip = make.obj("clip", "examples/llava/clip.cpp"); + const llava = make.obj("llava", "examples/llava/llava.cpp"); _ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo, sampling, console, grammar_parser }); _ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo }); @@ -131,7 +132,7 @@ pub fn build(b: *std.build.Builder) !void { _ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo, train }); _ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo, train }); - const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo, sampling, grammar_parser, clip }); + const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo, sampling, grammar_parser, clip, llava }); if (server.target.isWindows()) { server.linkSystemLibrary("ws2_32"); } diff --git a/ci/run.sh b/ci/run.sh index f3a29c2e9..35eb3c7aa 100755 --- a/ci/run.sh +++ b/ci/run.sh @@ -272,19 +272,19 @@ function gg_run_open_llama_3b_v2 { (time ./bin/main --model ${model_q5_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log (time ./bin/main --model ${model_q6_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log - (time ./bin/perplexity --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log - (time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log - (time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log - (time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log - (time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log - (time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log - (time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log - (time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log - (time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log - (time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log - (time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log + (time ./bin/perplexity --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log + (time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log + (time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log + (time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log + (time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log + (time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log + (time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log + (time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log + (time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log + (time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log + (time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log - (time ./bin/imatrix --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log + (time ./bin/imatrix --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log (time ./bin/save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log @@ -343,17 +343,17 @@ function gg_run_open_llama_3b_v2 { python3 ../convert-lora-to-ggml.py ${path_lora} # f16 - (time ./bin/perplexity --model ${model_f16} -f ${shakespeare} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-f16.log - (time ./bin/perplexity --model ${model_f16} -f ${shakespeare} --lora ${lora_shakespeare} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-f16.log + (time ./bin/perplexity --model ${model_f16} -f ${shakespeare} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-f16.log + (time ./bin/perplexity --model ${model_f16} -f ${shakespeare} --lora ${lora_shakespeare} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-f16.log compare_ppl "f16 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-f16.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log # q8_0 - (time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-q8_0.log - (time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0.log + (time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-q8_0.log + (time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0.log compare_ppl "q8_0 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log # q8_0 + f16 lora-base - (time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} --lora-base ${model_f16} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log + (time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} --lora-base ${model_f16} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log compare_ppl "q8_0 / f16 base shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log set +e diff --git a/common/common.cpp b/common/common.cpp index 10ef11829..dbe7e9229 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -295,9 +295,9 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) { break; } std::string value(argv[i]); - /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_NONE; } - else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_LINEAR; } - else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_YARN; } + /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; } + else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; } + else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; } else { invalid_param = true; break; } } else if (arg == "--rope-scale") { if (++i >= argc) { @@ -335,6 +335,22 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) { break; } params.yarn_beta_slow = std::stof(argv[i]); + } else if (arg == "--pooling") { + if (++i >= argc) { + invalid_param = true; + break; + } + std::string value(argv[i]); + /**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; } + else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; } + else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; } + else { invalid_param = true; break; } + } else if (arg == "--defrag-thold" || arg == "-dt") { + if (++i >= argc) { + invalid_param = true; + break; + } + params.defrag_thold = std::stof(argv[i]); } else if (arg == "--samplers") { if (++i >= argc) { invalid_param = true; @@ -630,11 +646,15 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) { } std::string arg_next = argv[i]; if (arg_next == "none") { - params.split_mode = LLAMA_SPLIT_NONE; + params.split_mode = LLAMA_SPLIT_MODE_NONE; } else if (arg_next == "layer") { - params.split_mode = LLAMA_SPLIT_LAYER; + params.split_mode = LLAMA_SPLIT_MODE_LAYER; } else if (arg_next == "row") { - params.split_mode = LLAMA_SPLIT_ROW; +#ifdef GGML_USE_SYCL + fprintf(stderr, "warning: The split mode value:[row] is not supported by llama.cpp with SYCL. It's developing.\nExit!\n"); + exit(1); +#endif // GGML_USE_SYCL + params.split_mode = LLAMA_SPLIT_MODE_ROW; } else { invalid_param = true; break; @@ -837,15 +857,15 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) { sep++; if (strncmp(sep, "int:", 4) == 0) { sep += 4; - kvo.tag = LLAMA_KV_OVERRIDE_INT; + kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT; kvo.int_value = std::atol(sep); } else if (strncmp(sep, "float:", 6) == 0) { sep += 6; - kvo.tag = LLAMA_KV_OVERRIDE_FLOAT; + kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT; kvo.float_value = std::atof(sep); } else if (strncmp(sep, "bool:", 5) == 0) { sep += 5; - kvo.tag = LLAMA_KV_OVERRIDE_BOOL; + kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL; if (std::strcmp(sep, "true") == 0) { kvo.bool_value = true; } else if (std::strcmp(sep, "false") == 0) { @@ -1004,10 +1024,14 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { printf(" --yarn-attn-factor N YaRN: scale sqrt(t) or attention magnitude (default: 1.0)\n"); printf(" --yarn-beta-slow N YaRN: high correction dim or alpha (default: %.1f)\n", params.yarn_beta_slow); printf(" --yarn-beta-fast N YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast); + printf(" --pooling {none,mean,cls}\n"); + printf(" pooling type for embeddings, use model default if unspecified\n"); + printf(" -dt N, --defrag-thold N\n"); + printf(" KV cache defragmentation threshold (default: %.1f, < 0 - disabled)\n", params.defrag_thold); printf(" --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n"); printf(" --no-penalize-nl do not penalize newline token\n"); printf(" --temp N temperature (default: %.1f)\n", (double)sparams.temp); - printf(" --logits-all return logits for all tokens in the batch (default: disabled)\n"); + printf(" --all-logits return logits for all tokens in the batch (default: disabled)\n"); printf(" --hellaswag compute HellaSwag score over random tasks from datafile supplied with -f\n"); printf(" --hellaswag-tasks N number of tasks to use when computing the HellaSwag score (default: %zu)\n", params.hellaswag_tasks); printf(" --winogrande compute Winogrande score over random tasks from datafile supplied with -f\n"); @@ -1273,7 +1297,6 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param cparams.n_batch = params.n_batch; cparams.n_threads = params.n_threads; cparams.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch; - cparams.mul_mat_q = params.mul_mat_q; cparams.seed = params.seed; cparams.logits_all = params.logits_all; cparams.embedding = params.embedding; @@ -1285,6 +1308,8 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param cparams.yarn_beta_fast = params.yarn_beta_fast; cparams.yarn_beta_slow = params.yarn_beta_slow; cparams.yarn_orig_ctx = params.yarn_orig_ctx; + cparams.pooling_type = params.pooling_type; + cparams.defrag_thold = params.defrag_thold; cparams.offload_kqv = !params.no_kv_offload; cparams.type_k = kv_cache_type_from_str(params.cache_type_k); @@ -1716,7 +1741,6 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict); fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs); fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false"); - fprintf(stream, "no_mul_mat_q: %s # default: false\n", !params.mul_mat_q ? "true" : "false"); fprintf(stream, "no_penalize_nl: %s # default: false\n", !sparams.penalize_nl ? "true" : "false"); fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type); fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride); diff --git a/common/common.h b/common/common.h index 935771d44..d3682b7ad 100644 --- a/common/common.h +++ b/common/common.h @@ -61,7 +61,7 @@ struct gpt_params { float p_split = 0.1f; // speculative decoding split probability int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default) int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default) - llama_split_mode split_mode = LLAMA_SPLIT_LAYER; // how to split the model across GPUs + llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs int32_t n_beams = 0; // if non-zero then use beam search of given width. @@ -75,8 +75,12 @@ struct gpt_params { float yarn_beta_fast = 32.0f; // YaRN low correction dim float yarn_beta_slow = 1.0f; // YaRN high correction dim int32_t yarn_orig_ctx = 0; // YaRN original context length - int32_t rope_scaling_type = LLAMA_ROPE_SCALING_UNSPECIFIED; - ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED; + float defrag_thold = -1.0f; // KV cache defragmentation threshold + + ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED; + + llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED; + llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings // // sampling parameters struct llama_sampling_params sparams; @@ -114,7 +118,6 @@ struct gpt_params { bool kl_divergence = false; // compute KL-divergence - bool mul_mat_q = true; // if true, use mul_mat_q kernels instead of cuBLAS bool random_prompt = false; // do not randomize prompt if none provided bool use_color = false; // use color to distinguish generations and inputs bool interactive = false; // interactive mode diff --git a/common/sampling.cpp b/common/sampling.cpp index de4331a11..e67096bea 100644 --- a/common/sampling.cpp +++ b/common/sampling.cpp @@ -266,7 +266,7 @@ static llama_token llama_sampling_sample_impl( // } //} - LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx_main, id).c_str()); + //LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx_main, id).c_str()); } } diff --git a/common/train.cpp b/common/train.cpp index e4c3d5df6..0dbfd24df 100644 --- a/common/train.cpp +++ b/common/train.cpp @@ -31,7 +31,7 @@ struct train_state * init_train_state() { state->opt = new struct ggml_opt_context; state->opt->ctx = NULL; - state->opt->params = ggml_opt_default_params(GGML_OPT_ADAM); + state->opt->params = ggml_opt_default_params(GGML_OPT_TYPE_ADAM); state->opt->params.graph_size = LLAMA_TRAIN_MAX_NODES; state->opt->loss_after = 0.0f; @@ -556,7 +556,7 @@ void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_g std::string opt_type; GGUF_GET_KEY(fctx, opt_type, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_OPTIMIZER_TYPE); if (opt_type == LLM_KV_OPTIMIZER_TYPE_ADAM) { - opt->params.type = GGML_OPT_ADAM; + opt->params.type = GGML_OPT_TYPE_ADAM; GGUF_GET_KEY(fctx, opt->adam.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS); GGUF_GET_KEY(fctx, opt->adam.fx_prev, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS); @@ -568,7 +568,7 @@ void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_g copy_tensor_by_name(opt->adam.v, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS); copy_tensor_by_name(opt->adam.pf, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES); } else if (opt_type == LLM_KV_OPTIMIZER_TYPE_LBFGS) { - opt->params.type = GGML_OPT_LBFGS; + opt->params.type = GGML_OPT_TYPE_LBFGS; GGUF_GET_KEY(fctx, opt->params.lbfgs.m, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT); GGUF_GET_KEY(fctx, opt->lbfgs.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS); @@ -603,7 +603,7 @@ void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context * gguf_set_val_bool(fctx, LLM_KV_OPTIMIZER_JUST_INITIALIZED, opt->just_initialized); switch (opt->params.type) { - case GGML_OPT_ADAM: + case GGML_OPT_TYPE_ADAM: { gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_ADAM); gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS, opt->adam.fx_best); @@ -622,7 +622,7 @@ void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context * gguf_add_tensor(fctx, opt->adam.pf); } } break; - case GGML_OPT_LBFGS: + case GGML_OPT_TYPE_LBFGS: { gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS); gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, opt->params.lbfgs.m); diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index 9771fccf9..ffdba7444 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -8,9 +8,10 @@ import json import os import re import sys +from abc import ABC, abstractmethod from enum import IntEnum from pathlib import Path -from typing import TYPE_CHECKING, Any, ContextManager, Iterator, Sequence, cast +from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterator, Sequence, TypeVar, cast import numpy as np import torch @@ -35,8 +36,11 @@ class SentencePieceTokenTypes(IntEnum): UNUSED = 5 BYTE = 6 +AnyModel = TypeVar("AnyModel", bound="type[Model]") + +class Model(ABC): + _model_classes: dict[str, type[Model]] = {} -class Model: def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool): self.dir_model = dir_model self.ftype = ftype @@ -47,10 +51,14 @@ class Model: self.num_parts = Model.count_model_parts(self.dir_model, ".safetensors" if self.is_safetensors else ".bin") self.part_names = self._get_part_names() self.hparams = Model.load_hparams(self.dir_model) - self.model_arch = self._get_model_architecture() self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=False) self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"]) + @property + @abstractmethod + def model_arch(self) -> gguf.MODEL_ARCH: + pass + def find_hparam(self, keys: Sequence[str], optional: bool = False) -> Any: key = next((k for k in keys if k in self.hparams), None) if key is not None: @@ -96,9 +104,11 @@ class Model: if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None: self.gguf_writer.add_head_count_kv(n_head_kv) + if (rope_theta := self.hparams.get("rope_theta")) is not None: + self.gguf_writer.add_rope_freq_base(rope_theta) if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None: self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps) - if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon"], optional=True)) is not None: + if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None: self.gguf_writer.add_layer_norm_eps(f_norm_eps) if (n_experts := self.hparams.get("num_local_experts")) is not None: self.gguf_writer.add_expert_count(n_experts) @@ -174,51 +184,21 @@ class Model: with open(dir_model / "config.json", "r", encoding="utf-8") as f: return json.load(f) - @staticmethod - def from_model_architecture(model_architecture): - if model_architecture == "GPTNeoXForCausalLM": - return GPTNeoXModel - if model_architecture == "BloomForCausalLM": - return BloomModel - if model_architecture == "MPTForCausalLM": - return MPTModel - if model_architecture in ("BaichuanForCausalLM", "BaiChuanForCausalLM"): - return BaichuanModel - if model_architecture in ("FalconForCausalLM", "RWForCausalLM"): - return FalconModel - if model_architecture == "GPTBigCodeForCausalLM": - return StarCoderModel - if model_architecture == "GPTRefactForCausalLM": - return RefactModel - if model_architecture == "PersimmonForCausalLM": - return PersimmonModel - if model_architecture in ("StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM"): - return StableLMModel - if model_architecture == "QWenLMHeadModel": - return QwenModel - if model_architecture == "Qwen2ForCausalLM": - return Model - if model_architecture == "MixtralForCausalLM": - return MixtralModel - if model_architecture == "GPT2LMHeadModel": - return GPT2Model - if model_architecture == "PhiForCausalLM": - return Phi2Model - if model_architecture == "PlamoForCausalLM": - return PlamoModel - if model_architecture == "CodeShellForCausalLM": - return CodeShellModel - if model_architecture == "OrionForCausalLM": - return OrionModel - if model_architecture == "InternLM2ForCausalLM": - return InternLM2Model - if model_architecture == "MiniCPMForCausalLM": - return MiniCPMModel - if model_architecture == "BertModel": - return BertModel - if model_architecture == "NomicBertModel": - return NomicBertModel - return Model + @classmethod + def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]: + assert names + def func(modelcls: type[Model]): + for name in names: + cls._model_classes[name] = modelcls + return modelcls + return func + + @classmethod + def from_model_architecture(cls, arch): + try: + return cls._model_classes[arch] + except KeyError: + raise NotImplementedError(f'Architecture {arch!r} not supported!') from None def _is_model_safetensors(self) -> bool: return Model.count_model_parts(self.dir_model, ".safetensors") > 0 @@ -233,53 +213,6 @@ class Model: return ("pytorch_model.bin",) return (f"pytorch_model-{n:05}-of-{self.num_parts:05}.bin" for n in range(1, self.num_parts + 1)) - def _get_model_architecture(self) -> gguf.MODEL_ARCH: - arch = self.hparams["architectures"][0] - if arch == "GPTNeoXForCausalLM": - return gguf.MODEL_ARCH.GPTNEOX - if arch == "BloomForCausalLM": - return gguf.MODEL_ARCH.BLOOM - if arch == "MPTForCausalLM": - return gguf.MODEL_ARCH.MPT - if arch in ("BaichuanForCausalLM", "BaiChuanForCausalLM"): - return gguf.MODEL_ARCH.BAICHUAN - if arch in ("FalconForCausalLM", "RWForCausalLM"): - return gguf.MODEL_ARCH.FALCON - if arch == "GPTBigCodeForCausalLM": - return gguf.MODEL_ARCH.STARCODER - if arch == "GPTRefactForCausalLM": - return gguf.MODEL_ARCH.REFACT - if arch == "PersimmonForCausalLM": - return gguf.MODEL_ARCH.PERSIMMON - if arch in ("StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM"): - return gguf.MODEL_ARCH.STABLELM - if arch == "QWenLMHeadModel": - return gguf.MODEL_ARCH.QWEN - if arch == "Qwen2ForCausalLM": - return gguf.MODEL_ARCH.QWEN2 - if arch == "MixtralForCausalLM": - return gguf.MODEL_ARCH.LLAMA - if arch == "GPT2LMHeadModel": - return gguf.MODEL_ARCH.GPT2 - if arch == "PhiForCausalLM": - return gguf.MODEL_ARCH.PHI2 - if arch == "PlamoForCausalLM": - return gguf.MODEL_ARCH.PLAMO - if arch == "CodeShellForCausalLM": - return gguf.MODEL_ARCH.CODESHELL - if arch == "OrionForCausalLM": - return gguf.MODEL_ARCH.ORION - if arch == "InternLM2ForCausalLM": - return gguf.MODEL_ARCH.INTERNLM2 - if arch == "MiniCPMForCausalLM": - return gguf.MODEL_ARCH.MINICPM - if arch == "BertModel": - return gguf.MODEL_ARCH.BERT - if arch == "NomicBertModel": - return gguf.MODEL_ARCH.NOMIC_BERT - - raise NotImplementedError(f'Architecture "{arch}" not supported!') - def _set_vocab_gpt2(self): dir_model = self.dir_model hparams = self.hparams @@ -447,7 +380,10 @@ class Model: special_vocab.add_to_gguf(self.gguf_writer) +@Model.register("GPTNeoXForCausalLM") class GPTNeoXModel(Model): + model_arch = gguf.MODEL_ARCH.GPTNEOX + def set_gguf_parameters(self): block_count = self.hparams["num_hidden_layers"] @@ -464,7 +400,10 @@ class GPTNeoXModel(Model): self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"]) +@Model.register("BloomForCausalLM") class BloomModel(Model): + model_arch = gguf.MODEL_ARCH.BLOOM + def set_gguf_parameters(self): self.gguf_writer.add_name("Bloom") n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed")) @@ -556,7 +495,10 @@ class BloomModel(Model): print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}") +@Model.register("MPTForCausalLM") class MPTModel(Model): + model_arch = gguf.MODEL_ARCH.MPT + def set_gguf_parameters(self): block_count = self.hparams["n_layers"] self.gguf_writer.add_name(self.dir_model.name) @@ -618,13 +560,11 @@ class MPTModel(Model): self.gguf_writer.add_tensor(new_name, data) - # note: MPT output is tied to (same as) wte in original model; - # for easier implementation in llama.cpp it's duplicated in GGUF, though :/ - if new_name == "token_embd.weight": - self.gguf_writer.add_tensor("output.weight", data) - +@Model.register("OrionForCausalLM") class OrionModel(Model): + model_arch = gguf.MODEL_ARCH.ORION + def set_vocab(self): self._set_vocab_sentencepiece() @@ -655,6 +595,8 @@ class OrionModel(Model): self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) self.gguf_writer.add_head_count(head_count) self.gguf_writer.add_head_count_kv(head_count_kv) + # note: config provides rms norm but it is actually layer norm + # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571 self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"]) def write_tensors(self): @@ -701,7 +643,10 @@ class OrionModel(Model): self.gguf_writer.add_tensor(new_name, data) +@Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM") class BaichuanModel(Model): + model_arch = gguf.MODEL_ARCH.BAICHUAN + def set_vocab(self): self._set_vocab_sentencepiece() @@ -816,7 +761,10 @@ class BaichuanModel(Model): return weights[r * n_part:r * n_part + r, ...] +@Model.register("FalconForCausalLM", "RWForCausalLM") class FalconModel(Model): + model_arch = gguf.MODEL_ARCH.FALCON + def set_gguf_parameters(self): block_count = self.hparams.get("num_hidden_layers") if block_count is None: @@ -909,7 +857,10 @@ class FalconModel(Model): self.gguf_writer.add_tensor(new_name, data) +@Model.register("GPTBigCodeForCausalLM") class StarCoderModel(Model): + model_arch = gguf.MODEL_ARCH.STARCODER + def set_gguf_parameters(self): block_count = self.hparams["n_layer"] @@ -924,7 +875,10 @@ class StarCoderModel(Model): self.gguf_writer.add_file_type(self.ftype) +@Model.register("GPTRefactForCausalLM") class RefactModel(Model): + model_arch = gguf.MODEL_ARCH.REFACT + def set_gguf_parameters(self): hidden_dim = self.hparams["n_embd"] inner_dim = 4 * hidden_dim @@ -1008,7 +962,10 @@ class RefactModel(Model): self.gguf_writer.add_tensor(new_name, data) +@Model.register("PersimmonForCausalLM") class PersimmonModel(Model): + model_arch = gguf.MODEL_ARCH.PERSIMMON + def set_gguf_parameters(self): block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers")) head_count = self.hparams["num_attention_heads"] @@ -1031,7 +988,6 @@ class PersimmonModel(Model): self.gguf_writer.add_head_count_kv(head_count_kv) self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"]) self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"]) - self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) def set_vocab(self): self._set_vocab_sentencepiece() @@ -1057,7 +1013,10 @@ class PersimmonModel(Model): self.gguf_writer.add_tensor(new_name, data) +@Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM") class StableLMModel(Model): + model_arch = gguf.MODEL_ARCH.STABLELM + def set_vocab(self): if (self.dir_model / "tokenizer.json").is_file(): self._set_vocab_gpt2() @@ -1074,18 +1033,25 @@ class StableLMModel(Model): self.gguf_writer.add_embedding_length(hparams["hidden_size"]) self.gguf_writer.add_block_count(block_count) self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"]) - self.gguf_writer.add_rope_dimension_count(int(hparams["rope_pct"] * (hparams["hidden_size"] // hparams["num_attention_heads"]))) + rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"]) + self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"]))) self.gguf_writer.add_head_count(hparams["num_attention_heads"]) self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True) - self.gguf_writer.add_layer_norm_eps(1e-5) + self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"])) +@Model.register("MixtralForCausalLM") class MixtralModel(Model): + model_arch = gguf.MODEL_ARCH.LLAMA + def set_vocab(self): self._set_vocab_sentencepiece() +@Model.register("MiniCPMForCausalLM") class MiniCPMModel(Model): + model_arch = gguf.MODEL_ARCH.MINICPM + def set_gguf_parameters(self): block_count = self.hparams["num_hidden_layers"] self.gguf_writer.add_name("MiniCPM") @@ -1162,7 +1128,10 @@ class MiniCPMModel(Model): self.gguf_writer.add_tensor(new_name, data) +@Model.register("QWenLMHeadModel") class QwenModel(Model): + model_arch = gguf.MODEL_ARCH.QWEN + @staticmethod def token_bytes_to_string(b): from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode @@ -1242,7 +1211,15 @@ class QwenModel(Model): self.gguf_writer.add_tensor(new_name, data) +@Model.register("Qwen2ForCausalLM") +class Qwen2Model(Model): + model_arch = gguf.MODEL_ARCH.QWEN2 + + +@Model.register("GPT2LMHeadModel") class GPT2Model(Model): + model_arch = gguf.MODEL_ARCH.GPT2 + def set_gguf_parameters(self): self.gguf_writer.add_name(self.dir_model.name) self.gguf_writer.add_block_count(self.hparams["n_layer"]) @@ -1304,7 +1281,10 @@ class GPT2Model(Model): self.gguf_writer.add_tensor("output.weight", data) +@Model.register("PhiForCausalLM") class Phi2Model(Model): + model_arch = gguf.MODEL_ARCH.PHI2 + def set_gguf_parameters(self): block_count = self.find_hparam(["num_hidden_layers", "n_layer"]) @@ -1326,7 +1306,10 @@ class Phi2Model(Model): self.gguf_writer.add_add_bos_token(False) +@Model.register("PlamoForCausalLM") class PlamoModel(Model): + model_arch = gguf.MODEL_ARCH.PLAMO + def set_vocab(self): self._set_vocab_sentencepiece() @@ -1405,7 +1388,10 @@ class PlamoModel(Model): self.gguf_writer.add_tensor(new_name, data) +@Model.register("CodeShellForCausalLM") class CodeShellModel(Model): + model_arch = gguf.MODEL_ARCH.CODESHELL + def set_gguf_parameters(self): block_count = self.hparams["n_layer"] @@ -1470,7 +1456,10 @@ class CodeShellModel(Model): print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}") +@Model.register("InternLM2ForCausalLM") class InternLM2Model(Model): + model_arch = gguf.MODEL_ARCH.INTERNLM2 + def set_vocab(self): # (TODO): Is there a better way? # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character @@ -1642,7 +1631,10 @@ in chat mode so that the conversation can end normally.") self.post_write_tensors(tensor_map, name, data_torch) +@Model.register("BertModel") class BertModel(Model): + model_arch = gguf.MODEL_ARCH.BERT + def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.vocab_size = None @@ -1652,16 +1644,17 @@ class BertModel(Model): self.gguf_writer.add_causal_attention(False) # get pooling path - with open(self.dir_model / "modules.json", encoding="utf-8") as f: - modules = json.load(f) pooling_path = None - for mod in modules: - if mod["type"] == "sentence_transformers.models.Pooling": - pooling_path = mod["path"] - break + module_path = self.dir_model / "modules.json" + if module_path.is_file(): + with open(module_path, encoding="utf-8") as f: + modules = json.load(f) + for mod in modules: + if mod["type"] == "sentence_transformers.models.Pooling": + pooling_path = mod["path"] + break # get pooling type - pooling_type = gguf.PoolingType.NONE if pooling_path is not None: with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f: pooling = json.load(f) @@ -1671,8 +1664,7 @@ class BertModel(Model): pooling_type = gguf.PoolingType.CLS else: raise NotImplementedError("Only MEAN and CLS pooling types supported") - - self.gguf_writer.add_pooling_type(pooling_type.value) + self.gguf_writer.add_pooling_type(pooling_type) def set_vocab(self): path = self.dir_model @@ -1748,7 +1740,10 @@ class BertModel(Model): self.gguf_writer.add_tensor(new_name, data) +@Model.register("NomicBertModel") class NomicBertModel(BertModel): + model_arch = gguf.MODEL_ARCH.NOMIC_BERT + def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) @@ -1785,6 +1780,70 @@ class NomicBertModel(BertModel): yield name, data +@Model.register("GemmaForCausalLM") +class GemmaModel(Model): + model_arch = gguf.MODEL_ARCH.GEMMA + + def set_vocab(self): + self._set_vocab_sentencepiece() + + def set_gguf_parameters(self): + hparams = self.hparams + block_count = hparams["num_hidden_layers"] + + self.gguf_writer.add_name(self.dir_model.name) + self.gguf_writer.add_context_length(hparams["max_position_embeddings"]) + self.gguf_writer.add_embedding_length(hparams["hidden_size"]) + self.gguf_writer.add_block_count(block_count) + self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"]) + self.gguf_writer.add_head_count(hparams["num_attention_heads"]) + self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"]) + self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) + self.gguf_writer.add_key_length(hparams["head_dim"]) + self.gguf_writer.add_value_length(hparams["head_dim"]) + self.gguf_writer.add_file_type(self.ftype) + + def write_tensors(self): + block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer"))) + tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) + + for name, data_torch in self.get_tensors(): + old_dtype = data_torch.dtype + + # convert any unsupported data types to float32 + if data_torch.dtype not in (torch.float16, torch.float32): + data_torch = data_torch.to(torch.float32) + + # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89 + if name.endswith("norm.weight"): + data_torch = data_torch + 1 + data = data_torch.squeeze().numpy() + + # map tensor names + new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) + if new_name is None: + print(f"Can not map tensor {name!r}") + sys.exit() + + n_dims = len(data.shape) + data_dtype = data.dtype + + data = data.astype(np.float32) + + # if f16 desired, convert any float32 2-dim weight tensors to float16 + if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: + data = data.astype(np.float16) + + print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") + + self.gguf_writer.add_tensor(new_name, data) + + +@Model.register("Starcoder2ForCausalLM") +class StarCoder2Model(Model): + model_arch = gguf.MODEL_ARCH.STARCODER2 + + ###### CONVERSION LOGIC ###### diff --git a/convert-llama-ggml-to-gguf.py b/convert-llama-ggml-to-gguf.py index b33108062..cd9644fcb 100755 --- a/convert-llama-ggml-to-gguf.py +++ b/convert-llama-ggml-to-gguf.py @@ -373,7 +373,7 @@ def handle_metadata(cfg, hp): raise ValueError('Unable to load metadata') vocab_path = Path(cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir) vocab_factory = convert.VocabFactory(vocab_path) - vocab, special_vocab = vocab_factory.load_vocab(cfg.vocabtype, cfg.model_metadata_dir) + vocab, special_vocab = vocab_factory.load_vocab(cfg.vocabtype.split(","), cfg.model_metadata_dir) convert.check_vocab_size(params, vocab) return params, vocab, special_vocab @@ -398,8 +398,8 @@ def handle_args(): help ='Load HuggingFace/.pth vocab and metadata from the specified directory') parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir") - parser.add_argument("--vocabtype", choices=["spm", "bpe"], default="spm", - help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm)") + parser.add_argument("--vocabtype", default="spm,hfft", + help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm,hfft)") return parser.parse_args() diff --git a/convert.py b/convert.py index 63a0a5d78..6e3a0319b 100755 --- a/convert.py +++ b/convert.py @@ -1282,35 +1282,32 @@ def load_some_model(path: Path) -> ModelPlus: class VocabFactory: + _FILES = {"spm": "tokenizer.model", "bpe": "vocab.json", "hfft": "tokenizer.json"} + def __init__(self, path: Path): self.path = path - self.files: dict[str, Path | None] = { - "tokenizer.model": None, - "vocab.json": None, - "tokenizer.json": None, - } - self._detect_files() + self.file_paths = self._detect_files() + print(f"Found vocab files: {self.file_paths}") - def _detect_files(self): - for file in self.files.keys(): - file_path = self.path / file - parent_file_path = self.path.parent / file - if file_path.exists(): - self.files[file] = file_path - elif parent_file_path.exists(): - self.files[file] = parent_file_path - print(f"Found vocab files: {self.files}") + def _detect_files(self) -> dict[str, Path | None]: + def locate(file: str) -> Path | None: + if (path := self.path / file).exists(): + return path + if (path := self.path.parent / file).exists(): + return path + return None - def _select_file(self, vocabtype: str | None) -> Path: - if vocabtype in ["spm", "bpe"]: - for file_key in self.files.keys(): - if (file := self.files[file_key]) is not None: - return file - raise FileNotFoundError(f"{vocabtype} vocab not found.") - if vocabtype == "hfft": - # For Hugging Face Fast Tokenizer, return the directory path instead of a specific file - return self.path - raise ValueError(f"Unsupported vocabulary type {vocabtype}") + return {vt: locate(f) for vt, f in self._FILES.items()} + + def _select_file(self, vocab_types: list[str]) -> tuple[str, Path]: + for vtype in vocab_types: + try: + path = self.file_paths[vtype] + except KeyError: + raise ValueError(f"Unsupported vocabulary type {vtype}") from None + if path is not None: + return vtype, path + raise FileNotFoundError(f"Could not find any of {[self._FILES[vt] for vt in vocab_types]}") def _create_special_vocab(self, vocab: Vocab, vocabtype: str, model_parent_path: Path) -> gguf.SpecialVocab: load_merges = vocabtype == "bpe" @@ -1322,30 +1319,30 @@ class VocabFactory: n_vocab=n_vocab, ) - def load_vocab(self, vocabtype: str, model_parent_path: Path) -> tuple[Vocab, gguf.SpecialVocab]: - path = self._select_file(vocabtype) - print(f"Loading vocab file '{path}', type '{vocabtype}'") + def load_vocab(self, vocab_types: list[str], model_parent_path: Path) -> tuple[Vocab, gguf.SpecialVocab]: + vocab_type, path = self._select_file(vocab_types) + print(f"Loading vocab file {path!r}, type {vocab_type!r}") added_tokens_path = path.parent / "added_tokens.json" vocab: Vocab - if vocabtype == "bpe": + if vocab_type == "bpe": vocab = BpeVocab( path, added_tokens_path if added_tokens_path.exists() else None ) - elif vocabtype == "spm": + elif vocab_type == "spm": vocab = SentencePieceVocab( path, added_tokens_path if added_tokens_path.exists() else None ) - elif vocabtype == "hfft": + elif vocab_type == "hfft": vocab = HfVocab( - path, added_tokens_path if added_tokens_path.exists() else None + path.parent, added_tokens_path if added_tokens_path.exists() else None ) else: - raise ValueError(f"Unsupported vocabulary type {vocabtype}") + raise ValueError(vocab_type) # FIXME: Respect --vocab-dir? special_vocab = self._create_special_vocab( vocab, - vocabtype, + vocab_type, model_parent_path, ) return vocab, special_vocab @@ -1379,15 +1376,14 @@ def main(args_in: list[str] | None = None) -> None: if np.uint32(1) == np.uint32(1).newbyteorder("<"): # We currently only support Q8_0 output on little endian systems. output_choices.append("q8_0") - vocab_types = ["spm", "bpe", "hfft"] - parser = argparse.ArgumentParser(description="Convert a LLaMa model to a GGML compatible file") + parser = argparse.ArgumentParser(description="Convert a LLaMA model to a GGML compatible file") parser.add_argument("--awq-path", type=Path, help="Path to scale awq cache file", default=None) parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model") parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file") parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab") parser.add_argument("--outtype", choices=output_choices, help="output format - note: q8_0 may be very slow (default: f16 or f32 based on input)") parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file") - parser.add_argument("--vocab-type", choices=vocab_types, help="The vocabulary format used to define the tokenizer model (default: spm)", default="spm") + parser.add_argument("--vocab-type", help="vocab types to try in order, choose from 'spm', 'bpe', 'hfft' (default: spm,hfft)", default="spm,hfft") parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input") parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)") parser.add_argument("--ctx", type=int, help="model training context (default: based on input)") @@ -1448,7 +1444,7 @@ def main(args_in: list[str] | None = None) -> None: model_parent_path = model_plus.paths[0].parent vocab_path = Path(args.vocab_dir or args.model or model_parent_path) vocab_factory = VocabFactory(vocab_path) - vocab, special_vocab = vocab_factory.load_vocab(args.vocab_type, model_parent_path) + vocab, special_vocab = vocab_factory.load_vocab(args.vocab_type.split(","), model_parent_path) if args.vocab_only: if not args.outfile: diff --git a/examples/baby-llama/baby-llama.cpp b/examples/baby-llama/baby-llama.cpp index 65bb238a0..bf0125e75 100644 --- a/examples/baby-llama/baby-llama.cpp +++ b/examples/baby-llama/baby-llama.cpp @@ -1547,7 +1547,7 @@ int main(int argc, char ** argv) { float error_before_opt = ggml_get_f32_1d(e, 0); - struct ggml_opt_params opt_params_lbfgs = ggml_opt_default_params(GGML_OPT_LBFGS); + struct ggml_opt_params opt_params_lbfgs = ggml_opt_default_params(GGML_OPT_TYPE_LBFGS); opt_params_lbfgs.print_forward_graph = false; opt_params_lbfgs.print_backward_graph = false; opt_params_lbfgs.lbfgs.n_iter = 16; diff --git a/examples/batched-bench/batched-bench.cpp b/examples/batched-bench/batched-bench.cpp index f50be2ab6..6efafe2d2 100644 --- a/examples/batched-bench/batched-bench.cpp +++ b/examples/batched-bench/batched-bench.cpp @@ -32,16 +32,15 @@ int main(int argc, char ** argv) { gpt_params params; if (argc == 1 || argv[1][0] == '-') { - printf("usage: %s MODEL_PATH [N_KV_MAX] [IS_PP_SHARED] [NGL] [MMQ] \n" , argv[0]); + printf("usage: %s MODEL_PATH [N_KV_MAX] [IS_PP_SHARED] [NGL] \n" , argv[0]); printf(" , and PL are comma-separated lists of numbers without spaces\n\n"); - printf(" example: %s ggml-model-f16.gguf 2048 0 999 0 128,256,512 128,256 1,2,4,8,16,32\n\n", argv[0]); + printf(" example: %s ggml-model-f16.gguf 2048 0 999 128,256,512 128,256 1,2,4,8,16,32\n\n", argv[0]); return 1 ; } int n_kv_max = 2048; int is_pp_shared = 0; int n_gpu_layers = 0; - int mmq = 0; std::vector n_pp = { 128, 256, 512, 1024, 2048, 3584, 7680, }; std::vector n_tg = { 128, 256, }; @@ -65,19 +64,15 @@ int main(int argc, char ** argv) { } if (argc >= 6) { - mmq = std::atoi(argv[5]); + n_pp = parse_list(argv[5]); } if (argc >= 7) { - n_pp = parse_list(argv[6]); + n_tg = parse_list(argv[6]); } if (argc >= 8) { - n_tg = parse_list(argv[7]); - } - - if (argc >= 9) { - n_pl = parse_list(argv[8]); + n_pl = parse_list(argv[7]); } // init LLM @@ -106,7 +101,6 @@ int main(int argc, char ** argv) { ctx_params.seed = 1234; ctx_params.n_ctx = n_kv_max; ctx_params.n_batch = 2048; - ctx_params.mul_mat_q = mmq; ctx_params.n_threads = params.n_threads; ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch; @@ -159,7 +153,7 @@ int main(int argc, char ** argv) { } LOG_TEE("\n"); - LOG_TEE("%s: n_kv_max = %d, is_pp_shared = %d, n_gpu_layers = %d, mmq = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, is_pp_shared, n_gpu_layers, mmq, ctx_params.n_threads, ctx_params.n_threads_batch); + LOG_TEE("%s: n_kv_max = %d, is_pp_shared = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, is_pp_shared, n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch); LOG_TEE("\n"); LOG_TEE("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "B", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s", "T s", "S t/s"); diff --git a/examples/finetune/finetune.cpp b/examples/finetune/finetune.cpp index 98bf5a07a..3da5317b3 100644 --- a/examples/finetune/finetune.cpp +++ b/examples/finetune/finetune.cpp @@ -1531,7 +1531,7 @@ int main(int argc, char ** argv) { lora.hparams.n_rank_output = n_rank_output; // set opt params from command line - opt->params = ggml_opt_default_params(GGML_OPT_ADAM); + opt->params = ggml_opt_default_params(GGML_OPT_TYPE_ADAM); opt->params.print_forward_graph = false; opt->params.print_backward_graph = false; opt->params.graph_size = LLAMA_TRAIN_MAX_NODES; diff --git a/examples/infill/infill.cpp b/examples/infill/infill.cpp index 92c67b7cf..91c39c5ae 100644 --- a/examples/infill/infill.cpp +++ b/examples/infill/infill.cpp @@ -378,10 +378,10 @@ int main(int argc, char ** argv) { if (params.interactive) { const char *control_message; if (params.multiline_input) { - control_message = " - To return control to LLaMa, end your input with '\\'.\n" + control_message = " - To return control to LLaMA, end your input with '\\'.\n" " - To return control without starting a new line, end your input with '/'.\n"; } else { - control_message = " - Press Return to return control to LLaMa.\n" + control_message = " - Press Return to return control to LLaMA.\n" " - To return control without starting a new line, end your input with '/'.\n" " - If you want to submit another line, end your input with '\\'.\n"; } @@ -447,8 +447,8 @@ int main(int argc, char ** argv) { LOG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n", n_past, n_left, n_ctx, params.n_keep, n_discard); - llama_kv_cache_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1); - llama_kv_cache_seq_shift(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard); + llama_kv_cache_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1); + llama_kv_cache_seq_add(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard); n_past -= n_discard; diff --git a/examples/json-schema-to-grammar.py b/examples/json-schema-to-grammar.py index 2a4cb65bc..6a977f031 100755 --- a/examples/json-schema-to-grammar.py +++ b/examples/json-schema-to-grammar.py @@ -87,7 +87,21 @@ class SchemaConverter: elif schema_type == 'array' and 'items' in schema: # TODO `prefixItems` keyword item_rule_name = self.visit(schema['items'], f'{name}{"-" if name else ""}item') - rule = f'"[" space ({item_rule_name} ("," space {item_rule_name})*)? "]" space' + list_item_operator = f'("," space {item_rule_name})' + successive_items = "" + min_items = schema.get("minItems", 0) + if min_items > 0: + first_item = f"({item_rule_name})" + successive_items = list_item_operator * (min_items - 1) + min_items -= 1 + else: + first_item = f"({item_rule_name})?" + max_items = schema.get("maxItems") + if max_items is not None and max_items > min_items: + successive_items += (list_item_operator + "?") * (max_items - min_items - 1) + else: + successive_items += list_item_operator + "*" + rule = f'"[" space {first_item} {successive_items} "]" space' return self._add_rule(rule_name, rule) else: diff --git a/examples/llama-bench/README.md b/examples/llama-bench/README.md index 374e40a7d..10f37b441 100644 --- a/examples/llama-bench/README.md +++ b/examples/llama-bench/README.md @@ -35,7 +35,6 @@ options: -mg, --main-gpu (default: 0) -nkvo, --no-kv-offload <0|1> (default: 0) -mmp, --mmap <0|1> (default: 1) - -mmq, --mul-mat-q <0|1> (default: 1) -ts, --tensor_split (default: 0) -r, --repetitions (default: 5) -o, --output (default: md) diff --git a/examples/llama-bench/llama-bench.cpp b/examples/llama-bench/llama-bench.cpp index 11410f8ae..aa79d002a 100644 --- a/examples/llama-bench/llama-bench.cpp +++ b/examples/llama-bench/llama-bench.cpp @@ -123,20 +123,15 @@ static std::string get_gpu_info() { } #endif #ifdef GGML_USE_SYCL - int device_list[GGML_SYCL_MAX_DEVICES]; - ggml_sycl_get_gpu_list(device_list, GGML_SYCL_MAX_DEVICES); - - for (int i = 0; i < GGML_SYCL_MAX_DEVICES; i++) { - if (device_list[i] >0 ){ - char buf[128]; - ggml_sycl_get_device_description(i, buf, sizeof(buf)); - id += buf; + int count = ggml_backend_sycl_get_device_count(); + for (int i = 0; i < count; i++) { + char buf[128]; + ggml_sycl_get_device_description(i, buf, sizeof(buf)); + id += buf; + if (i < count - 1) { id += "/"; } } - if (id.length() >2 ) { - id.pop_back(); - } #endif // TODO: other backends return id; @@ -157,9 +152,9 @@ static const char * output_format_str(output_formats format) { static const char * split_mode_str(llama_split_mode mode) { switch (mode) { - case LLAMA_SPLIT_NONE: return "none"; - case LLAMA_SPLIT_LAYER: return "layer"; - case LLAMA_SPLIT_ROW: return "row"; + case LLAMA_SPLIT_MODE_NONE: return "none"; + case LLAMA_SPLIT_MODE_LAYER: return "layer"; + case LLAMA_SPLIT_MODE_ROW: return "row"; default: GGML_ASSERT(!"invalid split mode"); } } @@ -176,7 +171,6 @@ struct cmd_params { std::vector split_mode; std::vector main_gpu; std::vector no_kv_offload; - std::vector mul_mat_q; std::vector> tensor_split; std::vector use_mmap; int reps; @@ -193,10 +187,9 @@ static const cmd_params cmd_params_defaults = { /* type_v */ {GGML_TYPE_F16}, /* n_threads */ {get_num_physical_cores()}, /* n_gpu_layers */ {99}, - /* split_mode */ {LLAMA_SPLIT_LAYER}, + /* split_mode */ {LLAMA_SPLIT_MODE_LAYER}, /* main_gpu */ {0}, /* no_kv_offload */ {false}, - /* mul_mat_q */ {true}, /* tensor_split */ {std::vector(llama_max_devices(), 0.0f)}, /* use_mmap */ {true}, /* reps */ 5, @@ -221,7 +214,6 @@ static void print_usage(int /* argc */, char ** argv) { printf(" -mg, --main-gpu (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str()); printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str()); printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str()); - printf(" -mmq, --mul-mat-q <0|1> (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str()); printf(" -ts, --tensor_split (default: 0)\n"); printf(" -r, --repetitions (default: %d)\n", cmd_params_defaults.reps); printf(" -o, --output (default: %s)\n", output_format_str(cmd_params_defaults.output_format)); @@ -358,11 +350,11 @@ static cmd_params parse_cmd_params(int argc, char ** argv) { for (const auto & m : p) { llama_split_mode mode; if (m == "none") { - mode = LLAMA_SPLIT_NONE; + mode = LLAMA_SPLIT_MODE_NONE; } else if (m == "layer") { - mode = LLAMA_SPLIT_LAYER; + mode = LLAMA_SPLIT_MODE_LAYER; } else if (m == "row") { - mode = LLAMA_SPLIT_ROW; + mode = LLAMA_SPLIT_MODE_ROW; } else { invalid_param = true; break; @@ -383,13 +375,6 @@ static cmd_params parse_cmd_params(int argc, char ** argv) { } auto p = split(argv[i], split_delim); params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end()); - } else if (arg == "-mmq" || arg == "--mul-mat-q") { - if (++i >= argc) { - invalid_param = true; - break; - } - auto p = split(argv[i], split_delim); - params.mul_mat_q.insert(params.mul_mat_q.end(), p.begin(), p.end()); } else if (arg == "-mmp" || arg == "--mmap") { if (++i >= argc) { invalid_param = true; @@ -466,7 +451,6 @@ static cmd_params parse_cmd_params(int argc, char ** argv) { if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; } if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; } if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; } - if (params.mul_mat_q.empty()) { params.mul_mat_q = cmd_params_defaults.mul_mat_q; } if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; } if (params.use_mmap.empty()) { params.use_mmap = cmd_params_defaults.use_mmap; } if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; } @@ -486,7 +470,6 @@ struct cmd_params_instance { llama_split_mode split_mode; int main_gpu; bool no_kv_offload; - bool mul_mat_q; std::vector tensor_split; bool use_mmap; @@ -518,7 +501,6 @@ struct cmd_params_instance { cparams.n_batch = n_batch; cparams.type_k = type_k; cparams.type_v = type_v; - cparams.mul_mat_q = mul_mat_q; cparams.offload_kqv = !no_kv_offload; return cparams; @@ -538,7 +520,6 @@ static std::vector get_cmd_params_instances(const cmd_param for (const auto & nb : params.n_batch) for (const auto & tk : params.type_k) for (const auto & tv : params.type_v) - for (const auto & mmq : params.mul_mat_q) for (const auto & nkvo : params.no_kv_offload) for (const auto & nt : params.n_threads) { for (const auto & n_prompt : params.n_prompt) { @@ -557,7 +538,6 @@ static std::vector get_cmd_params_instances(const cmd_param /* .split_mode = */ sm, /* .main_gpu = */ mg, /* .no_kv_offload= */ nkvo, - /* .mul_mat_q = */ mmq, /* .tensor_split = */ ts, /* .use_mmap = */ mmp, }; @@ -580,7 +560,6 @@ static std::vector get_cmd_params_instances(const cmd_param /* .split_mode = */ sm, /* .main_gpu = */ mg, /* .no_kv_offload= */ nkvo, - /* .mul_mat_q = */ mmq, /* .tensor_split = */ ts, /* .use_mmap = */ mmp, }; @@ -616,7 +595,6 @@ struct test { llama_split_mode split_mode; int main_gpu; bool no_kv_offload; - bool mul_mat_q; std::vector tensor_split; bool use_mmap; int n_prompt; @@ -639,7 +617,6 @@ struct test { split_mode = inst.split_mode; main_gpu = inst.main_gpu; no_kv_offload = inst.no_kv_offload; - mul_mat_q = inst.mul_mat_q; tensor_split = inst.tensor_split; use_mmap = inst.use_mmap; n_prompt = inst.n_prompt; @@ -713,7 +690,7 @@ struct test { "n_batch", "n_threads", "type_k", "type_v", "n_gpu_layers", "split_mode", "main_gpu", "no_kv_offload", - "mul_mat_q", "tensor_split", "use_mmap", + "tensor_split", "use_mmap", "n_prompt", "n_gen", "test_time", "avg_ns", "stddev_ns", "avg_ts", "stddev_ts" @@ -733,7 +710,7 @@ struct test { } if (field == "cuda" || field == "opencl" || field == "vulkan" || field == "kompute" || field == "metal" || field == "gpu_blas" || field == "blas" || field == "sycl" ||field == "f16_kv" || field == "no_kv_offload" || - field == "mul_mat_q" || field == "use_mmap") { + field == "use_mmap") { return BOOL; } if (field == "avg_ts" || field == "stddev_ts") { @@ -767,7 +744,7 @@ struct test { std::to_string(n_batch), std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v), std::to_string(n_gpu_layers), split_mode_str(split_mode), std::to_string(main_gpu), std::to_string(no_kv_offload), - std::to_string(mul_mat_q), tensor_split_str, std::to_string(use_mmap), + tensor_split_str, std::to_string(use_mmap), std::to_string(n_prompt), std::to_string(n_gen), test_time, std::to_string(avg_ns()), std::to_string(stdev_ns()), std::to_string(avg_ts()), std::to_string(stdev_ts()) @@ -931,9 +908,6 @@ struct markdown_printer : public printer { if (field == "n_threads") { return "threads"; } - if (field == "mul_mat_q") { - return "mmq"; - } if (field == "no_kv_offload") { return "nkvo"; } @@ -974,9 +948,6 @@ struct markdown_printer : public printer { if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) { fields.emplace_back("split_mode"); } - if (params.mul_mat_q.size() > 1 || params.mul_mat_q != cmd_params_defaults.mul_mat_q) { - fields.emplace_back("mul_mat_q"); - } if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) { fields.emplace_back("no_kv_offload"); } diff --git a/examples/llama.android/app/build.gradle.kts b/examples/llama.android/app/build.gradle.kts index aadbe22c9..d42140efe 100644 --- a/examples/llama.android/app/build.gradle.kts +++ b/examples/llama.android/app/build.gradle.kts @@ -21,12 +21,8 @@ android { useSupportLibrary = true } ndk { - // Workaround for https://github.com/llvm/llvm-project/issues/65820 - // affecting armeabi-v7a. Skip armeabi-v7a when invoked with - // -Pskip-armeabi-v7a (e.g., ./gradlew build -Pskip-armeabi-v7a). - if (project.hasProperty("skip-armeabi-v7a")) { - abiFilters += listOf("arm64-v8a", "x86_64", "x86") - } + // Add NDK properties if wanted, e.g. + // abiFilters += listOf("arm64-v8a") } externalNativeBuild { cmake { diff --git a/examples/llava/README.md b/examples/llava/README.md index e42db6e5a..35e6d9e5d 100644 --- a/examples/llava/README.md +++ b/examples/llava/README.md @@ -59,14 +59,39 @@ python ./convert.py ../llava-v1.5-7b --skip-unknown Now both the LLaMA part and the image encoder is in the `llava-v1.5-7b` directory. ## LLaVA 1.6 gguf conversion - -1) Backup your pth/safetensor model files as llava-surgery modifies them -2) Use `python llava-surgery-v2.py -C -m /path/to/hf-model` which also supports llava-1.5 variants pytorch as well as safetensor models: +1) First clone a LLaVA 1.6 model: +```console +git clone https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b +``` +2) Use `llava-surgery-v2.py` which also supports llava-1.5 variants pytorch as well as safetensor models: +```console +python examples/llava/llava-surgery-v2.py -C -m ../llava-v1.6-vicuna-7b/ +``` - you will find a llava.projector and a llava.clip file in your model directory -3) Copy the llava.clip file into a subdirectory (like vit), rename it to pytorch_model.bin and add a fitting vit configuration to the directory (https://huggingface.co/cmp-nct/llava-1.6-gguf/blob/main/config_vit.json) and rename it to config.json. -4) Create the visual gguf model: `python ./examples/llava/convert-image-encoder-to-gguf.py -m ../path/to/vit --llava-projector ../path/to/llava.projector --output-dir ../path/to/output --clip-model-is-vision` +3) Copy the llava.clip file into a subdirectory (like vit), rename it to pytorch_model.bin and add a fitting vit configuration to the directory: +```console +mkdir vit +cp ../llava-v1.6-vicuna-7b/llava.clip vit/pytorch_model.bin +cp ../llava-v1.6-vicuna-7b/llava.projector vit/ +curl -s -q https://huggingface.co/cmp-nct/llava-1.6-gguf/raw/main/config_vit.json -o vit/config.json +``` + +4) Create the visual gguf model: +```console +python ./examples/llava/convert-image-encoder-to-gguf.py -m vit --llava-projector vit/llava.projector --output-dir vit --clip-model-is-vision +``` - This is similar to llava-1.5, the difference is that we tell the encoder that we are working with the pure vision model part of CLIP -5) Everything else as usual: convert.py the hf model, quantize as needed + +5) Then convert the model to gguf format: +```console +python ./convert.py ../llava-v1.6-vicuna-7b/ --skip-unknown +``` + +6) And finally we can run the llava-cli using the 1.6 model version: +```console +./llava-cli -m ../llava-v1.6-vicuna-7b/ggml-model-f16.gguf --mmproj vit/mmproj-model-f16.gguf --image some-image.jpg -c 4096 +``` + **note** llava-1.6 needs more context than llava-1.5, at least 3000 is needed (just run it at -c 4096) **note** llava-1.6 greatly benefits from batched prompt processing (defaults work) diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp index 98d512f67..ef9e4ba7a 100644 --- a/examples/llava/clip.cpp +++ b/examples/llava/clip.cpp @@ -616,9 +616,9 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 KQ = ggml_soft_max_inplace(ctx0, KQ); struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ); KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size); - KQV = ggml_cont(ctx0, ggml_permute(ctx0, KQV, 0, 2, 1, 3)); + KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3); - cur = ggml_cpy(ctx0, KQV, ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size)); + cur = ggml_cont_3d(ctx0, KQV, hidden_size, num_positions, batch_size); } // attention output diff --git a/examples/llava/llava-surgery-v2.py b/examples/llava/llava-surgery-v2.py index 5bc5bc513..eb56d6988 100644 --- a/examples/llava/llava-surgery-v2.py +++ b/examples/llava/llava-surgery-v2.py @@ -65,9 +65,7 @@ def clean_vision_tower_from_checkpoint(checkpoint_path): for name in clip_tensors: del checkpoint[name] - # Save the updated checkpoint checkpoint_path = checkpoint_path - save_model(checkpoint, checkpoint_path, file_type) return True return False @@ -152,16 +150,6 @@ for name in first_mm_tensors: if len(projector) > 0: save_model(projector, f"{args.model}/llava.projector", 'pytorch') -for name in mm_tensors: - del last_checkpoint[name] -for name in first_mm_tensors: - del first_checkpoint[name] - -if len(mm_tensors) > 0: - save_model(last_checkpoint, projector_checkpoint_path, file_type) -if len(first_mm_tensors) > 0: - save_model(first_checkpoint, newline_checkpoint_path, file_type) - print("Done!") print(f"Now you can convert {args.model} to a a regular LLaMA GGUF file.") print(f"Also, use {args.model}/llava.projector to prepare a llava-encoder.gguf file.") diff --git a/examples/llava/llava.cpp b/examples/llava/llava.cpp index 4cb65a07b..980128166 100644 --- a/examples/llava/llava.cpp +++ b/examples/llava/llava.cpp @@ -152,7 +152,7 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector ggml_tensor * newline_tmp = clip_get_newline_tensor(ctx_clip); model.newline = ggml_new_tensor_1d(model.ctx, GGML_TYPE_F32, newline_tmp->ne[0]); - if (newline_tmp->backend != GGML_BACKEND_CPU) { + if (newline_tmp->backend != GGML_BACKEND_TYPE_CPU) { if (newline_tmp->buffer == NULL) { printf("newline_tmp tensor buffer is NULL\n"); } @@ -311,7 +311,7 @@ bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx * return true; } -static bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) { +bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) { float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*6); // TODO: base on gridsize/llava model if (!image_embd) { fprintf(stderr, "Unable to allocate memory for image embeddings\n"); diff --git a/examples/llava/llava.h b/examples/llava/llava.h index 9e9466a5d..2d40f3f1d 100644 --- a/examples/llava/llava.h +++ b/examples/llava/llava.h @@ -31,6 +31,8 @@ struct llava_image_embed { /** sanity check for clip <-> llava embed size match */ LLAVA_API bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx * ctx_clip); +LLAVA_API bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out); + /** build an image embed from image file bytes */ LLAVA_API struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length); /** build an image embed from a path to an image filename */ diff --git a/examples/main/main.cpp b/examples/main/main.cpp index f5d2f4893..34e84d0d4 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -334,6 +334,8 @@ int main(int argc, char ** argv) { // number of tokens to keep when resetting context if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size() || params.instruct || params.chatml) { params.n_keep = (int)embd_inp.size(); + } else { + params.n_keep += add_bos; // always keep the BOS token } // prefix & suffix for instruct mode @@ -383,8 +385,8 @@ int main(int argc, char ** argv) { } } - if (params.n_keep > 0) { - LOG_TEE("%s: static prompt based on n_keep: '", __func__); + if (params.n_keep > add_bos) { + LOG_TEE("%s: static prompt based on n_keep: '", __func__); for (int i = 0; i < params.n_keep; i++) { LOG_TEE("%s", llama_token_to_piece(ctx, embd_inp[i]).c_str()); } @@ -540,14 +542,14 @@ int main(int argc, char ** argv) { break; } - const int n_left = n_past - params.n_keep - 1; + const int n_left = n_past - params.n_keep; const int n_discard = n_left/2; LOG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n", n_past, n_left, n_ctx, params.n_keep, n_discard); - llama_kv_cache_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1); - llama_kv_cache_seq_shift(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard); + llama_kv_cache_seq_rm (ctx, 0, params.n_keep , params.n_keep + n_discard); + llama_kv_cache_seq_add(ctx, 0, params.n_keep + n_discard, n_past, -n_discard); n_past -= n_discard; @@ -574,9 +576,9 @@ int main(int argc, char ** argv) { LOG("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n, (ga_i + ib*bd)/ga_n, (ga_i + ib*bd + ga_w)/ga_n); LOG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i + ib*bd + ga_w, n_past + ib*bd, dd, ga_i + ib*bd + ga_w + dd, n_past + ib*bd + dd); - llama_kv_cache_seq_shift(ctx, 0, ga_i, n_past, ib*bd); - llama_kv_cache_seq_div (ctx, 0, ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n); - llama_kv_cache_seq_shift(ctx, 0, ga_i + ib*bd + ga_w, n_past + ib*bd, dd); + llama_kv_cache_seq_add(ctx, 0, ga_i, n_past, ib*bd); + llama_kv_cache_seq_div(ctx, 0, ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n); + llama_kv_cache_seq_add(ctx, 0, ga_i + ib*bd + ga_w, n_past + ib*bd, dd); n_past -= bd; diff --git a/examples/passkey/passkey.cpp b/examples/passkey/passkey.cpp index e12a1cdf1..2cbc9e1fa 100644 --- a/examples/passkey/passkey.cpp +++ b/examples/passkey/passkey.cpp @@ -126,7 +126,7 @@ int main(int argc, char ** argv) { const int n_batch = ctx_params.n_batch; const int n_batch_grp = ctx_params.n_batch/n_grp; - LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_kv_req = %d, n_grp = %d, n_batch = %d\n", __func__, n_len, n_ctx, n_kv_req, n_grp, n_batch); + LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_kv_req = %d, n_grp = %d, n_batch = %d, n_junk = %d, i_pos = %d\n", __func__, n_len, n_ctx, n_kv_req, n_grp, n_batch, n_junk, i_pos); // print the prompt token-by-token @@ -146,10 +146,11 @@ int main(int argc, char ** argv) { const int ib = i/n_batch - 1; const int bd = n_batch_grp*(n_grp - 1); - llama_kv_cache_seq_shift(ctx, 0, n_past - n_batch, n_past, ib*bd); - llama_kv_cache_seq_div (ctx, 0, n_past - n_batch + ib*bd, n_past + ib*bd, n_grp); + llama_kv_cache_seq_add (ctx, 0, n_past - n_batch, n_past, ib*bd); + llama_kv_cache_seq_div (ctx, 0, n_past - n_batch + ib*bd, n_past + ib*bd, n_grp); + llama_kv_cache_update (ctx); - n_past -= bd; + n_past = llama_kv_cache_seq_pos_max(ctx, 0) + 1; } llama_batch_clear(batch); @@ -179,10 +180,12 @@ int main(int argc, char ** argv) { LOG_TEE("%s: shifting KV cache with %d\n", __func__, n_discard); - llama_kv_cache_seq_rm (ctx, 0, n_keep , n_keep + n_discard); - llama_kv_cache_seq_shift(ctx, 0, n_keep + n_discard, n_ctx, -n_discard); + llama_kv_cache_seq_rm (ctx, 0, n_keep , n_keep + n_discard); + llama_kv_cache_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard); + //llama_kv_cache_defrag (ctx); + llama_kv_cache_update (ctx); - n_past -= n_discard; + n_past = llama_kv_cache_seq_pos_max(ctx, 0) + 1; llama_batch_clear(batch); @@ -208,10 +211,12 @@ int main(int argc, char ** argv) { if (n_discard > 0) { LOG_TEE("%s: shifting KV cache with %d to free space for the answer\n", __func__, n_discard); - llama_kv_cache_seq_rm (ctx, 0, n_keep , n_keep + n_discard); - llama_kv_cache_seq_shift(ctx, 0, n_keep + n_discard, n_ctx, -n_discard); + llama_kv_cache_seq_rm (ctx, 0, n_keep , n_keep + n_discard); + llama_kv_cache_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard); + //llama_kv_cache_defrag (ctx); + llama_kv_cache_update (ctx); - n_past -= n_discard; + n_past = llama_kv_cache_seq_pos_max(ctx, 0) + 1; } } diff --git a/examples/quantize/quantize.cpp b/examples/quantize/quantize.cpp index ea7ba50c9..7662ec80c 100644 --- a/examples/quantize/quantize.cpp +++ b/examples/quantize/quantize.cpp @@ -23,15 +23,21 @@ static const std::vector QUANT_OPTIONS = { { "Q5_1", LLAMA_FTYPE_MOSTLY_Q5_1, " 4.70G, +0.0349 ppl @ LLaMA-v1-7B", }, { "IQ2_XXS",LLAMA_FTYPE_MOSTLY_IQ2_XXS," 2.06 bpw quantization", }, { "IQ2_XS", LLAMA_FTYPE_MOSTLY_IQ2_XS, " 2.31 bpw quantization", }, + { "IQ2_S", LLAMA_FTYPE_MOSTLY_IQ2_S, " 2.5 bpw quantization", }, + { "IQ2_M", LLAMA_FTYPE_MOSTLY_IQ2_M, " 2.7 bpw quantization", }, { "IQ1_S", LLAMA_FTYPE_MOSTLY_IQ1_S, " 1.56 bpw quantization", }, { "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.63G, +0.6717 ppl @ LLaMA-v1-7B", }, { "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.16G, +9.0634 ppl @ LLaMA-v1-7B", }, { "IQ3_XXS",LLAMA_FTYPE_MOSTLY_IQ3_XXS," 3.06 bpw quantization", }, + { "IQ3_S", LLAMA_FTYPE_MOSTLY_IQ3_S, " 3.44 bpw quantization", }, + { "IQ3_M", LLAMA_FTYPE_MOSTLY_IQ3_M, " 3.66 bpw quantization mix", }, { "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" }, - { "Q3_K_XS",LLAMA_FTYPE_MOSTLY_Q3_K_XS,"3-bit extra small quantization" , }, + { "IQ3_XS", LLAMA_FTYPE_MOSTLY_IQ3_XS, " 3.3 bpw quantization" , }, { "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 2.75G, +0.5551 ppl @ LLaMA-v1-7B", }, { "Q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M, " 3.07G, +0.2496 ppl @ LLaMA-v1-7B", }, { "Q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L, " 3.35G, +0.1764 ppl @ LLaMA-v1-7B", }, + { "IQ4_NL", LLAMA_FTYPE_MOSTLY_IQ4_NL, " 4.50 bpw non-linear quantization", }, + { "IQ4_XS", LLAMA_FTYPE_MOSTLY_IQ4_XS, " 4.25 bpw non-linear quantization", }, { "Q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M, "alias for Q4_K_M", }, { "Q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S, " 3.59G, +0.0992 ppl @ LLaMA-v1-7B", }, { "Q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M, " 3.80G, +0.0532 ppl @ LLaMA-v1-7B", }, @@ -289,6 +295,7 @@ int main(int argc, char ** argv) { } if ((params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || + params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || params.ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S || params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) && imatrix_data.empty()) { fprintf(stderr, "\n===============================================================================================\n"); fprintf(stderr, "Please do not use IQ1_S, IQ2_XXS, IQ2_XS or Q2_K_S quantization without an importance matrix\n"); diff --git a/examples/server/README.md b/examples/server/README.md index 809e2d37c..21da7a0a0 100644 --- a/examples/server/README.md +++ b/examples/server/README.md @@ -1,11 +1,24 @@ -# llama.cpp/example/server +# LLaMA.cpp HTTP Server -This example demonstrates a simple HTTP API server and a simple web front end to interact with llama.cpp. +Fast, lightweight, pure C/C++ HTTP server based on [httplib](https://github.com/yhirose/cpp-httplib), [nlohmann::json](https://github.com/nlohmann/json) and **llama.cpp**. -Command line options: +Set of LLM REST APIs and a simple web front end to interact with llama.cpp. + +**Features:** + * LLM inference of F16 and quantum models on GPU and CPU + * [OpenAI API](https://github.com/openai/openai-openapi) compatible chat completions and embeddings routes + * Parallel decoding with multi-user support + * Continuous batching + * Multimodal (wip) + * Monitoring endpoints + +The project is under active development, and we are [looking for feedback and contributors](https://github.com/ggerganov/llama.cpp/issues/4216). + +**Command line options:** - `--threads N`, `-t N`: Set the number of threads to use during generation. - `-tb N, --threads-batch N`: Set the number of threads to use during batch and prompt processing. If not specified, the number of threads will be set to the number of threads used for generation. +- `--threads-http N`: number of threads in the http server pool to process requests (default: `max(std::thread::hardware_concurrency() - 1, --parallel N + 2)`) - `-m FNAME`, `--model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.gguf`). - `-a ALIAS`, `--alias ALIAS`: Set an alias for the model. The alias will be returned in API responses. - `-c N`, `--ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference. The size may differ in other models, for example, baichuan models were build with a context of 4096. @@ -39,8 +52,12 @@ see https://github.com/ggerganov/llama.cpp/issues/1437 - `--mmproj MMPROJ_FILE`: Path to a multimodal projector file for LLaVA. - `--grp-attn-n`: Set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w` - `--grp-attn-w`: Set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n` -- `-n, --n-predict`: Set the maximum tokens to predict (default: -1) +- `-n N, --n-predict N`: Set the maximum tokens to predict (default: -1) - `--slots-endpoint-disable`: To disable slots state monitoring endpoint. Slots state may contain user data, prompts included. +- `--metrics`: enable prometheus `/metrics` compatible endpoint (default: disabled) +- `--chat-template JINJA_TEMPLATE`: Set custom jinja chat template. This parameter accepts a string, not a file name (default: template taken from model's metadata). We only support [some pre-defined templates](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template) +- `--log-disable`: Output logs to stdout only, default: enabled. +- `--log-format FORMAT`: Define the log output to FORMAT: json or text (default: json) ## Build @@ -97,6 +114,12 @@ curl --request POST \ --data '{"prompt": "Building a website can be done in 10 simple steps:","n_predict": 128}' ``` +## Advanced testing + +We implemented a [server test framework](./tests/README.md) using human-readable scenario. + +*Before submitting an issue, please try to reproduce it with this format.* + ## Node JS Test You need to have [Node.js](https://nodejs.org/en) installed. @@ -134,10 +157,13 @@ node index.js ## API Endpoints - **GET** `/health`: Returns the current state of the server: - - `{"status": "loading model"}` if the model is still being loaded. - - `{"status": "error"}` if the model failed to load. - - `{"status": "ok"}` if the model is successfully loaded and the server is ready for further requests mentioned below. - - `{"status": "no slot available", "slots_idle": 0, "slots_processing": 32}` if no slot are currently available + - 503 -> `{"status": "loading model"}` if the model is still being loaded. + - 500 -> `{"status": "error"}` if the model failed to load. + - 200 -> `{"status": "ok", "slots_idle": 1, "slots_processing": 2 }` if the model is successfully loaded and the server is ready for further requests mentioned below. + - 200 -> `{"status": "no slot available", "slots_idle": 0, "slots_processing": 32}` if no slot are currently available. + - 503 -> `{"status": "no slot available", "slots_idle": 0, "slots_processing": 32}` if the query parameter `fail_on_no_slot` is provided and no slot are currently available. + + If the query parameter `include_slots` is passed, `slots` field will contain internal slots data except if `--slots-endpoint-disable` is set. - **POST** `/completion`: Given a `prompt`, it returns the predicted completion. @@ -147,7 +173,7 @@ node index.js `temperature`: Adjust the randomness of the generated text (default: 0.8). - `dynatemp_range`: Dynamic temperature range (default: 0.0, 0.0 = disabled). + `dynatemp_range`: Dynamic temperature range. The final temperature will be in the range of `[temperature - dynatemp_range; temperature + dynatemp_range]` (default: 0.0, 0.0 = disabled). `dynatemp_exponent`: Dynamic temperature exponent (default: 1.0). @@ -205,7 +231,7 @@ node index.js `slot_id`: Assign the completion task to an specific slot. If is -1 the task will be assigned to a Idle slot (default: -1) - `cache_prompt`: Save the prompt and generation for avoid reprocess entire prompt if a part of this isn't change (default: false) + `cache_prompt`: Re-use previously cached prompt from the last request if possible. This may prevent re-caching the prompt from scratch. (default: false) `system_prompt`: Change the system prompt (initial prompt of all slots), this is useful for chat applications. [See more](#change-system-prompt-on-runtime) @@ -238,7 +264,7 @@ Notice that each `probs` is an array of length `n_probs`. - `content`: Completion result as a string (excluding `stopping_word` if any). In case of streaming mode, will contain the next token as a string. - `stop`: Boolean for use with `stream` to check whether the generation has stopped (Note: This is not related to stopping words array `stop` from input options) -- `generation_settings`: The provided options above excluding `prompt` but including `n_ctx`, `model` +- `generation_settings`: The provided options above excluding `prompt` but including `n_ctx`, `model`. These options may differ from the original ones in some way (e.g. bad values filtered out, strings converted to tokens, etc.). - `model`: The path to the model loaded with `-m` - `prompt`: The provided `prompt` - `stopped_eos`: Indicating whether the completion has stopped because it encountered the EOS token @@ -300,7 +326,7 @@ Notice that each `probs` is an array of length `n_probs`. - `default_generation_settings` - the default generation settings for the `/completion` endpoint, has the same fields as the `generation_settings` response object from the `/completion` endpoint. - `total_slots` - the total number of slots for process requests (defined by `--parallel` option) -- **POST** `/v1/chat/completions`: OpenAI-compatible Chat Completions API. Given a ChatML-formatted json description in `messages`, it returns the predicted completion. Both synchronous and streaming mode are supported, so scripted and interactive applications work fine. While no strong claims of compatibility with OpenAI API spec is being made, in our experience it suffices to support many apps. Only ChatML-tuned models, such as Dolphin, OpenOrca, OpenHermes, OpenChat-3.5, etc can be used with this endpoint. Compared to `api_like_OAI.py` this API implementation does not require a wrapper to be served. +- **POST** `/v1/chat/completions`: OpenAI-compatible Chat Completions API. Given a ChatML-formatted json description in `messages`, it returns the predicted completion. Both synchronous and streaming mode are supported, so scripted and interactive applications work fine. While no strong claims of compatibility with OpenAI API spec is being made, in our experience it suffices to support many apps. Only ChatML-tuned models, such as Dolphin, OpenOrca, OpenHermes, OpenChat-3.5, etc can be used with this endpoint. *Options:* @@ -447,6 +473,18 @@ Notice that each `probs` is an array of length `n_probs`. ] ``` +- **GET** `/metrics`: [Prometheus](https://prometheus.io/) compatible metrics exporter endpoint if `--metrics` is enabled: + +Available metrics: +- `llamacpp:prompt_tokens_total`: Number of prompt tokens processed. +- `llamacpp:tokens_predicted_total`: Number of generation tokens processed. +- `llamacpp:prompt_tokens_seconds`: Average prompt throughput in tokens/s. +- `llamacpp:predicted_tokens_seconds`: Average generation throughput in tokens/s. +- `llamacpp:kv_cache_usage_ratio`: KV-cache usage. 1 means 100 percent usage. +- `llamacpp:kv_cache_tokens`: KV-cache tokens. +- `llamacpp:requests_processing`: Number of request processing. +- `llamacpp:requests_deferred`: Number of request deferred. + ## More examples ### Change system prompt on runtime @@ -490,20 +528,7 @@ bash chat.sh ### API like OAI -API example using Python Flask: [api_like_OAI.py](api_like_OAI.py) -This example must be used with server.cpp - -```sh -python api_like_OAI.py -``` - -After running the API server, you can use it in Python by setting the API base URL. - -```python -openai.api_base = "http://:port" -``` - -Then you can utilize llama.cpp as an OpenAI's **chat.completion** or **text_completion** API +The HTTP server supports OAI-like API ### Extending or building alternative Web Front End diff --git a/examples/server/api_like_OAI.py b/examples/server/api_like_OAI.py deleted file mode 100755 index 607fe49d3..000000000 --- a/examples/server/api_like_OAI.py +++ /dev/null @@ -1,228 +0,0 @@ -#!/usr/bin/env python3 -import argparse -from flask import Flask, jsonify, request, Response -import urllib.parse -import requests -import time -import json - - -app = Flask(__name__) -slot_id = -1 - -parser = argparse.ArgumentParser(description="An example of using server.cpp with a similar API to OAI. It must be used together with server.cpp.") -parser.add_argument("--chat-prompt", type=str, help="the top prompt in chat completions(default: 'A chat between a curious user and an artificial intelligence assistant. The assistant follows the given rules no matter what.')", default='A chat between a curious user and an artificial intelligence assistant. The assistant follows the given rules no matter what.') -parser.add_argument("--user-name", type=str, help="USER name in chat completions(default: 'USER: ')", default="USER: ") -parser.add_argument("--ai-name", type=str, help="ASSISTANT name in chat completions(default: 'ASSISTANT: ')", default="ASSISTANT: ") -parser.add_argument("--system-name", type=str, help="SYSTEM name in chat completions(default: 'ASSISTANT's RULE: ')", default="ASSISTANT's RULE: ") -parser.add_argument("--stop", type=str, help="the end of response in chat completions(default: '')", default="") -parser.add_argument("--llama-api", type=str, help="Set the address of server.cpp in llama.cpp(default: http://127.0.0.1:8080)", default='http://127.0.0.1:8080') -parser.add_argument("--api-key", type=str, help="Set the api key to allow only few user(default: NULL)", default="") -parser.add_argument("--host", type=str, help="Set the ip address to listen.(default: 127.0.0.1)", default='127.0.0.1') -parser.add_argument("--port", type=int, help="Set the port to listen.(default: 8081)", default=8081) - -args = parser.parse_args() - -def is_present(json, key): - try: - buf = json[key] - except KeyError: - return False - if json[key] == None: - return False - return True - -#convert chat to prompt -def convert_chat(messages): - - system_n = args.system_name - user_n = args.user_name - ai_n = args.ai_name - stop = args.stop - - prompt = "" + args.chat_prompt + stop - - for line in messages: - if (line["role"] == "system"): - prompt += f"{system_n}{line['content']}{stop}" - if (line["role"] == "user"): - prompt += f"{user_n}{line['content']}{stop}" - if (line["role"] == "assistant"): - prompt += f"{ai_n}{line['content']}{stop}" - prompt += ai_n.rstrip() - - return prompt - -def make_postData(body, chat=False, stream=False): - postData = {} - if (chat): - postData["prompt"] = convert_chat(body["messages"]) - else: - postData["prompt"] = body["prompt"] - if(is_present(body, "temperature")): postData["temperature"] = body["temperature"] - if(is_present(body, "top_k")): postData["top_k"] = body["top_k"] - if(is_present(body, "top_p")): postData["top_p"] = body["top_p"] - if(is_present(body, "max_tokens")): postData["n_predict"] = body["max_tokens"] - if(is_present(body, "presence_penalty")): postData["presence_penalty"] = body["presence_penalty"] - if(is_present(body, "frequency_penalty")): postData["frequency_penalty"] = body["frequency_penalty"] - if(is_present(body, "repeat_penalty")): postData["repeat_penalty"] = body["repeat_penalty"] - if(is_present(body, "mirostat")): postData["mirostat"] = body["mirostat"] - if(is_present(body, "mirostat_tau")): postData["mirostat_tau"] = body["mirostat_tau"] - if(is_present(body, "mirostat_eta")): postData["mirostat_eta"] = body["mirostat_eta"] - if(is_present(body, "seed")): postData["seed"] = body["seed"] - if(is_present(body, "grammar")): postData["grammar"] = body["grammar"] - if(is_present(body, "logit_bias")): postData["logit_bias"] = [[int(token), body["logit_bias"][token]] for token in body["logit_bias"].keys()] - if (args.stop != ""): - postData["stop"] = [args.stop] - else: - postData["stop"] = [] - if(is_present(body, "stop")): postData["stop"] += body["stop"] - postData["n_keep"] = -1 - postData["stream"] = stream - postData["cache_prompt"] = True - postData["slot_id"] = slot_id - return postData - -def make_resData(data, chat=False, promptToken=[]): - resData = { - "id": "chatcmpl" if (chat) else "cmpl", - "object": "chat.completion" if (chat) else "text_completion", - "created": int(time.time()), - "truncated": data["truncated"], - "model": "LLaMA_CPP", - "usage": { - "prompt_tokens": data["tokens_evaluated"], - "completion_tokens": data["tokens_predicted"], - "total_tokens": data["tokens_evaluated"] + data["tokens_predicted"] - } - } - if (len(promptToken) != 0): - resData["promptToken"] = promptToken - if (chat): - #only one choice is supported - resData["choices"] = [{ - "index": 0, - "message": { - "role": "assistant", - "content": data["content"], - }, - "finish_reason": "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length" - }] - else: - #only one choice is supported - resData["choices"] = [{ - "text": data["content"], - "index": 0, - "logprobs": None, - "finish_reason": "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length" - }] - return resData - -def make_resData_stream(data, chat=False, time_now = 0, start=False): - resData = { - "id": "chatcmpl" if (chat) else "cmpl", - "object": "chat.completion.chunk" if (chat) else "text_completion.chunk", - "created": time_now, - "model": "LLaMA_CPP", - "choices": [ - { - "finish_reason": None, - "index": 0 - } - ] - } - slot_id = data.get("slot_id") - if (chat): - if (start): - resData["choices"][0]["delta"] = { - "role": "assistant" - } - else: - resData["choices"][0]["delta"] = { - "content": data["content"] - } - if (data["stop"]): - resData["choices"][0]["finish_reason"] = "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length" - else: - resData["choices"][0]["text"] = data["content"] - if (data["stop"]): - resData["choices"][0]["finish_reason"] = "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length" - - return resData - - -@app.route('/chat/completions', methods=['POST', 'OPTIONS']) -@app.route('/v1/chat/completions', methods=['POST', 'OPTIONS']) -def chat_completions(): - if (args.api_key != "" and request.headers["Authorization"].split()[1] != args.api_key): - return Response(status=403) - if request.method == 'OPTIONS': - return Response(headers={"Access-Control-Allow-Origin": "*", "Access-Control-Allow-Headers": "*"}) - body = request.get_json() - stream = False - tokenize = False - if(is_present(body, "stream")): stream = body["stream"] - if(is_present(body, "tokenize")): tokenize = body["tokenize"] - postData = make_postData(body, chat=True, stream=stream) - - promptToken = [] - if (tokenize): - tokenData = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/tokenize"), data=json.dumps({"content": postData["prompt"]})).json() - promptToken = tokenData["tokens"] - - if (not stream): - data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData)) - print(data.json()) - resData = make_resData(data.json(), chat=True, promptToken=promptToken) - return jsonify(resData) - else: - def generate(): - data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData), stream=True) - time_now = int(time.time()) - resData = make_resData_stream({}, chat=True, time_now=time_now, start=True) - yield 'data: {}\n\n'.format(json.dumps(resData)) - for line in data.iter_lines(): - if line: - decoded_line = line.decode('utf-8') - resData = make_resData_stream(json.loads(decoded_line[6:]), chat=True, time_now=time_now) - yield 'data: {}\n\n'.format(json.dumps(resData)) - return Response(generate(), mimetype='text/event-stream', headers={"Access-Control-Allow-Origin": "*", "Access-Control-Allow-Headers": "*"}) - - -@app.route('/completions', methods=['POST', 'OPTIONS']) -@app.route('/v1/completions', methods=['POST', 'OPTIONS']) -def completion(): - if (args.api_key != "" and request.headers["Authorization"].split()[1] != args.api_key): - return Response(status=403) - if request.method == 'OPTIONS': - return Response(headers={"Access-Control-Allow-Origin": "*", "Access-Control-Allow-Headers": "*"}) - body = request.get_json() - stream = False - tokenize = False - if(is_present(body, "stream")): stream = body["stream"] - if(is_present(body, "tokenize")): tokenize = body["tokenize"] - postData = make_postData(body, chat=False, stream=stream) - - promptToken = [] - if (tokenize): - tokenData = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/tokenize"), data=json.dumps({"content": postData["prompt"]})).json() - promptToken = tokenData["tokens"] - - if (not stream): - data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData)) - print(data.json()) - resData = make_resData(data.json(), chat=False, promptToken=promptToken) - return jsonify(resData) - else: - def generate(): - data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData), stream=True) - time_now = int(time.time()) - for line in data.iter_lines(): - if line: - decoded_line = line.decode('utf-8') - resData = make_resData_stream(json.loads(decoded_line[6:]), chat=False, time_now=time_now) - yield 'data: {}\n\n'.format(json.dumps(resData)) - return Response(generate(), mimetype='text/event-stream', headers={"Access-Control-Allow-Origin": "*", "Access-Control-Allow-Headers": "*"}) - -if __name__ == '__main__': - app.run(args.host, port=args.port) diff --git a/examples/server/oai.hpp b/examples/server/oai.hpp index 2eca8a9fb..ff4ad6994 100644 --- a/examples/server/oai.hpp +++ b/examples/server/oai.hpp @@ -15,13 +15,11 @@ using json = nlohmann::json; inline static json oaicompat_completion_params_parse( + const struct llama_model * model, const json &body, /* openai api json semantics */ const std::string &chat_template) { json llama_params; - std::string formatted_prompt = chat_template == "chatml" - ? format_chatml(body["messages"]) // OpenAI 'messages' to chatml (with <|im_start|>,...) - : format_llama2(body["messages"]); // OpenAI 'messages' to llama2 (with [INST],...) llama_params["__oaicompat"] = true; @@ -34,7 +32,7 @@ inline static json oaicompat_completion_params_parse( // https://platform.openai.com/docs/api-reference/chat/create llama_sampling_params default_sparams; llama_params["model"] = json_value(body, "model", std::string("unknown")); - llama_params["prompt"] = formatted_prompt; + llama_params["prompt"] = format_chat(model, chat_template, body["messages"]); llama_params["cache_prompt"] = json_value(body, "cache_prompt", false); llama_params["temperature"] = json_value(body, "temperature", 0.0); llama_params["top_k"] = json_value(body, "top_k", default_sparams.top_k); diff --git a/examples/server/server.cpp b/examples/server/server.cpp index 22c344dd4..0ca388f47 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -5,6 +5,7 @@ #include "oai.hpp" #include "../llava/clip.h" +#include "../llava/llava.h" #include "stb_image.h" @@ -32,117 +33,66 @@ using json = nlohmann::json; -struct server_params -{ +struct server_params { std::string hostname = "127.0.0.1"; std::vector api_keys; std::string public_path = "examples/server/public"; - std::string chat_template = "chatml"; + std::string chat_template = ""; int32_t port = 8080; int32_t read_timeout = 600; int32_t write_timeout = 600; bool slots_endpoint = true; + bool metrics_endpoint = false; + int n_threads_http = -1; }; bool server_verbose = false; +bool server_log_json = true; -static size_t common_part(const std::vector &a, const std::vector &b) -{ - size_t i; - for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) - { - } - return i; -} - -enum stop_type -{ +enum stop_type { STOP_FULL, STOP_PARTIAL, }; -static bool ends_with(const std::string &str, const std::string &suffix) -{ - return str.size() >= suffix.size() && - 0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix); -} +// TODO: can become bool if we can't find use of more states +enum slot_state { + IDLE, + PROCESSING, +}; -static size_t find_partial_stop_string(const std::string &stop, - const std::string &text) -{ - if (!text.empty() && !stop.empty()) - { - const char text_last_char = text.back(); - for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) - { - if (stop[char_index] == text_last_char) - { - const std::string current_partial = stop.substr(0, char_index + 1); - if (ends_with(text, current_partial)) - { - return text.size() - char_index - 1; - } - } - } - } - return std::string::npos; -} +enum slot_command { + NONE, + LOAD_PROMPT, + RELEASE, +}; -// TODO: reuse llama_detokenize -template -static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end) -{ - std::string ret; - for (; begin != end; ++begin) - { - ret += llama_token_to_piece(ctx, *begin); - } - return ret; -} +struct slot_params { + bool stream = true; + bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt -// format incomplete utf-8 multibyte character for output -static std::string tokens_to_output_formatted_string(const llama_context *ctx, const llama_token token) -{ - std::string out = token == -1 ? "" : llama_token_to_piece(ctx, token); - // if the size is 1 and first bit is 1, meaning it's a partial character - // (size > 1 meaning it's already a known token) - if (out.size() == 1 && (out[0] & 0x80) == 0x80) - { - std::stringstream ss; - ss << std::hex << (out[0] & 0xff); - std::string res(ss.str()); - out = "byte: \\x" + res; - } - return out; -} + uint32_t seed = -1; // RNG seed + int32_t n_keep = 0; // number of tokens to keep from initial prompt + int32_t n_predict = -1; // new tokens to predict -// convert a vector of completion_token_output to json -static json probs_vector_to_json(const llama_context *ctx, const std::vector &probs) -{ - json out = json::array(); - for (const auto &prob : probs) - { - json probs_for_token = json::array(); - for (const auto &p : prob.probs) - { - std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok); - probs_for_token.push_back(json - { - {"tok_str", tok_str}, - {"prob", p.prob}, - }); - } - std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok); - out.push_back(json{ - {"content", tok_str}, - {"probs", probs_for_token}, - }); - } - return out; -} + std::vector antiprompt; -struct llama_client_slot -{ + json input_prefix; + json input_suffix; +}; + +struct slot_image { + int32_t id; + + bool request_encode_image = false; + float * image_embedding = nullptr; + int32_t image_tokens = 0; + + clip_image_u8 * img_data; + + std::string prefix_prompt; // before of this image +}; + +struct server_slot { int id; int task_id = -1; @@ -162,8 +112,8 @@ struct llama_client_slot int32_t i_batch = -1; int32_t n_predict = -1; - int32_t num_prompt_tokens = 0; - int32_t num_prompt_tokens_processed = 0; + int32_t n_prompt_tokens = 0; + int32_t n_prompt_tokens_processed = 0; json prompt; std::string generated_text; @@ -198,8 +148,8 @@ struct llama_client_slot std::vector images; // stats - size_t sent_count = 0; - size_t sent_token_probs_index = 0; + size_t n_sent_text = 0; // number of sent text character + size_t n_sent_token_probs = 0; int64_t t_start_process_prompt; int64_t t_start_genereration; @@ -211,7 +161,7 @@ struct llama_client_slot int multitask_id = -1; void reset() { - num_prompt_tokens = 0; + n_prompt_tokens = 0; generated_text = ""; truncated = false; stopped_eos = false; @@ -219,16 +169,15 @@ struct llama_client_slot stopped_limit = false; stopping_word = ""; n_past = 0; - sent_count = 0; - sent_token_probs_index = 0; + n_sent_text = 0; + n_sent_token_probs = 0; infill = false; ga_i = 0; n_past_se = 0; generated_token_probs.clear(); - for (slot_image & img : images) - { + for (slot_image & img : images) { free(img.image_embedding); if (img.img_data) { clip_image_u8_free(img.img_data); @@ -240,19 +189,15 @@ struct llama_client_slot } bool has_budget(gpt_params &global_params) { - if (params.n_predict == -1 && global_params.n_predict == -1) - { + if (params.n_predict == -1 && global_params.n_predict == -1) { return true; // limitless } n_remaining = -1; - if (params.n_predict != -1) - { + if (params.n_predict != -1) { n_remaining = params.n_predict - n_decoded; - } - else if (global_params.n_predict != -1) - { + } else if (global_params.n_predict != -1) { n_remaining = global_params.n_predict - n_decoded; } @@ -268,8 +213,7 @@ struct llama_client_slot } void add_token_string(const completion_token_output &token) { - if (command == RELEASE) - { + if (command == RELEASE) { return; } cache_tokens.push_back(token.tok); @@ -287,10 +231,10 @@ struct llama_client_slot json get_formated_timings() { return json { - {"prompt_n", num_prompt_tokens_processed}, + {"prompt_n", n_prompt_tokens_processed}, {"prompt_ms", t_prompt_processing}, - {"prompt_per_token_ms", t_prompt_processing / num_prompt_tokens_processed}, - {"prompt_per_second", 1e3 / t_prompt_processing * num_prompt_tokens_processed}, + {"prompt_per_token_ms", t_prompt_processing / n_prompt_tokens_processed}, + {"prompt_per_second", 1e3 / t_prompt_processing * n_prompt_tokens_processed}, {"predicted_n", n_decoded}, {"predicted_ms", t_token_generation}, @@ -300,12 +244,74 @@ struct llama_client_slot } void print_timings() const { - LOG_TEE("\n"); - LOG_TEE("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n", - __func__, t_prompt_processing, num_prompt_tokens_processed, t_prompt_processing / num_prompt_tokens_processed, 1e3 / t_prompt_processing * num_prompt_tokens_processed); - LOG_TEE("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n", - __func__, t_token_generation, n_decoded,t_token_generation / n_decoded, 1e3 / t_token_generation * n_decoded); - LOG_TEE("%s: total time = %10.2f ms\n", __func__, t_prompt_processing + t_token_generation); + char buffer[512]; + double t_token = t_prompt_processing / n_prompt_tokens_processed; + double n_tokens_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed; + sprintf(buffer, "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)", + t_prompt_processing, n_prompt_tokens_processed, + t_token, n_tokens_second); + LOG_INFO(buffer, { + {"slot_id", id}, + {"task_id", task_id}, + {"t_prompt_processing", t_prompt_processing}, + {"n_prompt_tokens_processed", n_prompt_tokens_processed}, + {"t_token", t_token}, + {"n_tokens_second", n_tokens_second}, + }); + + t_token = t_token_generation / n_decoded; + n_tokens_second = 1e3 / t_token_generation * n_decoded; + sprintf(buffer, "generation eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)", + t_token_generation, n_decoded, + t_token, n_tokens_second); + LOG_INFO(buffer, { + {"slot_id", id}, + {"task_id", task_id}, + {"t_token_generation", t_token_generation}, + {"n_decoded", n_decoded}, + {"t_token", t_token}, + {"n_tokens_second", n_tokens_second}, + }); + + sprintf(buffer, " total time = %10.2f ms", t_prompt_processing + t_token_generation); + LOG_INFO(buffer, { + {"slot_id", id}, + {"task_id", task_id}, + {"t_prompt_processing", t_prompt_processing}, + {"t_token_generation", t_token_generation}, + {"t_total", t_prompt_processing + t_token_generation}, + }); + } +}; + +struct server_metrics { + uint64_t n_prompt_tokens_processed_total = 0; + uint64_t n_tokens_predicted_total = 0; + + uint64_t n_prompt_tokens_processed = 0; + uint64_t t_prompt_processing = 0; + + uint64_t n_tokens_predicted = 0; + uint64_t t_tokens_generation = 0; + + + void on_prompt_eval(const server_slot &slot) { + n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed; + n_prompt_tokens_processed += slot.n_prompt_tokens_processed; + t_prompt_processing += slot.t_prompt_processing; + } + + void on_prediction(const server_slot &slot) { + n_tokens_predicted_total += slot.n_decoded; + n_tokens_predicted += slot.n_decoded; + t_tokens_generation += slot.t_token_generation; + } + + void reset_bucket() { + n_prompt_tokens_processed = 0; + t_prompt_processing = 0; + n_tokens_predicted = 0; + t_tokens_generation = 0; } }; @@ -337,12 +343,14 @@ struct llama_server_context std::string name_assistant; // slots / clients - std::vector slots; + std::vector slots; json default_generation_settings_for_props; - llama_server_queue queue_tasks; + llama_server_queue queue_tasks; llama_server_response queue_results; + server_metrics metrics; + ~llama_server_context() { if (ctx) @@ -362,7 +370,7 @@ struct llama_server_context params = params_; if (!params.mmproj.empty()) { multimodal = true; - LOG_TEE("Multi Modal Mode Enabled"); + LOG_INFO("Multi Modal Mode Enabled", {}); clp_ctx = clip_model_load(params.mmproj.c_str(), /*verbosity=*/ 1); if(clp_ctx == nullptr) { LOG_ERROR("unable to load clip model", {{"model", params.mmproj}}); @@ -399,32 +407,50 @@ struct llama_server_context return true; } + void validate_model_chat_template(server_params & sparams) { + llama_chat_message chat[] = {{"user", "test"}}; + std::vector buf(1); + int res = llama_chat_apply_template(model, nullptr, chat, 1, true, buf.data(), buf.size()); + if (res < 0) { + LOG_ERROR("The chat template comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses", {}); + sparams.chat_template = "<|im_start|>"; // llama_chat_apply_template only checks if <|im_start|> exist in the template + } + } + void initialize() { // create slots all_slots_are_idle = true; const int32_t n_ctx_slot = n_ctx / params.n_parallel; - LOG_TEE("Available slots:\n"); + LOG_INFO("initializing slots", {{"n_slots", params.n_parallel}}); for (int i = 0; i < params.n_parallel; i++) { - llama_client_slot slot; + server_slot slot; slot.id = i; slot.n_ctx = n_ctx_slot; slot.n_predict = params.n_predict; - LOG_TEE(" -> Slot %i - max context: %i\n", slot.id, n_ctx_slot); + LOG_INFO("new slot", { + {"slot_id", slot.id}, + {"n_ctx_slot", slot.n_ctx} + }); const int ga_n = params.grp_attn_n; const int ga_w = params.grp_attn_w; if (ga_n != 1) { - GGML_ASSERT(ga_n > 0 && "ga_n must be positive"); // NOLINT - GGML_ASSERT(ga_w % ga_n == 0 && "ga_w must be a multiple of ga_n"); // NOLINT + GGML_ASSERT(ga_n > 0 && "ga_n must be positive"); // NOLINT + GGML_ASSERT(ga_w % ga_n == 0 && "ga_w must be a multiple of ga_n"); // NOLINT //GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of ga_w"); // NOLINT //GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * ga_n"); // NOLINT - LOG_TEE(" -> Slot %i - self-extend: ga_n = %d, ga_w = %d\n", slot.id, ga_n, ga_w); + + LOG_INFO("slot self-extend", { + {"slot_id", slot.id}, + {"ga_n", ga_n}, + {"ga_w", ga_w} + }); } slot.ga_i = 0; @@ -492,11 +518,11 @@ struct llama_server_context return prompt_tokens; } - llama_client_slot* get_slot(int id) { + server_slot* get_slot(int id) { int64_t t_last = ggml_time_us(); - llama_client_slot *last_used = nullptr; + server_slot *last_used = nullptr; - for (llama_client_slot & slot : slots) + for (server_slot & slot : slots) { if (slot.id == id && slot.available()) { @@ -513,7 +539,7 @@ struct llama_server_context return last_used; } - bool launch_slot_with_data(llama_client_slot* &slot, json data) { + bool launch_slot_with_data(server_slot* &slot, json data) { slot_params default_params; llama_sampling_params default_sparams; @@ -718,10 +744,16 @@ struct llama_server_context img_sl.img_data = clip_image_u8_init(); if (!clip_image_load_from_bytes(image_buffer.data(), image_buffer.size(), img_sl.img_data)) { - LOG_TEE("slot %i - failed to load image [id: %i]\n", slot->id, img_sl.id); + LOG_ERROR("failed to load image", { + {"slot_id", slot->id}, + {"img_sl_id", img_sl.id} + }); return false; } - LOG_TEE("slot %i - loaded image\n", slot->id); + LOG_VERBOSE("image loaded", { + {"slot_id", slot->id}, + {"img_sl_id", img_sl.id} + }); img_sl.request_encode_image = true; slot->images.push_back(img_sl); } @@ -781,7 +813,10 @@ struct llama_server_context all_slots_are_idle = false; - LOG_TEE("slot %i is processing [task id: %i]\n", slot->id, slot->task_id); + LOG_INFO("slot is processing task", { + {"slot_id", slot->id}, + {"task_id", slot->task_id}, + }); return true; } @@ -792,7 +827,7 @@ struct llama_server_context clean_kv_cache = false; } - void update_system_prompt() { + void system_prompt_update() { kv_cache_clear(); system_tokens.clear(); @@ -806,10 +841,24 @@ struct llama_server_context llama_batch_add(batch, system_tokens[i], i, { 0 }, false); } - if (llama_decode(ctx, batch) != 0) + for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += params.n_batch) { - LOG_TEE("%s: llama_decode() failed\n", __func__); - return; + const int32_t n_tokens = std::min(params.n_batch, (int32_t) (batch.n_tokens - i)); + llama_batch batch_view = { + n_tokens, + batch.token + i, + nullptr, + batch.pos + i, + batch.n_seq_id + i, + batch.seq_id + i, + batch.logits + i, + 0, 0, 0, // unused + }; + if (llama_decode(ctx, batch_view) != 0) + { + LOG_TEE("%s: llama_decode() failed\n", __func__); + return; + } } // assign the system KV cache to all parallel sequences @@ -823,9 +872,9 @@ struct llama_server_context system_need_update = false; } - void notify_system_prompt_changed() { + void system_prompt_notify() { // release all slots - for (llama_client_slot &slot : slots) + for (server_slot &slot : slots) { slot.release(); } @@ -833,17 +882,17 @@ struct llama_server_context system_need_update = true; } - void process_system_prompt_data(const json &sys_props) { + void system_prompt_process(const json &sys_props) { system_prompt = sys_props.value("prompt", ""); name_user = sys_props.value("anti_prompt", ""); name_assistant = sys_props.value("assistant_name", ""); - notify_system_prompt_changed(); + system_prompt_notify(); } static size_t find_stopping_strings(const std::string &text, const size_t last_token_size, - const stop_type type, llama_client_slot &slot) + const stop_type type, server_slot &slot) { size_t stop_pos = std::string::npos; @@ -865,8 +914,8 @@ struct llama_server_context { if (type == STOP_FULL) { - slot.stopped_word = true; - slot.stopping_word = word; + slot.stopped_word = true; + slot.stopping_word = word; slot.has_next_token = false; } stop_pos = pos; @@ -876,7 +925,7 @@ struct llama_server_context return stop_pos; } - bool process_token(completion_token_output &result, llama_client_slot &slot) { + bool process_token(completion_token_output &result, server_slot &slot) { // remember which tokens were sampled - used for repetition penalties during sampling const std::string token_str = llama_token_to_piece(ctx, result.tok); slot.sampled = result.tok; @@ -922,7 +971,7 @@ struct llama_server_context if (!incomplete) { - size_t pos = std::min(slot.sent_count, slot.generated_text.size()); + size_t pos = std::min(slot.n_sent_text, slot.generated_text.size()); const std::string str_test = slot.generated_text.substr(pos); bool is_stop_full = false; size_t stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_FULL, slot); @@ -932,7 +981,7 @@ struct llama_server_context slot.generated_text.erase( slot.generated_text.begin() + pos + stop_pos, slot.generated_text.end()); - pos = std::min(slot.sent_count, slot.generated_text.size()); + pos = std::min(slot.n_sent_text, slot.generated_text.size()); } else { @@ -945,7 +994,7 @@ struct llama_server_context { // no send the stop word in the response result.text_to_send = slot.generated_text.substr(pos, std::string::npos); - slot.sent_count += result.text_to_send.size(); + slot.n_sent_text += result.text_to_send.size(); // add the token to slot queue and cache } slot.add_token_string(result); @@ -989,7 +1038,7 @@ struct llama_server_context return slot.has_next_token; // continue } - bool process_images(llama_client_slot &slot) const + bool process_images(server_slot &slot) const { for (slot_image &img : slot.images) { @@ -997,43 +1046,12 @@ struct llama_server_context { continue; } - clip_image_f32_batch img_res_v; - img_res_v.size = 0; - img_res_v.data = nullptr; - if (!clip_image_preprocess(clp_ctx, img.img_data, img_res_v)) - { - LOG_TEE("Error processing the given image"); - clip_free(clp_ctx); - clip_image_f32_batch_free(img_res_v); - return false; - } - if (img_res_v.size == 0) - { + + if (!llava_image_embed_make_with_clip_img(clp_ctx, params.n_threads, img.img_data, &img.image_embedding, &img.image_tokens)) { LOG_TEE("Error processing the given image"); return false; } - // note: assumes only one image was returned by clip_image_preprocess - clip_image_f32 * img_res = img_res_v.data; - - img.image_tokens = clip_n_patches(clp_ctx); - img.image_embedding = (float *)malloc(clip_embd_nbytes(clp_ctx)); - if (!img.image_embedding) - { - LOG_TEE("Unable to allocate memory for image embeddings\n"); - clip_image_f32_batch_free(img_res_v); - clip_free(clp_ctx); - return false; - } - LOG_TEE("slot %i - encoding image [id: %i]\n", slot.id, img.id); - if (!clip_image_encode(clp_ctx, params.n_threads, img_res, img.image_embedding)) - { - LOG_TEE("Unable to encode image\n"); - clip_image_f32_batch_free(img_res_v); - return false; - } - - clip_image_f32_batch_free(img_res_v); img.request_encode_image = false; } @@ -1053,7 +1071,7 @@ struct llama_server_context queue_results.send(res); } - json get_formated_generation(llama_client_slot &slot) + json get_formated_generation(server_slot &slot) { const auto eos_bias = slot.sparams.logit_bias.find(llama_token_eos(model)); const bool ignore_eos = eos_bias != slot.sparams.logit_bias.end() && @@ -1100,7 +1118,7 @@ struct llama_server_context }; } - void send_partial_response(llama_client_slot &slot, completion_token_output tkn) + void send_partial_response(server_slot &slot, completion_token_output tkn) { task_result res; res.id = slot.task_id; @@ -1120,13 +1138,13 @@ struct llama_server_context { std::vector probs_output = {}; const std::vector to_send_toks = llama_tokenize(ctx, tkn.text_to_send, false); - size_t probs_pos = std::min(slot.sent_token_probs_index, slot.generated_token_probs.size()); - size_t probs_stop_pos = std::min(slot.sent_token_probs_index + to_send_toks.size(), slot.generated_token_probs.size()); + size_t probs_pos = std::min(slot.n_sent_token_probs, slot.generated_token_probs.size()); + size_t probs_stop_pos = std::min(slot.n_sent_token_probs + to_send_toks.size(), slot.generated_token_probs.size()); if (probs_pos < probs_stop_pos) { probs_output = std::vector(slot.generated_token_probs.begin() + probs_pos, slot.generated_token_probs.begin() + probs_stop_pos); } - slot.sent_token_probs_index = probs_stop_pos; + slot.n_sent_token_probs = probs_stop_pos; res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs_output); } @@ -1139,7 +1157,7 @@ struct llama_server_context queue_results.send(res); } - void send_final_response(llama_client_slot &slot) + void send_final_response(server_slot &slot) { task_result res; res.id = slot.task_id; @@ -1154,7 +1172,7 @@ struct llama_server_context {"stop", true}, {"model", params.model_alias}, {"tokens_predicted", slot.n_decoded}, - {"tokens_evaluated", slot.num_prompt_tokens}, + {"tokens_evaluated", slot.n_prompt_tokens}, {"generation_settings", get_formated_generation(slot)}, {"prompt", slot.prompt}, {"truncated", slot.truncated}, @@ -1192,7 +1210,7 @@ struct llama_server_context queue_results.send(res); } - void send_embedding(llama_client_slot &slot) + void send_embedding(server_slot &slot) { task_result res; res.id = slot.task_id; @@ -1203,9 +1221,7 @@ struct llama_server_context const int n_embd = llama_n_embd(model); if (!params.embedding) { - LOG_WARNING("embedding disabled", { - {"params.embedding", params.embedding}, - }); + LOG_WARNING("embedding disabled", {{"params.embedding", params.embedding}}); res.result_json = json { {"embedding", std::vector(n_embd, 0.0f)}, @@ -1217,7 +1233,7 @@ struct llama_server_context std::vector embedding(data, data + n_embd); res.result_json = json { - {"embedding", embedding }, + {"embedding", embedding}, }; } queue_results.send(res); @@ -1257,12 +1273,16 @@ struct llama_server_context split_multiprompt_task(task_id, task); } } else { + // an empty prompt can make slot become buggy + if (task.data.contains("prompt") && task.data["prompt"].is_string() && task.data["prompt"].get().empty()) { + task.data["prompt"] = " "; // add a space so that we have one token + } queue_tasks.post(task); } } // for multiple images processing - bool ingest_images(llama_client_slot &slot, int n_batch) + bool ingest_images(server_slot &slot, int n_batch) { int image_idx = 0; @@ -1301,7 +1321,17 @@ struct llama_server_context } const int n_embd = llama_n_embd(model); - llama_batch batch_img = { n_eval, nullptr, (img.image_embedding + i * n_embd), nullptr, nullptr, nullptr, nullptr, slot.n_past, 1, 0, }; + llama_batch batch_img = { + n_eval, + nullptr, + (img.image_embedding + i * n_embd), + nullptr, + nullptr, + nullptr, + nullptr, + slot.n_past, + 1, 0 + }; if (llama_decode(ctx, batch_img)) { LOG_TEE("%s : failed to eval image\n", __func__); @@ -1371,11 +1401,11 @@ struct llama_server_context switch (task.type) { case TASK_TYPE_COMPLETION: { - llama_client_slot *slot = get_slot(json_value(task.data, "slot_id", -1)); + server_slot *slot = get_slot(json_value(task.data, "slot_id", -1)); if (slot == nullptr) { // if no slot is available, we defer this task for processing later - LOG_VERBOSE("no slot is available", {}); + LOG_VERBOSE("no slot is available", {{"task_id", task.id}}); queue_tasks.defer(task); break; } @@ -1386,10 +1416,10 @@ struct llama_server_context send_error(task, "system prompt can only be updated when all slots are idle"); break; } - process_system_prompt_data(task.data["system_prompt"]); + system_prompt_process(task.data["system_prompt"]); // reset cache_tokens for all slots - for (llama_client_slot &slot : slots) + for (server_slot &slot : slots) { slot.cache_tokens.clear(); slot.n_past = 0; @@ -1424,6 +1454,70 @@ struct llama_server_context case TASK_TYPE_NEXT_RESPONSE: { // do nothing } break; + case TASK_TYPE_METRICS: { + json slots_data = json::array(); + int n_idle_slots = 0; + int n_processing_slots = 0; + + for (server_slot &slot: slots) { + json slot_data = get_formated_generation(slot); + slot_data["id"] = slot.id; + slot_data["task_id"] = slot.task_id; + slot_data["state"] = slot.state; + slot_data["prompt"] = slot.prompt; + slot_data["next_token"] = { + {"has_next_token", slot.has_next_token}, + {"n_remain", slot.n_remaining}, + {"num_tokens_predicted", slot.n_decoded}, + {"stopped_eos", slot.stopped_eos}, + {"stopped_word", slot.stopped_word}, + {"stopped_limit", slot.stopped_limit}, + {"stopping_word", slot.stopping_word}, + }; + if (slot_data["state"] == IDLE) { + n_idle_slots++; + } else { + n_processing_slots++; + } + slots_data.push_back(slot_data); + } + LOG_INFO("slot data", { + {"task_id", task.id}, + {"n_idle_slots", n_idle_slots}, + {"n_processing_slots", n_processing_slots} + }); + LOG_VERBOSE("slot data", { + {"task_id", task.id}, + {"n_idle_slots", n_idle_slots}, + {"n_processing_slots", n_processing_slots}, + {"slots", slots_data} + }); + task_result res; + res.id = task.id; + res.multitask_id = task.multitask_id; + res.stop = true; + res.error = false; + res.result_json = { + { "idle", n_idle_slots }, + { "processing", n_processing_slots }, + { "deferred", queue_tasks.queue_tasks_deferred.size() }, + + { "n_prompt_tokens_processed_total", metrics.n_prompt_tokens_processed_total}, + { "n_tokens_predicted_total", metrics.n_tokens_predicted_total}, + + { "n_prompt_tokens_processed", metrics.n_prompt_tokens_processed}, + { "t_prompt_processing", metrics.t_prompt_processing}, + { "n_tokens_predicted", metrics.n_tokens_predicted}, + { "t_tokens_generation", metrics.t_tokens_generation}, + + { "kv_cache_tokens_count", llama_get_kv_cache_token_count(ctx)}, + { "kv_cache_used_cells", llama_get_kv_cache_used_cells(ctx)}, + + { "slots", slots_data }, + }; + metrics.reset_bucket(); + queue_results.send(res); + } break; } } @@ -1449,8 +1543,8 @@ struct llama_server_context bool update_slots() { if (system_need_update) { - LOG_TEE("updating system prompt\n"); - update_system_prompt(); + LOG_INFO("updating system prompt", {}); + system_prompt_update(); } llama_batch_clear(batch); @@ -1459,32 +1553,44 @@ struct llama_server_context { if (system_prompt.empty() && clean_kv_cache) { - LOG_TEE("all slots are idle and system prompt is empty, clear the KV cache\n"); + LOG_INFO("all slots are idle and system prompt is empty, clear the KV cache", {}); kv_cache_clear(); } return true; } + LOG_VERBOSE("posting NEXT_RESPONSE", {}); task_server task; task.type = TASK_TYPE_NEXT_RESPONSE; task.target_id = -1; queue_tasks.post(task); - for (llama_client_slot &slot : slots) + for (server_slot &slot : slots) { if (slot.ga_n == 1) { if (slot.is_processing() && system_tokens.size() + slot.cache_tokens.size() >= (size_t) slot.n_ctx) { // Shift context - const int n_left = system_tokens.size() + slot.n_past - slot.params.n_keep - 1; + const int n_keep = slot.params.n_keep + add_bos_token; + const int n_left = (int) system_tokens.size() + slot.n_past - n_keep; const int n_discard = n_left / 2; - LOG_TEE("slot %d: context shift - n_keep = %d, n_left = %d, n_discard = %d\n", slot.id, slot.params.n_keep, n_left, n_discard); - llama_kv_cache_seq_rm (ctx, slot.id, slot.params.n_keep + 1 , slot.params.n_keep + n_discard + 1); - llama_kv_cache_seq_shift(ctx, slot.id, slot.params.n_keep + 1 + n_discard, system_tokens.size() + slot.n_past, -n_discard); + LOG_INFO("slot context shift", { + {"slot_id", slot.id}, + {"task_id", slot.task_id}, + {"n_keep", n_keep}, + {"n_left", n_left}, + {"n_discard", n_discard}, + {"n_ctx", n_ctx}, + {"n_past", slot.n_past}, + {"n_system_tokens", system_tokens.size()}, + {"n_cache_tokens", slot.cache_tokens.size()} + }); + llama_kv_cache_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard); + llama_kv_cache_seq_add(ctx, slot.id, n_keep + n_discard, system_tokens.size() + slot.n_past, -n_discard); - for (size_t i = slot.params.n_keep + 1 + n_discard; i < slot.cache_tokens.size(); i++) + for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) { slot.cache_tokens[i - n_discard] = slot.cache_tokens[i]; } @@ -1494,17 +1600,12 @@ struct llama_server_context slot.n_past -= n_discard; slot.truncated = true; - - LOG_VERBOSE("context shift", { - { "n_ctx", n_ctx }, - { "n_keep", params.n_keep }, - { "n_left", n_left }, - }); } } } // decode any currently ongoing sequences + LOG_VERBOSE("decoding ongoing sequences", {}); for (auto & slot : slots) { // release the slot @@ -1514,7 +1615,15 @@ struct llama_server_context slot.command = NONE; slot.t_last_used = ggml_time_us(); - LOG_TEE("slot %d released (%d tokens in cache)\n", slot.id, (int) slot.cache_tokens.size()); + LOG_INFO("slot released", { + {"slot_id", slot.id}, + {"task_id", slot.task_id}, + {"n_ctx", n_ctx}, + {"n_past", slot.n_past}, + {"n_system_tokens", system_tokens.size()}, + {"n_cache_tokens", slot.cache_tokens.size()}, + {"truncated", slot.truncated} + }); queue_tasks.notify_slot_changed(); continue; @@ -1592,45 +1701,50 @@ struct llama_server_context prompt_tokens = tokenize(slot.prompt, system_prompt.empty() && add_bos_token); // add BOS if there isn't system prompt } - slot.num_prompt_tokens = prompt_tokens.size(); + slot.n_prompt_tokens = prompt_tokens.size(); if (slot.params.n_keep < 0) { - slot.params.n_keep = slot.num_prompt_tokens; + slot.params.n_keep = slot.n_prompt_tokens; } slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep); - // if input prompt is too big, truncate it - if (slot.num_prompt_tokens >= slot.n_ctx) + // if input prompt is too big, truncate it, if group attention self-extend is disabled + if (slot.ga_n == 1 && slot.n_prompt_tokens >= slot.n_ctx) { const int n_left = slot.n_ctx - slot.params.n_keep; const int n_block_size = n_left / 2; - const int erased_blocks = (slot.num_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size; + const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size; - std::vector new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + slot.params.n_keep); - new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size, prompt_tokens.end()); + std::vector new_tokens( + prompt_tokens.begin(), + prompt_tokens.begin() + slot.params.n_keep); + new_tokens.insert( + new_tokens.end(), + prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size, + prompt_tokens.end()); LOG_VERBOSE("input truncated", { - {"n_ctx", slot.n_ctx}, - {"n_keep", slot.params.n_keep}, - {"n_left", n_left}, + {"n_ctx", slot.n_ctx}, + {"n_keep", slot.params.n_keep}, + {"n_left", n_left}, {"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())}, }); slot.truncated = true; prompt_tokens = new_tokens; - slot.num_prompt_tokens = prompt_tokens.size(); - GGML_ASSERT(slot.num_prompt_tokens < slot.n_ctx); + slot.n_prompt_tokens = prompt_tokens.size(); + GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx); } if (!slot.params.cache_prompt) { llama_sampling_reset(slot.ctx_sampling); - slot.n_past = 0; + slot.n_past = 0; slot.n_past_se = 0; - slot.ga_i = 0; - slot.num_prompt_tokens_processed = slot.num_prompt_tokens; + slot.ga_i = 0; + slot.n_prompt_tokens_processed = slot.n_prompt_tokens; } else { @@ -1641,7 +1755,15 @@ struct llama_server_context } slot.n_past = common_part(slot.cache_tokens, prompt_tokens); - slot.num_prompt_tokens_processed = slot.num_prompt_tokens - slot.n_past; + + // the last token of the cache is not in the KV cache until the next call to llama_decode + // (it was sampled, pushed into the "cache_tokens", but not yet put in the context) + if (slot.n_past > 0 && slot.n_past == (int32_t) slot.cache_tokens.size()) + { + slot.n_past -= 1; + } + + slot.n_prompt_tokens_processed = slot.n_prompt_tokens - slot.n_past; if (slot.ga_n != 1) { @@ -1662,15 +1784,25 @@ struct llama_server_context slot.ga_i = ga_i; } - LOG_TEE("slot %d : in cache: %i tokens | to process: %i tokens\n", slot.id, slot.n_past, slot.num_prompt_tokens_processed); + LOG_INFO("slot progression", { + { "slot_id", slot.id }, + { "task_id", slot.task_id }, + { "n_past", slot.n_past }, + { "n_past_se", slot.n_past_se }, + { "ga_i", slot.ga_i }, + { "n_prompt_tokens_processed", slot.n_prompt_tokens_processed } + }); } slot.cache_tokens = prompt_tokens; - if (slot.n_past == slot.num_prompt_tokens && slot.n_past > 0) + if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) { // we have to evaluate at least 1 token to generate logits. - LOG_TEE("slot %d : we have to evaluate at least 1 token to generate logits\n", slot.id); + LOG_INFO("we have to evaluate at least 1 token to generate logits", { + { "slot_id", slot.id }, + { "task_id", slot.task_id } + }); slot.n_past--; if (slot.ga_i > 0) { @@ -1678,9 +1810,13 @@ struct llama_server_context } } - LOG_TEE("slot %d : kv cache rm - [%d, end)\n", slot.id, (int) system_tokens.size() + slot.n_past); - - llama_kv_cache_seq_rm(ctx, slot.id, system_tokens.size() + slot.n_past, -1); + int p0 = (int) system_tokens.size() + slot.n_past; + LOG_INFO("kv cache rm [p0, end)", { + { "slot_id", slot.id }, + { "task_id", slot.task_id }, + { "p0", p0 } + }); + llama_kv_cache_seq_rm(ctx, slot.id, p0, -1); LOG_VERBOSE("prompt ingested", { {"n_past", slot.n_past}, @@ -1715,7 +1851,13 @@ struct llama_server_context if (has_images && !ingest_images(slot, n_batch)) { - LOG_TEE("failed processing images\n"); + LOG_ERROR("failed processing images", { + {"slot_id", slot.id}, + {"task_id", slot.task_id}, + }); + // FIXME @phymbert: to be properly tested + // early returning without changing the slot state will block the slot for ever + // no one at the moment is checking the return value return false; } @@ -1757,9 +1899,9 @@ struct llama_server_context LOG_TEE("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n, (slot.ga_i + ib * bd) / slot.ga_n, (slot.ga_i + ib * bd + slot.ga_w) / slot.ga_n); LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd, slot.ga_i + ib * bd + slot.ga_w + dd, slot.n_past_se + ib * bd + dd); - llama_kv_cache_seq_shift(ctx, slot.id, slot.ga_i, slot.n_past_se, ib * bd); + llama_kv_cache_seq_add(ctx, slot.id, slot.ga_i, slot.n_past_se, ib * bd); llama_kv_cache_seq_div(ctx, slot.id, slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w,slot.ga_n); - llama_kv_cache_seq_shift(ctx, slot.id, slot.ga_i + ib * bd + slot.ga_w,slot.n_past_se + ib * bd, dd); + llama_kv_cache_seq_add(ctx, slot.id, slot.ga_i + ib * bd + slot.ga_w,slot.n_past_se + ib * bd, dd); slot.n_past_se -= bd; @@ -1815,7 +1957,7 @@ struct llama_server_context send_embedding(slot); slot.release(); slot.i_batch = -1; - return true; + continue; } completion_token_output result; @@ -1828,6 +1970,7 @@ struct llama_server_context { slot.t_start_genereration = ggml_time_us(); slot.t_prompt_processing = (slot.t_start_genereration - slot.t_start_process_prompt) / 1e3; + metrics.on_prompt_eval(slot); } llama_token_data_array cur_p = { slot.ctx_sampling->cur.data(), slot.ctx_sampling->cur.size(), false }; @@ -1850,16 +1993,26 @@ struct llama_server_context slot.release(); slot.print_timings(); send_final_response(slot); + metrics.on_prediction(slot); } slot.i_batch = -1; } } + + LOG_VERBOSE("slots updated", {}); return true; } - void run_on_all_tasks_finished() { - update_slots(); + json model_meta() { + return json{ + {"vocab_type", llama_vocab_type(model)}, + {"n_vocab", llama_n_vocab(model)}, + {"n_ctx_train", llama_n_ctx_train(model)}, + {"n_embd", llama_n_embd(model)}, + {"n_params", llama_model_n_params(model)}, + {"size", llama_model_size(model)}, + }; } }; @@ -1873,6 +2026,7 @@ static void server_print_usage(const char *argv0, const gpt_params ¶ms, printf(" -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled"); printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); printf(" -tb N, --threads-batch N number of threads to use during batch and prompt processing (default: same as --threads)\n"); + printf(" --threads-http N number of threads in the http server pool to process requests (default: max(hardware concurrency - 1, --parallel N + 2))\n"); printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx); printf(" --rope-scaling {none,linear,yarn}\n"); printf(" RoPE frequency scaling method, defaults to linear unless specified by the model\n"); @@ -1927,18 +2081,25 @@ static void server_print_usage(const char *argv0, const gpt_params ¶ms, printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n"); printf(" -spf FNAME, --system-prompt-file FNAME\n"); printf(" set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications.\n"); + printf(" -ctk TYPE, --cache-type-k TYPE\n"); + printf(" KV cache data type for K (default: f16)\n"); + printf(" -ctv TYPE, --cache-type-v TYPE\n"); + printf(" KV cache data type for V (default: f16)\n"); printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA.\n"); + printf(" --log-format log output format: json or text (default: json)\n"); printf(" --log-disable disables logging to a file.\n"); printf(" --slots-endpoint-disable disables slots monitoring endpoint.\n"); + printf(" --metrics enable prometheus compatible metrics endpoint (default: %s).\n", sparams.metrics_endpoint ? "enabled" : "disabled"); printf("\n"); printf(" -n, --n-predict maximum tokens to predict (default: %d)\n", params.n_predict); printf(" --override-kv KEY=TYPE:VALUE\n"); printf(" advanced option to override model metadata by key. may be specified multiple times.\n"); printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n"); - printf(" -gan N, --grp-attn-n N set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`"); - printf(" -gaw N, --grp-attn-w N set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`"); - printf(" --chat-template FORMAT_NAME"); - printf(" set chat template, possible value is: llama2, chatml (default %s)", sparams.chat_template.c_str()); + printf(" -gan N, --grp-attn-n N set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`\n"); + printf(" -gaw N, --grp-attn-w N set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`\n"); + printf(" --chat-template JINJA_TEMPLATE\n"); + printf(" set custom jinja chat template (default: template taken from model's metadata)\n"); + printf(" Note: only commonly used templates are accepted, since we don't have jinja parser\n"); printf("\n"); } @@ -2060,9 +2221,9 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, break; } std::string value(argv[i]); - /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_NONE; } - else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_LINEAR; } - else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_YARN; } + /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; } + else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; } + else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; } else { invalid_param = true; break; } } else if (arg == "--rope-freq-base") @@ -2152,6 +2313,15 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, } params.n_threads_batch = std::stoi(argv[i]); } + else if (arg == "--threads-http") + { + if (++i >= argc) + { + invalid_param = true; + break; + } + sparams.n_threads_http = std::stoi(argv[i]); + } else if (arg == "-b" || arg == "--batch-size") { if (++i >= argc) @@ -2186,15 +2356,15 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, std::string arg_next = argv[i]; if (arg_next == "none") { - params.split_mode = LLAMA_SPLIT_NONE; + params.split_mode = LLAMA_SPLIT_MODE_NONE; } else if (arg_next == "layer") { - params.split_mode = LLAMA_SPLIT_LAYER; + params.split_mode = LLAMA_SPLIT_MODE_LAYER; } else if (arg_next == "row") { - params.split_mode = LLAMA_SPLIT_ROW; + params.split_mode = LLAMA_SPLIT_MODE_ROW; } else { invalid_param = true; @@ -2233,14 +2403,6 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, } #else LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n", {}); -#endif // GGML_USE_CUBLAS - } - else if (arg == "--no-mul-mat-q" || arg == "-nommq") - { -#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL) - params.mul_mat_q = false; -#else - LOG_WARNING("warning: llama.cpp was compiled without cuBLAS. Disabling mul_mat_q kernels has no effect.\n", {}); #endif // GGML_USE_CUBLAS } else if (arg == "--main-gpu" || arg == "-mg") @@ -2362,7 +2524,13 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, std::istreambuf_iterator(), std::back_inserter(systm_content) ); - llama.process_system_prompt_data(json::parse(systm_content)); + llama.system_prompt_process(json::parse(systm_content)); + } + else if (arg == "-ctk" || arg == "--cache-type-k") { + params.cache_type_k = argv[++i]; + } + else if (arg == "-ctv" || arg == "--cache-type-v") { + params.cache_type_v = argv[++i]; } else if(arg == "--mmproj") { @@ -2373,6 +2541,27 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, } params.mmproj = argv[i]; } + else if (arg == "--log-format") + { + if (++i >= argc) + { + invalid_param = true; + break; + } + if (std::strcmp(argv[i], "json") == 0) + { + server_log_json = true; + } + else if (std::strcmp(argv[i], "text") == 0) + { + server_log_json = false; + } + else + { + invalid_param = true; + break; + } + } else if (arg == "--log-disable") { log_set_target(stdout); @@ -2382,6 +2571,10 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, { sparams.slots_endpoint = false; } + else if (arg == "--metrics") + { + sparams.metrics_endpoint = true; + } else if (arg == "--chat-template") { if (++i >= argc) @@ -2389,13 +2582,13 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, invalid_param = true; break; } - std::string value(argv[i]); - if (value != "chatml" && value != "llama2") { - fprintf(stderr, "error: chat template can be \"llama2\" or \"chatml\", but got: %s\n", value.c_str()); + if (!verify_custom_template(argv[i])) { + fprintf(stderr, "error: the supplied chat template is not supported: %s\n", argv[i]); + fprintf(stderr, "note: llama.cpp does not use jinja parser, we only support commonly used templates\n"); invalid_param = true; break; } - sparams.chat_template = value; + sparams.chat_template = argv[i]; } else if (arg == "--override-kv") { @@ -2415,15 +2608,15 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, sep++; if (strncmp(sep, "int:", 4) == 0) { sep += 4; - kvo.tag = LLAMA_KV_OVERRIDE_INT; + kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT; kvo.int_value = std::atol(sep); } else if (strncmp(sep, "float:", 6) == 0) { sep += 6; - kvo.tag = LLAMA_KV_OVERRIDE_FLOAT; + kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT; kvo.float_value = std::atof(sep); } else if (strncmp(sep, "bool:", 5) == 0) { sep += 5; - kvo.tag = LLAMA_KV_OVERRIDE_BOOL; + kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL; if (std::strcmp(sep, "true") == 0) { kvo.bool_value = true; } else if (std::strcmp(sep, "false") == 0) { @@ -2462,7 +2655,7 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, /* llama.cpp completion api semantics */ static json format_partial_response( - llama_server_context &llama, llama_client_slot *slot, const std::string &content, const std::vector &probs + llama_server_context &llama, server_slot *slot, const std::string &content, const std::vector &probs ) { json res = json { @@ -2482,42 +2675,43 @@ static json format_partial_response( static json format_tokenizer_response(const std::vector &tokens) { - return json{ - {"tokens", tokens}}; + return json { + {"tokens", tokens} + }; } static json format_detokenized_response(std::string content) { - return json{ - {"content", content}}; + return json { + {"content", content} + }; } static void log_server_request(const httplib::Request &req, const httplib::Response &res) { + // skip GH copilot requests when using default port + if (req.path == "/v1/health" || req.path == "/v1/completions") + { + return; + } + LOG_INFO("request", { - {"remote_addr", req.remote_addr}, - {"remote_port", req.remote_port}, - {"status", res.status}, - {"method", req.method}, - {"path", req.path}, - {"params", req.params}, - }); + {"remote_addr", req.remote_addr}, + {"remote_port", req.remote_port}, + {"status", res.status}, + {"method", req.method}, + {"path", req.path}, + {"params", req.params}, + }); LOG_VERBOSE("request", { - {"request", req.body}, - {"response", res.body}, - }); + {"request", req.body}, + {"response", res.body}, + }); } -struct token_translator -{ - llama_context * ctx; - std::string operator()(llama_token tok) const { return llama_token_to_piece(ctx, tok); } - std::string operator()(const completion_token_output &cto) const { return (*this)(cto.tok); } -}; - -static void append_to_generated_text_from_generated_token_probs(llama_server_context &llama, llama_client_slot *slot) +static void append_to_generated_text_from_generated_token_probs(llama_server_context &llama, server_slot *slot) { auto & gtps = slot->generated_token_probs; auto translator = token_translator{llama.ctx}; @@ -2534,7 +2728,16 @@ static void append_to_generated_text_from_generated_token_probs(llama_server_con } std::function shutdown_handler; -inline void signal_handler(int signal) { shutdown_handler(signal); } +std::atomic_flag is_terminating = ATOMIC_FLAG_INIT; +inline void signal_handler(int signal) { + if (is_terminating.test_and_set()) { + // in case it hangs, we can force terminate the server by hitting Ctrl+C twice + // this is for better developer experience, we can remove when the server is stable enough + fprintf(stderr, "Received second interrupt, terminating immediately.\n"); + exit(1); + } + shutdown_handler(signal); +} int main(int argc, char **argv) { @@ -2582,40 +2785,44 @@ int main(int argc, char **argv) res.set_header("Access-Control-Allow-Headers", "*"); }); - svr.Get("/health", [&](const httplib::Request&, httplib::Response& res) { + svr.Get("/health", [&](const httplib::Request& req, httplib::Response& res) { server_state current_state = state.load(); switch(current_state) { - case SERVER_STATE_READY: - if (llama.all_slots_are_idle) { - res.set_content(R"({"status": "ok"})", "application/json"); - res.status = 200; // HTTP OK - } else { - int available_slots = 0; - int processing_slots = 0; - for (llama_client_slot & slot : llama.slots) { - if (slot.available()) { - available_slots++; - } else { - processing_slots++; - } - } - if (available_slots > 0) { - json health = { - {"status", "ok"}, - {"slots_idle", available_slots}, - {"slots_processing", processing_slots}}; - res.set_content(health.dump(), "application/json"); - res.status = 200; // HTTP OK - } else { - json health = { - {"status", "no slot available"}, - {"slots_idle", available_slots}, - {"slots_processing", processing_slots}}; - res.set_content(health.dump(), "application/json"); + case SERVER_STATE_READY: { + // request slots data using task queue + task_server task; + task.id = llama.queue_tasks.get_new_id(); + task.type = TASK_TYPE_METRICS; + task.target_id = -1; + + llama.queue_results.add_waiting_task_id(task.id); + llama.queue_tasks.post(task); + + // get the result + task_result result = llama.queue_results.recv(task.id); + llama.queue_results.remove_waiting_task_id(task.id); + + int n_idle_slots = result.result_json["idle"]; + int n_processing_slots = result.result_json["processing"]; + + json health = { + {"status", "ok"}, + {"slots_idle", n_idle_slots}, + {"slots_processing", n_processing_slots}}; + res.status = 200; // HTTP OK + if (sparams.slots_endpoint && req.has_param("include_slots")) { + health["slots"] = result.result_json["slots"]; + } + + if (n_idle_slots == 0) { + health["status"] = "no slot available"; + if (req.has_param("fail_on_no_slot")) { res.status = 503; // HTTP Service Unavailable } } + res.set_content(health.dump(), "application/json"); break; + } case SERVER_STATE_LOADING_MODEL: res.set_content(R"({"status": "loading model"})", "application/json"); res.status = 503; // HTTP Service Unavailable @@ -2629,26 +2836,102 @@ int main(int argc, char **argv) if (sparams.slots_endpoint) { svr.Get("/slots", [&](const httplib::Request&, httplib::Response& res) { - json slots; - for (llama_client_slot & slot : llama.slots) { - json slot_data = llama.get_formated_generation(slot); - slot_data["id"] = slot.id; - slot_data["task_id"] = slot.task_id; - slot_data["state"] = slot.state; - slot_data["prompt"] = slot.prompt; - slot_data["next_token"] = { - {"has_next_token", slot.has_next_token}, - {"n_remain", slot.n_remaining}, - {"num_tokens_predicted", slot.n_decoded}, - {"stopped_eos", slot.stopped_eos}, - {"stopped_word", slot.stopped_word}, - {"stopped_limit", slot.stopped_limit}, - {"stopping_word", slot.stopping_word}, - }; + // request slots data using task queue + task_server task; + task.id = llama.queue_tasks.get_new_id(); + task.type = TASK_TYPE_METRICS; + task.target_id = -1; - slots.push_back(slot_data); + llama.queue_results.add_waiting_task_id(task.id); + llama.queue_tasks.post(task); + + // get the result + task_result result = llama.queue_results.recv(task.id); + llama.queue_results.remove_waiting_task_id(task.id); + + res.set_content(result.result_json["slots"].dump(), "application/json"); + res.status = 200; // HTTP OK + }); + } + + if (sparams.metrics_endpoint) { + svr.Get("/metrics", [&](const httplib::Request&, httplib::Response& res) { + // request slots data using task queue + task_server task; + task.id = llama.queue_tasks.get_new_id(); + task.type = TASK_TYPE_METRICS; + task.target_id = -1; + + llama.queue_results.add_waiting_task_id(task.id); + llama.queue_tasks.post(task); + + // get the result + task_result result = llama.queue_results.recv(task.id); + llama.queue_results.remove_waiting_task_id(task.id); + + json data = result.result_json; + + uint64_t n_prompt_tokens_processed = data["n_prompt_tokens_processed"]; + uint64_t t_prompt_processing = data["t_prompt_processing"]; + + uint64_t n_tokens_predicted = data["n_tokens_predicted"]; + uint64_t t_tokens_generation = data["t_tokens_generation"]; + + int32_t kv_cache_used_cells = data["kv_cache_used_cells"]; + + // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names + json all_metrics_def = json { + {"counter", {{ + {"name", "prompt_tokens_total"}, + {"help", "Number of prompt tokens processed."}, + {"value", data["n_prompt_tokens_processed_total"]} + }, { + {"name", "tokens_predicted_total"}, + {"help", "Number of generation tokens processed."}, + {"value", data["n_tokens_predicted_total"]} + }}}, + {"gauge", {{ + {"name", "prompt_tokens_seconds"}, + {"help", "Average prompt throughput in tokens/s."}, + {"value", n_prompt_tokens_processed ? 1e3 / t_prompt_processing * n_prompt_tokens_processed : 0} + },{ + {"name", "predicted_tokens_seconds"}, + {"help", "Average generation throughput in tokens/s."}, + {"value", n_tokens_predicted ? 1e3 / t_tokens_generation * n_tokens_predicted : 0} + },{ + {"name", "kv_cache_usage_ratio"}, + {"help", "KV-cache usage. 1 means 100 percent usage."}, + {"value", 1. * kv_cache_used_cells / params.n_ctx} + },{ + {"name", "kv_cache_tokens"}, + {"help", "KV-cache tokens."}, + {"value", data["kv_cache_tokens_count"]} + },{ + {"name", "requests_processing"}, + {"help", "Number of request processing."}, + {"value", data["processing"]} + },{ + {"name", "requests_deferred"}, + {"help", "Number of request deferred."}, + {"value", data["deferred"]} + }}} + }; + + std::stringstream prometheus; + for (const auto& el : all_metrics_def.items()) { + const auto& type = el.key(); + const auto& metrics_def = el.value(); + for (const auto& metric_def : metrics_def) { + std::string name = metric_def["name"]; + std::string help = metric_def["help"]; + auto value = json_value(metric_def, "value", 0); + prometheus << "# HELP llamacpp:" << name << " " << help << "\n" + << "# TYPE llamacpp:" << name << " " << type << "\n" + << "llamacpp:" << name << " " << value << "\n"; + } } - res.set_content(slots.dump(), "application/json"); + + res.set_content(prometheus.str(), "text/plain; version=0.0.4"); res.status = 200; // HTTP OK }); } @@ -2705,9 +2988,6 @@ int main(int argc, char **argv) // Set the base directory for serving static files svr.set_base_dir(sparams.public_path); - // to make it ctrl+clickable: - LOG_TEE("\nllama server listening at http://%s:%d\n\n", sparams.hostname.c_str(), sparams.port); - std::unordered_map log_data; log_data["hostname"] = sparams.hostname; log_data["port"] = std::to_string(sparams.port); @@ -2718,19 +2998,6 @@ int main(int argc, char **argv) log_data["api_key"] = "api_key: " + std::to_string(sparams.api_keys.size()) + " keys loaded"; } - LOG_INFO("HTTP server listening", log_data); - // run the HTTP server in a thread - see comment below - std::thread t([&]() - { - if (!svr.listen_after_bind()) - { - state.store(SERVER_STATE_ERROR); - return 1; - } - - return 0; - }); - // load the model if (!llama.load_model(params)) { @@ -2741,6 +3008,12 @@ int main(int argc, char **argv) state.store(SERVER_STATE_READY); LOG_INFO("model loaded", {}); } + const auto model_meta = llama.model_meta(); + + if (sparams.chat_template.empty()) { // custom chat template is not supplied + // check if the template comes with the model is supported by us + llama.validate_model_chat_template(sparams); + } // Middleware for API key validation auto validate_api_key = [&sparams](const httplib::Request &req, httplib::Response &res) -> bool { @@ -2885,7 +3158,7 @@ int main(int argc, char **argv) } }); - svr.Get("/v1/models", [¶ms](const httplib::Request& req, httplib::Response& res) + svr.Get("/v1/models", [¶ms, &model_meta](const httplib::Request& req, httplib::Response& res) { res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); std::time_t t = std::time(0); @@ -2894,10 +3167,11 @@ int main(int argc, char **argv) {"object", "list"}, {"data", { { - {"id", params.model_alias}, - {"object", "model"}, - {"created", t}, - {"owned_by", "llamacpp"} + {"id", params.model_alias}, + {"object", "model"}, + {"created", t}, + {"owned_by", "llamacpp"}, + {"meta", model_meta} }, }} }; @@ -2905,87 +3179,88 @@ int main(int argc, char **argv) res.set_content(models.dump(), "application/json; charset=utf-8"); }); + const auto chat_completions = [&llama, &validate_api_key, &sparams](const httplib::Request &req, httplib::Response &res) + { + res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); + if (!validate_api_key(req, res)) { + return; + } + json data = oaicompat_completion_params_parse(llama.model, json::parse(req.body), sparams.chat_template); - // TODO: add mount point without "/v1" prefix -- how? - svr.Post("/v1/chat/completions", [&llama, &validate_api_key, &sparams](const httplib::Request &req, httplib::Response &res) - { - res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); - if (!validate_api_key(req, res)) { - return; - } - json data = oaicompat_completion_params_parse(json::parse(req.body), sparams.chat_template); + const int task_id = llama.queue_tasks.get_new_id(); + llama.queue_results.add_waiting_task_id(task_id); + llama.request_completion(task_id, data, false, false, -1); - const int task_id = llama.queue_tasks.get_new_id(); - llama.queue_results.add_waiting_task_id(task_id); - llama.request_completion(task_id, data, false, false, -1); + if (!json_value(data, "stream", false)) { + std::string completion_text; + task_result result = llama.queue_results.recv(task_id); - if (!json_value(data, "stream", false)) { - std::string completion_text; - task_result result = llama.queue_results.recv(task_id); + if (!result.error && result.stop) { + json oaicompat_result = format_final_response_oaicompat(data, result); - if (!result.error && result.stop) { - json oaicompat_result = format_final_response_oaicompat(data, result); + res.set_content(oaicompat_result.dump(-1, ' ', false, + json::error_handler_t::replace), + "application/json; charset=utf-8"); + } else { + res.status = 500; + res.set_content(result.result_json["content"], "text/plain; charset=utf-8"); + } + llama.queue_results.remove_waiting_task_id(task_id); + } else { + const auto chunked_content_provider = [task_id, &llama](size_t, httplib::DataSink &sink) { + while (true) { + task_result llama_result = llama.queue_results.recv(task_id); + if (!llama_result.error) { + std::vector result_array = format_partial_response_oaicompat( llama_result); - res.set_content(oaicompat_result.dump(-1, ' ', false, - json::error_handler_t::replace), - "application/json; charset=utf-8"); - } else { - res.status = 500; - res.set_content(result.result_json["content"], "text/plain; charset=utf-8"); - } - llama.queue_results.remove_waiting_task_id(task_id); - } else { - const auto chunked_content_provider = [task_id, &llama](size_t, httplib::DataSink &sink) { - while (true) { - task_result llama_result = llama.queue_results.recv(task_id); - if (!llama_result.error) { - std::vector result_array = format_partial_response_oaicompat( llama_result); - - for (auto it = result_array.begin(); it != result_array.end(); ++it) - { - if (!it->empty()) { - const std::string str = - "data: " + - it->dump(-1, ' ', false, json::error_handler_t::replace) + - "\n\n"; - LOG_VERBOSE("data stream", {{"to_send", str}}); - if (!sink.write(str.c_str(), str.size())) { - llama.queue_results.remove_waiting_task_id(task_id); - return false; - } - } - } - if (llama_result.stop) { - break; - } - } else { + for (auto it = result_array.begin(); it != result_array.end(); ++it) + { + if (!it->empty()) { const std::string str = - "error: " + - llama_result.result_json.dump(-1, ' ', false, - json::error_handler_t::replace) + + "data: " + + it->dump(-1, ' ', false, json::error_handler_t::replace) + "\n\n"; LOG_VERBOSE("data stream", {{"to_send", str}}); if (!sink.write(str.c_str(), str.size())) { llama.queue_results.remove_waiting_task_id(task_id); return false; } - break; } } - sink.done(); - llama.queue_results.remove_waiting_task_id(task_id); - return true; - }; - - auto on_complete = [task_id, &llama](bool) { - // cancel request - llama.request_cancel(task_id); - llama.queue_results.remove_waiting_task_id(task_id); - }; - - res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete); + if (llama_result.stop) { + break; + } + } else { + const std::string str = + "error: " + + llama_result.result_json.dump(-1, ' ', false, + json::error_handler_t::replace) + + "\n\n"; + LOG_VERBOSE("data stream", {{"to_send", str}}); + if (!sink.write(str.c_str(), str.size())) { + llama.queue_results.remove_waiting_task_id(task_id); + return false; + } + break; + } } - }); + sink.done(); + llama.queue_results.remove_waiting_task_id(task_id); + return true; + }; + + auto on_complete = [task_id, &llama](bool) { + // cancel request + llama.request_cancel(task_id); + llama.queue_results.remove_waiting_task_id(task_id); + }; + + res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete); + } + }; + + svr.Post("/chat/completions", chat_completions); + svr.Post("/v1/chat/completions", chat_completions); svr.Post("/infill", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res) { @@ -3193,12 +3468,32 @@ int main(int argc, char **argv) }*/ //); + if (sparams.n_threads_http < 1) { + // +2 threads for monitoring endpoints + sparams.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1); + } + log_data["n_threads_http"] = std::to_string(sparams.n_threads_http); + svr.new_task_queue = [&sparams] { return new httplib::ThreadPool(sparams.n_threads_http); }; + + LOG_INFO("HTTP server listening", log_data); + // run the HTTP server in a thread - see comment below + std::thread t([&]() + { + if (!svr.listen_after_bind()) + { + state.store(SERVER_STATE_ERROR); + return 1; + } + + return 0; + }); + llama.queue_tasks.on_new_task(std::bind( &llama_server_context::process_single_task, &llama, std::placeholders::_1)); llama.queue_tasks.on_finish_multitask(std::bind( &llama_server_context::on_finish_multitask, &llama, std::placeholders::_1)); - llama.queue_tasks.on_all_tasks_finished(std::bind( - &llama_server_context::run_on_all_tasks_finished, &llama)); + llama.queue_tasks.on_run_slots(std::bind( + &llama_server_context::update_slots, &llama)); llama.queue_results.on_multitask_update(std::bind( &llama_server_queue::update_multitask, &llama.queue_tasks, diff --git a/examples/server/tests/README.md b/examples/server/tests/README.md new file mode 100644 index 000000000..95a0353b6 --- /dev/null +++ b/examples/server/tests/README.md @@ -0,0 +1,67 @@ +# Server tests + +Python based server tests scenario using [BDD](https://en.wikipedia.org/wiki/Behavior-driven_development) +and [behave](https://behave.readthedocs.io/en/latest/): + +* [issues.feature](./features/issues.feature) Pending issues scenario +* [parallel.feature](./features/parallel.feature) Scenario involving multi slots and concurrent requests +* [security.feature](./features/security.feature) Security, CORS and API Key +* [server.feature](./features/server.feature) Server base scenario: completion, embedding, tokenization, etc... + +Tests target GitHub workflows job runners with 4 vCPU. + +Requests are +using [aiohttp](https://docs.aiohttp.org/en/stable/client_reference.html), [asyncio](https://docs.python.org/fr/3/library/asyncio.html) +based http client. + +Note: If the host architecture inference speed is faster than GitHub runners one, parallel scenario may randomly fail. +To mitigate it, you can increase values in `n_predict`, `kv_size`. + +### Install dependencies + +`pip install -r requirements.txt` + +### Run tests + +1. Build the server + +```shell +cd ../../.. +mkdir build +cd build +cmake ../ +cmake --build . --target server +``` + +2. Start the test: `./tests.sh` + +It's possible to override some scenario steps values with environment variables: + +| variable | description | +|--------------------------|------------------------------------------------------------------------------------------------| +| `PORT` | `context.server_port` to set the listening port of the server during scenario, default: `8080` | +| `LLAMA_SERVER_BIN_PATH` | to change the server binary path, default: `../../../build/bin/server` | +| `DEBUG` | "ON" to enable steps and server verbose mode `--verbose` | +| `SERVER_LOG_FORMAT_JSON` | if set switch server logs to json format | +| `N_GPU_LAYERS` | number of model layers to offload to VRAM `-ngl --n-gpu-layers` | + +### Run @bug, @wip or @wrong_usage annotated scenario + +Feature or Scenario must be annotated with `@llama.cpp` to be included in the default scope. + +- `@bug` annotation aims to link a scenario with a GitHub issue. +- `@wrong_usage` are meant to show user issue that are actually an expected behavior +- `@wip` to focus on a scenario working in progress +- `@slow` heavy test, disabled by default + +To run a scenario annotated with `@bug`, start: + +```shell +DEBUG=ON ./tests.sh --no-skipped --tags bug +``` + +After changing logic in `steps.py`, ensure that `@bug` and `@wrong_usage` scenario are updated. + +```shell +./tests.sh --no-skipped --tags bug,wrong_usage || echo "should failed but compile" +``` diff --git a/examples/server/tests/features/environment.py b/examples/server/tests/features/environment.py new file mode 100644 index 000000000..9fd330db6 --- /dev/null +++ b/examples/server/tests/features/environment.py @@ -0,0 +1,72 @@ +import os +import socket +import subprocess +import time +from contextlib import closing +from signal import SIGKILL + + +def before_scenario(context, scenario): + context.debug = 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON' + if context.debug: + print("DEBUG=ON\n") + print(f"\x1b[33;42mStarting new scenario: {scenario.name}!\x1b[0m\n") + port = 8080 + if 'PORT' in os.environ: + port = int(os.environ['PORT']) + if is_server_listening("localhost", port): + assert False, "Server already started" + + +def after_scenario(context, scenario): + if context.server_process is None: + return + if scenario.status == "failed": + if 'GITHUB_ACTIONS' in os.environ: + print(f"\x1b[33;101mSCENARIO FAILED: {scenario.name} server logs:\x1b[0m\n\n") + if os.path.isfile('llama.log'): + with closing(open('llama.log', 'r')) as f: + for line in f: + print(line) + if not is_server_listening(context.server_fqdn, context.server_port): + print("\x1b[33;101mERROR: Server stopped listening\x1b[0m") + + if not pid_exists(context.server_process.pid): + assert False, f"Server not running pid={context.server_process.pid} ..." + + print(f"stopping server pid={context.server_process.pid} ...") + context.server_process.kill() + # Wait few for socket to free up + time.sleep(0.05) + + attempts = 0 + while is_server_listening(context.server_fqdn, context.server_port): + print(f"stopping server pid={context.server_process.pid} ...") + os.kill(context.server_process.pid, SIGKILL) + time.sleep(0.1) + attempts += 1 + if attempts > 5: + print(f"Server dangling exits, killing all {context.server_path} ...") + process = subprocess.run(['killall', '-9', context.server_path], + stderr=subprocess.PIPE, + universal_newlines=True) + print(process) + + +def is_server_listening(server_fqdn, server_port): + with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock: + result = sock.connect_ex((server_fqdn, server_port)) + return result == 0 + + +def pid_exists(pid): + """Check whether pid exists in the current process table.""" + import errno + if pid < 0: + return False + try: + os.kill(pid, 0) + except OSError as e: + return e.errno == errno.EPERM + else: + return True diff --git a/examples/server/tests/features/issues.feature b/examples/server/tests/features/issues.feature new file mode 100644 index 000000000..7b13e44ca --- /dev/null +++ b/examples/server/tests/features/issues.feature @@ -0,0 +1,5 @@ +# List of ongoing issues +# run with: DEBUG=ON ./tests.sh --no-skipped --tags bug +@bug +Feature: Issues + # No confirmed issue at the moment diff --git a/examples/server/tests/features/parallel.feature b/examples/server/tests/features/parallel.feature new file mode 100644 index 000000000..86cdf7282 --- /dev/null +++ b/examples/server/tests/features/parallel.feature @@ -0,0 +1,146 @@ +@llama.cpp +@parallel +Feature: Parallel + + Background: Server startup + Given a server listening on localhost:8080 + And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models + And 42 as server seed + And 512 as batch size + And 64 KV cache size + And 2 slots + And embeddings extraction + And continuous batching + Then the server is starting + Then the server is healthy + + Scenario Outline: Multi users completion + Given a prompt: + """ + Write a very long story about AI. + """ + And a prompt: + """ + Write another very long music lyrics. + """ + And max tokens to predict + Given concurrent completion requests + Then the server is busy + Then the server is idle + And all slots are idle + Then all prompts are predicted with tokens + Examples: + | n_predict | + | 128 | + + Scenario Outline: Multi users OAI completions compatibility + Given a system prompt You are a writer. + And a model tinyllama-2 + Given a prompt: + """ + Write a very long book. + """ + And a prompt: + """ + Write another a poem. + """ + And max tokens to predict + And streaming is + Given concurrent OAI completions requests + Then the server is busy + Then the server is idle + Then all prompts are predicted with tokens + Examples: + | streaming | n_predict | + | disabled | 128 | + | enabled | 64 | + + Scenario Outline: Multi users OAI completions compatibility no v1 + Given a system prompt You are a writer. + And a model tinyllama-2 + Given a prompt: + """ + Write a very long book. + """ + And a prompt: + """ + Write another a poem. + """ + And max tokens to predict + And streaming is + Given concurrent OAI completions requests no v1 + Then the server is busy + Then the server is idle + Then all prompts are predicted with tokens + Examples: + | streaming | n_predict | + | disabled | 128 | + | enabled | 64 | + + Scenario: Multi users with total number of tokens to predict exceeds the KV Cache size #3969 + Given a prompt: + """ + Write a very long story about AI. + """ + And a prompt: + """ + Write another very long music lyrics. + """ + And a prompt: + """ + Write a very long poem. + """ + And a prompt: + """ + Write a very long joke. + """ + And 128 max tokens to predict + Given concurrent completion requests + Then the server is busy + Then the server is idle + Then all prompts are predicted + + Scenario: Multi users embeddings + Given a prompt: + """ + Write a very long story about AI. + """ + And a prompt: + """ + Write another very long music lyrics. + """ + And a prompt: + """ + Write a very long poem. + """ + And a prompt: + """ + Write a very long joke. + """ + Given concurrent embedding requests + Then the server is busy + Then the server is idle + Then all embeddings are generated + + Scenario: Multi users OAI compatibility embeddings + Given a prompt: + """ + In which country Paris is located ? + """ + And a prompt: + """ + Is Madrid the capital of Spain ? + """ + And a prompt: + """ + What is the biggest US city ? + """ + And a prompt: + """ + What is the capital of Bulgaria ? + """ + And a model tinyllama-2 + Given concurrent OAI embedding requests + Then the server is busy + Then the server is idle + Then all embeddings are generated diff --git a/examples/server/tests/features/passkey.feature b/examples/server/tests/features/passkey.feature new file mode 100644 index 000000000..1bde7aab8 --- /dev/null +++ b/examples/server/tests/features/passkey.feature @@ -0,0 +1,55 @@ +# run with: ./tests.sh --no-skipped --tags passkey +@passkey +@slow +Feature: Passkey / Self-extend with context shift + + Background: Server startup + Given a server listening on localhost:8080 + + # Generates a long text of junk and inserts a secret passkey number inside it. + # Then we query the LLM for the secret passkey. + # see #3856 and #4810 + Scenario Outline: Passkey + Given a model file from HF repo + And as batch size + And as number of junk + And server max tokens to predict + And 42 as seed + And KV cache size + And 1 slots + And group attention factor to extend context size through self-extend + And group attention width to extend context size through self-extend + # Can be override with N_GPU_LAYERS + And GPU offloaded layers + Then the server is starting + Then the server is healthy + Given available models + Then model 0 is trained on tokens context + Given a prefix prompt: + """ + here is an important info hidden inside a lot of irrelevant text. Find it and memorize them. I will quiz you about the important information there. + """ + And a passkey prompt template: + """ + The pass key is Remember it. is the pass key. + """ + And a junk suffix prompt: + """ + The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again. + """ + And a suffix prompt: + """ + What is the pass key? The pass key is + """ + Given a "" passkey challenge prompt with the passkey inserted every junk + And a completion request with no api error + Then tokens are predicted matching + + Examples: + | hf_repo | hf_file | n_ctx_train | ngl | n_ctx | n_batch | n_ga | n_ga_w | n_junk | i_pos | passkey | n_predicted | re_content | + | TheBloke/phi-2-GGUF | phi-2.Q4_K_M.gguf | 2048 | 5 | 8192 | 512 | 4 | 512 | 250 | 50 | 42 | 1 | 42 | + | TheBloke/phi-2-GGUF | phi-2.Q4_K_M.gguf | 2048 | 5 | 8192 | 512 | 2 | 512 | 250 | 50 | 42 | 1 | \b((?!42)\w)+\b | + #| TheBloke/Llama-2-7B-GGUF | llama-2-7b.Q2_K.gguf | 4096 | 3 | 16384 | 512 | 4 | 512 | 500 | 300 | 1234 | 5 | 1234 | + #| TheBloke/Mixtral-8x7B-v0.1-GGUF | mixtral-8x7b-v0.1.Q2_K.gguf | 32768 | 2 | 16384 | 512 | 4 | 512 | 500 | 100 | 0987 | 5 | 0 + # 987 | + diff --git a/examples/server/tests/features/security.feature b/examples/server/tests/features/security.feature new file mode 100644 index 000000000..42a6709a5 --- /dev/null +++ b/examples/server/tests/features/security.feature @@ -0,0 +1,51 @@ +@llama.cpp +@security +Feature: Security + + Background: Server startup with an api key defined + Given a server listening on localhost:8080 + And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models + And a server api key llama.cpp + Then the server is starting + Then the server is healthy + + Scenario Outline: Completion with some user api key + Given a prompt test + And a user api key + And 4 max tokens to predict + And a completion request with api error + + Examples: Prompts + | api_key | api_error | + | llama.cpp | no | + | llama.cpp | no | + | hackeme | raised | + | | raised | + + Scenario Outline: OAI Compatibility + Given a system prompt test + And a user prompt test + And a model test + And 2 max tokens to predict + And streaming is disabled + And a user api key + Given an OAI compatible chat completions request with api error + + Examples: Prompts + | api_key | api_error | + | llama.cpp | no | + | llama.cpp | no | + | hackme | raised | + + + Scenario Outline: CORS Options + When an OPTIONS request is sent from + Then CORS header is set to + + Examples: Headers + | origin | cors_header | cors_header_value | + | localhost | Access-Control-Allow-Origin | localhost | + | web.mydomain.fr | Access-Control-Allow-Origin | web.mydomain.fr | + | origin | Access-Control-Allow-Credentials | true | + | web.mydomain.fr | Access-Control-Allow-Methods | POST | + | web.mydomain.fr | Access-Control-Allow-Headers | * | diff --git a/examples/server/tests/features/server.feature b/examples/server/tests/features/server.feature new file mode 100644 index 000000000..7c977bcce --- /dev/null +++ b/examples/server/tests/features/server.feature @@ -0,0 +1,91 @@ +@llama.cpp +@server +Feature: llama.cpp server + + Background: Server startup + Given a server listening on localhost:8080 + And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models + And a model alias tinyllama-2 + And 42 as server seed + # KV Cache corresponds to the total amount of tokens + # that can be stored across all independent sequences: #4130 + # see --ctx-size and #5568 + And 32 KV cache size + And 512 as batch size + And 1 slots + And embeddings extraction + And 32 server max tokens to predict + And prometheus compatible metrics exposed + Then the server is starting + Then the server is healthy + + Scenario: Health + Then the server is ready + And all slots are idle + + Scenario Outline: Completion + Given a prompt + And max tokens to predict + And a completion request with no api error + Then tokens are predicted matching + And prometheus metrics are exposed + + Examples: Prompts + | prompt | n_predict | re_content | n_predicted | + | I believe the meaning of life is | 8 | (read\|going)+ | 8 | + | Write a joke about AI | 64 | (park\|friends\|scared\|always)+ | 32 | + + Scenario Outline: OAI Compatibility + Given a model + And a system prompt + And a user prompt + And max tokens to predict + And streaming is + Given an OAI compatible chat completions request with no api error + Then tokens are predicted matching + + Examples: Prompts + | model | system_prompt | user_prompt | max_tokens | re_content | n_predicted | enable_streaming | + | llama-2 | Book | What is the best book | 8 | (Mom\|what)+ | 8 | disabled | + | codellama70b | You are a coding assistant. | Write the fibonacci function in c++. | 64 | (thanks\|happy\|bird)+ | 32 | enabled | + + Scenario: Embedding + When embeddings are computed for: + """ + What is the capital of Bulgaria ? + """ + Then embeddings are generated + + Scenario: OAI Embeddings compatibility + Given a model tinyllama-2 + When an OAI compatible embeddings computation request for: + """ + What is the capital of Spain ? + """ + Then embeddings are generated + + Scenario: OAI Embeddings compatibility with multiple inputs + Given a model tinyllama-2 + Given a prompt: + """ + In which country Paris is located ? + """ + And a prompt: + """ + Is Madrid the capital of Spain ? + """ + When an OAI compatible embeddings computation request for multiple inputs + Then embeddings are generated + + Scenario: Tokenize / Detokenize + When tokenizing: + """ + What is the capital of France ? + """ + Then tokens can be detokenize + + Scenario: Models available + Given available models + Then 1 models are supported + Then model 0 is identified by tinyllama-2 + Then model 0 is trained on 128 tokens context diff --git a/examples/server/tests/features/steps/steps.py b/examples/server/tests/features/steps/steps.py new file mode 100644 index 000000000..319527802 --- /dev/null +++ b/examples/server/tests/features/steps/steps.py @@ -0,0 +1,970 @@ +import asyncio +import collections +import json +import os +import re +import socket +import subprocess +import time +from contextlib import closing +from re import RegexFlag + +import aiohttp +import openai +from behave import step +from behave.api.async_step import async_run_until_complete +from huggingface_hub import hf_hub_download +from prometheus_client import parser + + +@step(u"a server listening on {server_fqdn}:{server_port}") +def step_server_config(context, server_fqdn, server_port): + context.server_fqdn = server_fqdn + context.server_port = int(server_port) + if 'PORT' in os.environ: + context.server_port = int(os.environ['PORT']) + print(f"$PORT set, overriding server port with to {context.server_port}") + + context.base_url = f'http://{context.server_fqdn}:{context.server_port}' + + context.model_alias = None + context.n_batch = None + context.n_ctx = None + context.n_ga = None + context.n_ga_w = None + context.n_gpu_layer = None + context.n_predict = None + context.n_server_predict = None + context.n_slots = None + context.prompt_prefix = None + context.prompt_suffix = None + context.server_api_key = None + context.server_continuous_batching = False + context.server_embeddings = False + context.server_metrics = False + context.server_process = None + context.seed = None + context.server_seed = None + context.user_api_key = None + + context.tasks_result = [] + context.concurrent_tasks = [] + context.prompts = [] + + +@step(u'a model file {hf_file} from HF repo {hf_repo}') +def step_download_hf_model(context, hf_file, hf_repo): + context.model_file = hf_hub_download(repo_id=hf_repo, filename=hf_file) + if context.debug: + print(f"model file: {context.model_file}\n") + + +@step(u'a model alias {model_alias}') +def step_model_alias(context, model_alias): + context.model_alias = model_alias + + +@step(u'{seed:d} as server seed') +def step_seed(context, seed): + context.server_seed = seed + + +@step(u'{ngl:d} GPU offloaded layers') +def step_n_gpu_layer(context, ngl): + if 'N_GPU_LAYERS' in os.environ: + new_ngl = int(os.environ['N_GPU_LAYERS']) + if context.debug: + print(f"-ngl upgraded from {ngl} to {new_ngl}") + ngl = new_ngl + context.n_gpu_layer = ngl + + +@step(u'{n_ctx:d} KV cache size') +def step_n_ctx(context, n_ctx): + context.n_ctx = n_ctx + + +@step(u'{n_slots:d} slots') +def step_n_slots(context, n_slots): + context.n_slots = n_slots + + +@step(u'{n_predict:d} server max tokens to predict') +def step_server_n_predict(context, n_predict): + context.n_server_predict = n_predict + + +@step(u'continuous batching') +def step_server_continuous_batching(context): + context.server_continuous_batching = True + + +@step(u'embeddings extraction') +def step_server_embeddings(context): + context.server_embeddings = True + + +@step(u'prometheus compatible metrics exposed') +def step_server_metrics(context): + context.server_metrics = True + + +@step(u"the server is starting") +def step_start_server(context): + start_server_background(context) + attempts = 0 + while True: + with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock: + result = sock.connect_ex((context.server_fqdn, context.server_port)) + if result == 0: + print("\x1b[33;46mserver started!\x1b[0m") + return + attempts += 1 + if attempts > 20: + assert False, "server not started" + print(f"waiting for server to start, connect error code = {result}...") + time.sleep(0.1) + + +@step(u"the server is {expecting_status}") +@async_run_until_complete +async def step_wait_for_the_server_to_be_started(context, expecting_status): + match expecting_status: + case 'healthy': + await wait_for_health_status(context, context.base_url, 200, 'ok') + + case 'ready' | 'idle': + await wait_for_health_status(context, context.base_url, 200, 'ok', + timeout=10, + params={'fail_on_no_slot': 0, 'include_slots': 0}, + slots_idle=context.n_slots, + slots_processing=0, + expected_slots=[{'id': slot_id, 'state': 0} + for slot_id in + range(context.n_slots if context.n_slots else 1)]) + case 'busy': + await wait_for_health_status(context, context.base_url, 503, + 'no slot available', + params={'fail_on_no_slot': 0, 'include_slots': 0}, + slots_idle=0, + slots_processing=context.n_slots, + expected_slots=[{'id': slot_id, 'state': 1} + for slot_id in + range(context.n_slots if context.n_slots else 1)]) + case _: + assert False, "unknown status" + + +@step(u'all slots are {expected_slot_status_string}') +@async_run_until_complete +async def step_all_slots_status(context, expected_slot_status_string): + match expected_slot_status_string: + case 'idle': + expected_slot_status = 0 + case 'busy': + expected_slot_status = 1 + case _: + assert False, "unknown status" + + expected_slots = [{'id': slot_id, 'state': expected_slot_status} + for slot_id in range(context.n_slots)] + await request_slots_status(context, expected_slots) + + +@step(u'a completion request with {api_error} api error') +@async_run_until_complete +async def step_request_completion(context, api_error): + expect_api_error = api_error == 'raised' + completion = await request_completion(context.prompts.pop(), + context.base_url, + debug=context.debug, + n_predict=context.n_predict, + seed=await completions_seed(context), + expect_api_error=expect_api_error, + user_api_key=context.user_api_key) + context.tasks_result.append(completion) + if context.debug: + print(f"Completion response: {completion}\n") + if expect_api_error: + assert completion == 401, f"completion must be an 401 status code: {completion}" + + +@step(u'{predicted_n:d} tokens are predicted matching {re_content}') +def step_n_tokens_predicted_with_content(context, predicted_n, re_content): + assert_n_tokens_predicted(context.tasks_result.pop(), predicted_n, re_content) + + +@step(u'{predicted_n:d} tokens are predicted') +def step_n_tokens_predicted(context, predicted_n): + assert_n_tokens_predicted(context.tasks_result.pop(), predicted_n) + + +@step(u'a user prompt {user_prompt}') +def step_user_prompt(context, user_prompt): + context.prompts.append(user_prompt) + + +@step(u'a system prompt {system_prompt}') +def step_system_prompt(context, system_prompt): + context.system_prompt = system_prompt + + +@step(u'a model {model}') +def step_model(context, model): + context.model = model + + +@step(u'{max_tokens:d} max tokens to predict') +def step_max_tokens(context, max_tokens): + context.n_predict = max_tokens + + +@step(u'streaming is {enable_streaming}') +def step_streaming(context, enable_streaming): + context.enable_streaming = enable_streaming == 'enabled' + + +@step(u'a user api key {user_api_key}') +def step_user_api_key(context, user_api_key): + context.user_api_key = user_api_key + + +@step(u'no user api key') +def step_no_user_api_key(context): + context.user_api_key = None + + +@step(u'a user api key ') +def step_no_user_api_key_space(context): + context.user_api_key = None + + +@step(u'a server api key {server_api_key}') +def step_server_api_key(context, server_api_key): + context.server_api_key = server_api_key + + +@step(u'{n_junk:d} as number of junk') +def step_n_junk(context, n_junk): + context.n_junk = n_junk + + +@step(u'{n_batch:d} as batch size') +def step_n_batch(context, n_batch): + context.n_batch = n_batch + + +@step(u'{seed:d} as seed') +def step_seed(context, seed): + context.seed = seed + + +@step(u'a prefix prompt') +def step_prompt_prefix(context): + context.prompt_prefix = context.text + + +@step(u'a junk suffix prompt') +def step_prompt_junk_suffix(context): + context.prompt_junk_suffix = context.text + + +@step(u'a suffix prompt') +def step_prompt_suffix(context): + context.prompt_suffix = context.text + + +@step(u'{n_ga:d} group attention factor' + u' to extend context size through self-extend') +def step_impl(context, n_ga): + context.n_ga = n_ga + + +@step(u'{n_ga_w:d} group attention width to extend context size through self-extend') +def step_impl(context, n_ga_w): + context.n_ga_w = n_ga_w + + +@step(u'a passkey prompt template') +def step_prompt_passkey(context): + context.prompt_passkey = context.text + + +@step(u'a "{passkey}" passkey challenge prompt with the passkey inserted every {i_pos:d} junk') +def step_prompt_passkey(context, passkey, i_pos): + prompt = "" + for i in range(context.n_junk): + if i % context.n_junk == i_pos: + prompt += context.prompt_passkey # the passkey is already substituted + prompt += context.prompt_junk_suffix + if context.debug: + passkey_highlight = "\x1b[33m" + passkey + "\x1b[0m" + print(f"Passkey challenge:\n```{prompt.replace(passkey, passkey_highlight)}```\n") + context.prompts.append(context.prompt_prefix + prompt + context.prompt_suffix) + + +@step(u'an OAI compatible chat completions request with {api_error} api error') +@async_run_until_complete +async def step_oai_chat_completions(context, api_error): + if context.debug: + print(f"Submitting OAI compatible completions request...\n") + expect_api_error = api_error == 'raised' + completion = await oai_chat_completions(context.prompts.pop(), + context.system_prompt, + context.base_url, + '/v1/chat', + False, + model=context.model if hasattr(context, 'model') else None, + + n_predict=context.n_predict + if hasattr(context, 'n_predict') else None, + + enable_streaming=context.enable_streaming + if hasattr(context, 'enable_streaming') else None, + + seed=await completions_seed(context), + + user_api_key=context.user_api_key + if hasattr(context, 'user_api_key') else None, + + expect_api_error=expect_api_error) + context.tasks_result.append(completion) + if context.debug: + print(f"Completion response: {completion}") + if expect_api_error: + assert completion == 401, f"completion must be an 401 status code: {completion}" + + if context.debug: + print(f"Completion response: {completion}") + + +@step(u'a prompt') +def step_a_prompt(context): + context.prompts.append(context.text) + + +@step(u'a prompt {prompt}') +def step_a_prompt_prompt(context, prompt): + context.prompts.append(prompt) + + +@step(u'concurrent completion requests') +@async_run_until_complete() +async def step_concurrent_completion_requests(context): + await concurrent_requests(context, + request_completion, + # prompt is inserted automatically + context.base_url, + debug=context.debug, + prompt_prefix=context.prompt_prefix, + prompt_suffix=context.prompt_suffix, + n_predict=context.n_predict if hasattr(context, 'n_predict') else None, + seed=await completions_seed(context), + user_api_key=context.user_api_key if hasattr(context, + 'user_api_key') else None) + + +@step(u'concurrent OAI completions requests') +@async_run_until_complete +async def step_oai_chat_completions(context): + await concurrent_requests(context, oai_chat_completions, + # user_prompt is inserted automatically + context.system_prompt, + context.base_url, + '/v1/chat/completions', + True, # async_client + model=context.model + if hasattr(context, 'model') else None, + n_predict=context.n_predict + if hasattr(context, 'n_predict') else None, + enable_streaming=context.enable_streaming + if hasattr(context, 'enable_streaming') else None, + seed=await completions_seed(context), + user_api_key=context.user_api_key + if hasattr(context, 'user_api_key') else None) + + +@step(u'concurrent OAI completions requests no v1') +@async_run_until_complete +async def step_oai_chat_completions(context): + await concurrent_requests(context, oai_chat_completions, + # user_prompt is inserted automatically + context.system_prompt, + context.base_url, + '/chat/completions', + True, # async_client + model=context.model + if hasattr(context, 'model') else None, + n_predict=context.n_predict + if hasattr(context, 'n_predict') else None, + enable_streaming=context.enable_streaming + if hasattr(context, 'enable_streaming') else None, + seed=context.seed + if hasattr(context, 'seed') else + context.server_seed + if hasattr(context, 'server_seed') else None, + user_api_key=context.user_api_key + if hasattr(context, 'user_api_key') else None) + + +@step(u'all prompts are predicted') +@async_run_until_complete +async def step_all_prompts_are_predicted(context): + await all_prompts_are_predicted(context) + + +@step(u'all prompts are predicted with {n_expected_predicted:d} tokens') +@async_run_until_complete +async def step_all_prompts_are_predicted_with_n_tokens(context, n_expected_predicted): + await all_prompts_are_predicted(context, n_expected_predicted) + + +async def all_prompts_are_predicted(context, expected_predicted_n=None): + n_completions = await gather_tasks_results(context) + assert n_completions > 0 + for i in range(n_completions): + assert_n_tokens_predicted(context.tasks_result.pop(), expected_predicted_n=expected_predicted_n) + assert len(context.concurrent_tasks) == 0, f"{len(context.concurrent_tasks)} pending requests" + + +@step(u'embeddings are computed for') +@async_run_until_complete +async def step_compute_embedding(context): + context.embeddings = await request_embedding(context.text, base_url=context.base_url) + + +@step(u'embeddings are generated') +def step_assert_embeddings(context): + if len(context.prompts) == 0: + assert_embeddings(context.embeddings) + else: + assert len(context.embeddings) == len(context.prompts), (f"unexpected response:\n" + f"context.prompts={context.prompts}\n" + f"context.embeddings={context.embeddings}") + for embedding in context.embeddings: + context.prompts.pop() + assert_embeddings(embedding) + + +@step(u'an OAI compatible embeddings computation request for') +@async_run_until_complete +async def step_oai_compute_embeddings(context): + context.embeddings = await request_oai_embeddings(context.text, + base_url=context.base_url, + user_api_key=context.user_api_key, + model=context.model) + + +@step(u'an OAI compatible embeddings computation request for multiple inputs') +@async_run_until_complete +async def step_oai_compute_embeddings_multiple_inputs(context): + context.embeddings = await request_oai_embeddings(context.prompts, + base_url=context.base_url, + user_api_key=context.user_api_key, + model=context.model) + + +@step(u'concurrent embedding requests') +@async_run_until_complete() +async def step_concurrent_embedding_requests(context): + await concurrent_requests(context, + request_embedding, + # prompt is inserted automatically + base_url=context.base_url) + + +@step(u'concurrent OAI embedding requests') +@async_run_until_complete() +async def step_concurrent_oai_embedding_requests(context): + await concurrent_requests(context, + request_oai_embeddings, + # prompt is inserted automatically + base_url=context.base_url, + async_client=True, + model=context.model) + + +@step(u'all embeddings are generated') +@async_run_until_complete() +async def all_embeddings_are_generated(context): + n_embedding_requests = await gather_tasks_results(context) + assert n_embedding_requests > 0 + for i in range(n_embedding_requests): + assert_embeddings(context.tasks_result.pop()) + + +@step(u'tokenizing') +@async_run_until_complete +async def step_tokenize(context): + context.tokenized_text = context.text + async with aiohttp.ClientSession() as session: + async with session.post(f'{context.base_url}/tokenize', + json={ + "content": context.tokenized_text, + }) as response: + assert response.status == 200 + tokenize_json = await response.json() + context.tokens = tokenize_json['tokens'] + + +@step(u'tokens can be detokenize') +@async_run_until_complete +async def step_detokenize(context): + assert len(context.tokens) > 0 + async with aiohttp.ClientSession() as session: + async with session.post(f'{context.base_url}/detokenize', + json={ + "tokens": context.tokens, + }) as response: + assert response.status == 200 + detokenize_json = await response.json() + # SPM tokenizer adds a whitespace prefix: https://github.com/google/sentencepiece/issues/15 + assert context.tokenized_text == detokenize_json['content'].strip() + + +@step(u'an OPTIONS request is sent from {origin}') +@async_run_until_complete +async def step_options_request(context, origin): + async with aiohttp.ClientSession() as session: + async with session.options(f'{context.base_url}/v1/chat/completions', + headers={"Origin": origin}) as response: + assert response.status == 200 + context.options_response = response + + +@step(u'CORS header {cors_header} is set to {cors_header_value}') +def step_check_options_header_value(context, cors_header, cors_header_value): + assert context.options_response.headers[cors_header] == cors_header_value + + +@step(u'prometheus metrics are exposed') +@async_run_until_complete +async def step_prometheus_metrics_exported(context): + async with aiohttp.ClientSession() as session: + async with await session.get(f'{context.base_url}/metrics') as metrics_response: + assert metrics_response.status == 200 + assert metrics_response.headers['Content-Type'] == "text/plain; version=0.0.4" + metrics_raw = await metrics_response.text() + metric_exported = False + if context.debug: + print(f"/metrics answer:\n{metrics_raw}\n") + for metric in parser.text_string_to_metric_families(metrics_raw): + match metric.name: + case "llamacpp:kv_cache_usage_ratio": + assert len(metric.samples) > 0 + metric_exported = True + assert metric_exported, "No metrics exported" + + +@step(u'available models') +def step_available_models(context): + # openai client always expects an api_key + openai.api_key = context.user_api_key if context.user_api_key is not None else 'nope' + openai.api_base = f'{context.base_url}/v1' + context.models = openai.Model.list().data + + +@step(u'{n_model:d} models are supported') +def step_supported_models(context, n_model): + if context.debug: + print("server models available:", context.models) + assert len(context.models) == n_model + + +@step(u'model {i_model:d} is {param} {preposition} {param_value}') +def step_supported_models(context, i_model, param, preposition, param_value): + assert i_model < len(context.models) + model = context.models[i_model] + + param_value = param_value.split(' ', 1)[0] + match param: + case 'identified': + value = model.id + case 'trained': + value = str(model.meta.n_ctx_train) + case _: + assert False, "param {param} not supported" + assert param_value == value, f"model param {param} {value} != {param_value}" + + +async def concurrent_requests(context, f_completion, *args, **kwargs): + n_prompts = len(context.prompts) + if context.debug: + print(f"starting {n_prompts} concurrent completion requests...") + assert n_prompts > 0 + for prompt_no in range(n_prompts): + shifted_args = [context.prompts.pop(), *args] + context.concurrent_tasks.append(asyncio.create_task(f_completion(*shifted_args, **kwargs))) + await asyncio.sleep(0.1) + + +async def request_completion(prompt, + base_url, + debug=False, + prompt_prefix=None, + prompt_suffix=None, + n_predict=None, + seed=None, + expect_api_error=None, + user_api_key=None): + if debug: + print(f"Sending completion request: {prompt}") + origin = "my.super.domain" + headers = { + 'Origin': origin + } + if user_api_key is not None: + if debug: + print(f"Set user_api_key: {user_api_key}") + headers['Authorization'] = f'Bearer {user_api_key}' + + async with aiohttp.ClientSession() as session: + async with session.post(f'{base_url}/completion', + json={ + "input_prefix": prompt_prefix, + "prompt": prompt, + "input_suffix": prompt_suffix, + "n_predict": n_predict if n_predict is not None else -1, + "seed": seed if seed is not None else 42 + }, + headers=headers, + timeout=3600) as response: + if expect_api_error is None or not expect_api_error: + assert response.status == 200 + assert response.headers['Access-Control-Allow-Origin'] == origin + return await response.json() + else: + return response.status + + +async def oai_chat_completions(user_prompt, + system_prompt, + base_url, + base_path, + async_client, + debug=False, + model=None, + n_predict=None, + enable_streaming=None, + seed=None, + user_api_key=None, + expect_api_error=None): + if debug: + print(f"Sending OAI Chat completions request: {user_prompt}") + # openai client always expects an api key + user_api_key = user_api_key if user_api_key is not None else 'nope' + seed = seed if seed is not None else 42 + enable_streaming = enable_streaming if enable_streaming is not None else False + payload = { + "messages": [ + { + "role": "system", + "content": system_prompt, + }, + { + "role": "user", + "content": user_prompt, + } + ], + "model": model, + "max_tokens": n_predict, + "stream": enable_streaming, + "seed": seed + } + completion_response = { + 'content': '', + 'timings': { + 'predicted_n': 0 + } + } + if async_client: + origin = 'llama.cpp' + headers = {'Authorization': f'Bearer {user_api_key}', 'Origin': origin} + async with aiohttp.ClientSession() as session: + async with session.post(f'{base_url}{base_path}', + json=payload, + headers=headers) as response: + if enable_streaming: + assert response.status == 200 + assert response.headers['Access-Control-Allow-Origin'] == origin + assert response.headers['Content-Type'] == "text/event-stream" + event_received = True + while event_received: + event_received = False + async for line_in_bytes in response.content: + line = line_in_bytes.decode('utf8') + line = line.rstrip('\n').rstrip('\r') + if line == '': + continue + event_data = line.split(': ', 1) + assert event_data[0] == 'data', f'Bad event code received: ```{event_data}```' + chunk_raw = event_data[1] + + chunk = json.loads(chunk_raw) + assert len(chunk['choices']) == 1, f"no choices provided, line ```{line}```" + delta = chunk['choices'][0]['delta'] + if 'content' in delta: + completion_response['content'] += delta['content'] + completion_response['timings']['predicted_n'] += 1 + else: + if expect_api_error is None or not expect_api_error: + assert response.status == 200 + assert response.headers['Access-Control-Allow-Origin'] == origin + assert response.headers['Content-Type'] == "application/json; charset=utf-8" + chat_completion_raw = await response.json() + completion_response = { + 'content': chat_completion_raw['choices'][0]['message'], + 'timings': { + 'predicted_n': chat_completion_raw['usage']['completion_tokens'] + } + } + else: + return response.status + else: + try: + openai.api_key = user_api_key + openai.api_base = f'{base_url}{base_path}' + chat_completion = openai.Completion.create( + messages=payload['messages'], + model=model, + max_tokens=n_predict, + stream=enable_streaming, + seed=seed + ) + except openai.error.APIError as e: + if expect_api_error is not None and expect_api_error: + return 401 + else: + assert False, f'error raised: {e}' + + if enable_streaming: + for chunk in chat_completion: + assert len(chunk.choices) == 1 + delta = chunk.choices[0].delta + if 'content' in delta: + completion_response['content'] += delta['content'] + completion_response['timings']['predicted_n'] += 1 + else: + assert len(chat_completion.choices) == 1 + completion_response = { + 'content': chat_completion.choices[0].message.content, + 'timings': { + 'predicted_n': chat_completion.usage.completion_tokens + } + } + if debug: + print("OAI response formatted to llama.cpp:", completion_response) + return completion_response + + +async def request_embedding(content, base_url=None): + async with aiohttp.ClientSession() as session: + async with session.post(f'{base_url}/embedding', + json={ + "content": content, + }) as response: + assert response.status == 200 + response_json = await response.json() + return response_json['embedding'] + + +async def request_oai_embeddings(input, + base_url=None, user_api_key=None, + model=None, async_client=False): + # openai client always expects an api_key + user_api_key = user_api_key if user_api_key is not None else 'nope' + if async_client: + origin = 'llama.cpp' + if user_api_key is not None: + headers = {'Authorization': f'Bearer {user_api_key}', 'Origin': origin} + async with aiohttp.ClientSession() as session: + async with session.post(f'{base_url}/v1/embeddings', + json={ + "input": input, + "model": model, + }, + headers=headers) as response: + assert response.status == 200, f"received status code not expected: {response.status}" + assert response.headers['Access-Control-Allow-Origin'] == origin + assert response.headers['Content-Type'] == "application/json; charset=utf-8" + response_json = await response.json() + assert response_json['model'] == model, f"invalid model received: {response_json['model']}" + assert response_json['object'] == 'list' + return response_json['data'] + else: + openai.api_key = user_api_key + openai.api_base = f'{base_url}/v1' + oai_embeddings = openai.Embedding.create( + model=model, + input=input, + ) + + if isinstance(input, collections.abc.Sequence): + embeddings = [] + for an_oai_embeddings in oai_embeddings.data: + embeddings.append(an_oai_embeddings.embedding) + else: + embeddings = oai_embeddings.data.embedding + return embeddings + + +def assert_n_tokens_predicted(completion_response, expected_predicted_n=None, re_content=None): + content = completion_response['content'] + n_predicted = completion_response['timings']['predicted_n'] + assert len(content) > 0, "no token predicted" + if re_content is not None: + p = re.compile(re_content, flags=RegexFlag.IGNORECASE | RegexFlag.MULTILINE | RegexFlag.DOTALL) + matches = p.finditer(content) + last_match = 0 + highlighted = '' + for match in matches: + start, end = match.span() + highlighted += content[last_match: start] + highlighted += '\x1b[33m' + highlighted += content[start: end] + highlighted += '\x1b[0m' + last_match = end + highlighted += content[last_match:] + if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON': + print(f"Checking completion response: {highlighted}\n") + assert last_match > 0, f'/{re_content}/ must match ```{highlighted}```' + if expected_predicted_n and expected_predicted_n > 0: + assert n_predicted == expected_predicted_n, (f'invalid number of tokens predicted:' + f' {n_predicted} <> {expected_predicted_n}') + + + +async def gather_tasks_results(context): + n_tasks = len(context.concurrent_tasks) + if context.debug: + print(f"Waiting for all {n_tasks} tasks results...\n") + for task_no in range(n_tasks): + context.tasks_result.append(await context.concurrent_tasks.pop()) + n_completions = len(context.tasks_result) + return n_completions + + +async def wait_for_health_status(context, + base_url, + expected_http_status_code, + expected_health_status, + timeout=3, + params=None, + slots_idle=None, + slots_processing=None, + expected_slots=None): + if context.debug: + print(f"Starting checking for health for expected_health_status={expected_health_status}\n") + interval = 0.5 + counter = 0 + async with aiohttp.ClientSession() as session: + while True: + async with await session.get(f'{base_url}/health', params=params) as health_response: + status_code = health_response.status + health = await health_response.json() + if context.debug: + print(f"HEALTH - response for expected health status='{expected_health_status}' on " + f"'{base_url}/health'?{params} is {health}\n") + if (status_code == expected_http_status_code + and health['status'] == expected_health_status + and (slots_idle is None or health['slots_idle'] == slots_idle) + and (slots_processing is None or health['slots_processing'] == slots_processing)): + if expected_slots is not None: + assert_slots_status(health['slots'], expected_slots) + return + if (status_code == expected_http_status_code + and health['status'] == expected_health_status + and (slots_idle is None or health['slots_idle'] == slots_idle) + and (slots_processing is None or health['slots_processing'] == slots_processing)): + if expected_slots is not None: + assert_slots_status(health['slots'], expected_slots) + return + await asyncio.sleep(interval) + + counter += interval + if counter >= timeout: + # Sometimes health requests are triggered after completions are predicted + if expected_http_status_code == 503: + if len(context.tasks_result) == 0: + print("\x1b[5;37;43mWARNING: forcing concurrent tasks," + " busy health check missed, probably too fast inference\x1b[0m\n") + n_completions = await gather_tasks_results(context) + if n_completions > 0: + return + + assert False, f'{expected_health_status} timeout exceeded {counter}s>={timeout}' + + +def assert_embeddings(embeddings): + assert len(embeddings) > 0 + embeddings_computed = False + for emb in embeddings: + if emb != 0: + embeddings_computed = True + assert embeddings_computed, f"Embeddings: {embeddings}" + + +async def request_slots_status(context, expected_slots): + async with aiohttp.ClientSession() as session: + async with await session.get(f'{context.base_url}/slots') as slots_response: + assert slots_response.status == 200 + slots = await slots_response.json() + assert_slots_status(slots, expected_slots) + + +def assert_slots_status(slots, expected_slots): + assert len(slots) == len(expected_slots) + for slot_id, (expected, slot) in enumerate(zip(expected_slots, slots)): + for key in expected: + assert expected[key] == slot[key], (f"invalid slot {slot_id}" + f" expected[{key}] != slot[{key}]" + f" = {expected[key]} != {slot[key]}") + + +async def completions_seed(context): + return context.seed if hasattr(context, 'seed') and context.seed is not None \ + else context.server_seed if hasattr(context, 'server_seed') else None + + +def start_server_background(context): + context.server_path = '../../../build/bin/server' + if 'LLAMA_SERVER_BIN_PATH' in os.environ: + context.server_path = os.environ['LLAMA_SERVER_BIN_PATH'] + server_args = [ + '--host', context.server_fqdn, + '--port', context.server_port, + '--model', context.model_file + ] + if context.n_batch: + server_args.extend(['--batch-size', context.n_batch]) + if context.n_gpu_layer: + server_args.extend(['--n-gpu-layers', context.n_gpu_layer]) + if context.server_continuous_batching: + server_args.append('--cont-batching') + if context.server_embeddings: + server_args.append('--embedding') + if context.server_metrics: + server_args.append('--metrics') + if context.model_alias: + server_args.extend(['--alias', context.model_alias]) + if context.n_ctx: + server_args.extend(['--ctx-size', context.n_ctx]) + if context.n_slots: + server_args.extend(['--parallel', context.n_slots]) + if context.n_server_predict: + server_args.extend(['--n-predict', context.n_server_predict]) + if context.server_api_key: + server_args.extend(['--api-key', context.server_api_key]) + if context.n_ga: + server_args.extend(['--grp-attn-n', context.n_ga]) + if context.n_ga_w: + server_args.extend(['--grp-attn-w', context.n_ga_w]) + if context.debug: + server_args.append('--verbose') + if 'SERVER_LOG_FORMAT_JSON' not in os.environ: + server_args.extend(['--log-format', "text"]) + print(f"starting server with: {context.server_path} {server_args}\n") + context.server_process = subprocess.Popen( + [str(arg) for arg in [context.server_path, *server_args]], + close_fds=True) + print(f"server pid={context.server_process.pid}") diff --git a/examples/server/tests/features/wrong_usages.feature b/examples/server/tests/features/wrong_usages.feature new file mode 100644 index 000000000..cf14b3b44 --- /dev/null +++ b/examples/server/tests/features/wrong_usages.feature @@ -0,0 +1,22 @@ +# run with: ./tests.sh --no-skipped --tags wrong_usage +@wrong_usage +Feature: Wrong usage of llama.cpp server + + #3969 The user must always set --n-predict option + # to cap the number of tokens any completion request can generate + # or pass n_predict/max_tokens in the request. + Scenario: Infinite loop + Given a server listening on localhost:8080 + And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models + # Uncomment below to fix the issue + #And 64 server max tokens to predict + Then the server is starting + Given a prompt: + """ + Go to: infinite loop + """ + # Uncomment below to fix the issue + #And 128 max tokens to predict + Given concurrent completion requests + Then the server is idle + Then all prompts are predicted diff --git a/examples/server/tests/requirements.txt b/examples/server/tests/requirements.txt new file mode 100644 index 000000000..5d4210164 --- /dev/null +++ b/examples/server/tests/requirements.txt @@ -0,0 +1,5 @@ +aiohttp~=3.9.3 +behave~=1.2.6 +huggingface_hub~=0.20.3 +openai~=0.25.0 +prometheus-client~=0.20.0 diff --git a/examples/server/tests/tests.sh b/examples/server/tests/tests.sh new file mode 100755 index 000000000..1c6c5695f --- /dev/null +++ b/examples/server/tests/tests.sh @@ -0,0 +1,12 @@ +#!/bin/bash + +set -eu + +if [ $# -lt 1 ] +then + # Start @llama.cpp scenario + behave --summary --stop --no-capture --exclude 'issues|wrong_usages|passkey' --tags llama.cpp +else + behave "$@" +fi + diff --git a/examples/server/utils.hpp b/examples/server/utils.hpp index 0ee670dba..b6e49d8b9 100644 --- a/examples/server/utils.hpp +++ b/examples/server/utils.hpp @@ -14,6 +14,7 @@ using json = nlohmann::json; extern bool server_verbose; +extern bool server_log_json; #ifndef SERVER_VERBOSE #define SERVER_VERBOSE 1 @@ -27,18 +28,14 @@ extern bool server_verbose; { \ if (server_verbose) \ { \ - server_log("VERBOSE", __func__, __LINE__, MSG, __VA_ARGS__); \ + server_log("VERB", __func__, __LINE__, MSG, __VA_ARGS__); \ } \ } while (0) #endif -#define LOG_ERROR( MSG, ...) server_log("ERROR", __func__, __LINE__, MSG, __VA_ARGS__) -#define LOG_WARNING(MSG, ...) server_log("WARNING", __func__, __LINE__, MSG, __VA_ARGS__) -#define LOG_INFO( MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__) - -// -// parallel -// +#define LOG_ERROR( MSG, ...) server_log("ERR", __func__, __LINE__, MSG, __VA_ARGS__) +#define LOG_WARNING(MSG, ...) server_log("WARN", __func__, __LINE__, MSG, __VA_ARGS__) +#define LOG_INFO( MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__) enum server_state { SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet @@ -49,7 +46,8 @@ enum server_state { enum task_type { TASK_TYPE_COMPLETION, TASK_TYPE_CANCEL, - TASK_TYPE_NEXT_RESPONSE + TASK_TYPE_NEXT_RESPONSE, + TASK_TYPE_METRICS }; struct task_server { @@ -76,51 +74,8 @@ struct task_multi { std::vector results{}; }; -// TODO: can become bool if we can't find use of more states -enum slot_state -{ - IDLE, - PROCESSING, -}; - -enum slot_command -{ - NONE, - LOAD_PROMPT, - RELEASE, -}; - -struct slot_params -{ - bool stream = true; - bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt - - uint32_t seed = -1; // RNG seed - int32_t n_keep = 0; // number of tokens to keep from initial prompt - int32_t n_predict = -1; // new tokens to predict - - std::vector antiprompt; - - json input_prefix; - json input_suffix; -}; - -struct slot_image -{ - int32_t id; - - bool request_encode_image = false; - float * image_embedding = nullptr; - int32_t image_tokens = 0; - - clip_image_u8 * img_data; - - std::string prefix_prompt; // before of this image -}; - // completion token output with probabilities -struct completion_token_output -{ +struct completion_token_output { struct token_prob { llama_token tok; @@ -132,26 +87,52 @@ struct completion_token_output std::string text_to_send; }; -static inline void server_log(const char *level, const char *function, int line, - const char *message, const nlohmann::ordered_json &extra) -{ - nlohmann::ordered_json log - { +struct token_translator { + llama_context * ctx; + std::string operator()(llama_token tok) const { return llama_token_to_piece(ctx, tok); } + std::string operator()(const completion_token_output &cto) const { return (*this)(cto.tok); } +}; + +static inline void server_log(const char *level, const char *function, int line, const char *message, const nlohmann::ordered_json &extra) { + std::stringstream ss_tid; + ss_tid << std::this_thread::get_id(); + json log = nlohmann::ordered_json{ + {"tid", ss_tid.str()}, {"timestamp", time(nullptr)}, - {"level", level}, - {"function", function}, - {"line", line}, - {"message", message}, }; - if (!extra.empty()) - { - log.merge_patch(extra); - } + if (server_log_json) { + log.merge_patch( + { + {"level", level}, + {"function", function}, + {"line", line}, + {"msg", message}, + }); + if (!extra.empty()) { + log.merge_patch(extra); + } - const std::string str = log.dump(-1, ' ', false, json::error_handler_t::replace); - printf("%.*s\n", (int)str.size(), str.data()); - fflush(stdout); + std::cout << log.dump(-1, ' ', false, json::error_handler_t::replace) << "\n" << std::flush; + } else { + char buf[1024]; + snprintf(buf, 1024, "%4s [%24s] %s", level, function, message); + + if (!extra.empty()) { + log.merge_patch(extra); + } + std::stringstream ss; + ss << buf << " |"; + for (const auto& el : log.items()) + { + const std::string value = el.value().dump(-1, ' ', false, json::error_handler_t::replace); + ss << " " << el.key() << "=" << value; + } + + const std::string str = ss.str(); + printf("%.*s\n", (int)str.size(), str.data()); + fflush(stdout); + } } // @@ -159,58 +140,53 @@ static inline void server_log(const char *level, const char *function, int line, // template -static T json_value(const json &body, const std::string &key, const T &default_value) -{ +static T json_value(const json &body, const std::string &key, const T &default_value) { // Fallback null to default value return body.contains(key) && !body.at(key).is_null() ? body.value(key, default_value) : default_value; } -inline std::string format_llama2(std::vector messages) -{ - std::ostringstream output; - bool is_inside_turn = false; - - for (auto it = messages.begin(); it != messages.end(); ++it) { - if (!is_inside_turn) { - output << "[INST] "; - } - std::string role = json_value(*it, "role", std::string("user")); - std::string content = json_value(*it, "content", std::string("")); - if (role == "system") { - output << "<>\n" << content << "\n<>\n\n"; - is_inside_turn = true; - } else if (role == "user") { - output << content << " [/INST]"; - is_inside_turn = true; - } else { - output << " " << content << " "; - is_inside_turn = false; - } - } - - LOG_VERBOSE("format_llama2", {{"text", output.str()}}); - - return output.str(); +// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid +inline bool verify_custom_template(const std::string & tmpl) { + llama_chat_message chat[] = {{"user", "test"}}; + std::vector buf(1); + int res = llama_chat_apply_template(nullptr, tmpl.c_str(), chat, 1, true, buf.data(), buf.size()); + return res >= 0; } -inline std::string format_chatml(std::vector messages) -{ - std::ostringstream chatml_msgs; +// Format given chat. If tmpl is empty, we take the template from model metadata +inline std::string format_chat(const struct llama_model * model, const std::string & tmpl, const std::vector & messages) { + size_t alloc_size = 0; + // vector holding all allocated string to be passed to llama_chat_apply_template + std::vector str(messages.size() * 2); + std::vector chat(messages.size()); - for (auto it = messages.begin(); it != messages.end(); ++it) { - chatml_msgs << "<|im_start|>" - << json_value(*it, "role", std::string("user")) << '\n'; - chatml_msgs << json_value(*it, "content", std::string("")) - << "<|im_end|>\n"; + for (size_t i = 0; i < messages.size(); ++i) { + auto &curr_msg = messages[i]; + str[i*2 + 0] = json_value(curr_msg, "role", std::string("")); + str[i*2 + 1] = json_value(curr_msg, "content", std::string("")); + alloc_size += str[i*2 + 1].length(); + chat[i].role = str[i*2 + 0].c_str(); + chat[i].content = str[i*2 + 1].c_str(); } - chatml_msgs << "<|im_start|>assistant" << '\n'; + const char * ptr_tmpl = tmpl.empty() ? nullptr : tmpl.c_str(); + std::vector buf(alloc_size * 2); - LOG_VERBOSE("format_chatml", {{"text", chatml_msgs.str()}}); + // run the first time to get the total output length + int32_t res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), true, buf.data(), buf.size()); - return chatml_msgs.str(); + // if it turns out that our buffer is too small, we resize it + if ((size_t) res > buf.size()) { + buf.resize(res); + res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), true, buf.data(), buf.size()); + } + + std::string formatted_chat(buf.data(), res); + LOG_VERBOSE("formatted_chat", {{"text", formatted_chat.c_str()}}); + + return formatted_chat; } // @@ -229,13 +205,14 @@ struct llama_server_queue { // callback functions std::function callback_new_task; std::function callback_finish_multitask; - std::function callback_all_task_finished; + std::function callback_run_slots; // Add a new task to the end of the queue int post(task_server task) { std::unique_lock lock(mutex_tasks); if (task.id == -1) { task.id = id++; + LOG_VERBOSE("new task id", {{"new_id", task.id}}); } queue_tasks.push_back(std::move(task)); condition_tasks.notify_one(); @@ -251,7 +228,9 @@ struct llama_server_queue { // Get the next id for creating anew task int get_new_id() { std::unique_lock lock(mutex_tasks); - return id++; + int new_id = id++; + LOG_VERBOSE("new task id", {{"new_id", new_id}}); + return new_id; } // Register function to process a new task @@ -259,14 +238,14 @@ struct llama_server_queue { callback_new_task = callback; } - // Register function to process a multitask + // Register function to process a multitask when it is finished void on_finish_multitask(std::function callback) { callback_finish_multitask = callback; } - // Register the function to be called when the batch of tasks is finished - void on_all_tasks_finished(std::function callback) { - callback_all_task_finished = callback; + // Register the function to be called when all slots data is ready to be processed + void on_run_slots(std::function callback) { + callback_run_slots = callback; } // Call when the state of one slot is changed @@ -288,12 +267,17 @@ struct llama_server_queue { condition_tasks.notify_all(); } - // Start the main loop. + /** + * Main loop consists of these steps: + * - Wait until a new task arrives + * - Process the task (i.e. maybe copy data into slot) + * - Check if multitask is finished + * - Run all slots + */ void start_loop() { running = true; while (true) { - // new task arrived - LOG_VERBOSE("have new task", {}); + LOG_VERBOSE("new task may arrive", {}); { while (true) { @@ -305,11 +289,11 @@ struct llama_server_queue { task_server task = queue_tasks.front(); queue_tasks.erase(queue_tasks.begin()); lock.unlock(); - LOG_VERBOSE("callback_new_task", {}); + LOG_VERBOSE("callback_new_task", {{"task_id", task.id}}); callback_new_task(task); } - LOG_VERBOSE("callback_all_task_finished", {}); - // process and update all the multitasks + LOG_VERBOSE("update_multitasks", {}); + // check if we have any finished multitasks auto queue_iterator = queue_multitasks.begin(); while (queue_iterator != queue_multitasks.end()) { @@ -326,8 +310,9 @@ struct llama_server_queue { ++queue_iterator; } } - // all tasks in the current loop is finished - callback_all_task_finished(); + // all tasks in the current loop is processed, slots data is now ready + LOG_VERBOSE("callback_run_slots", {}); + callback_run_slots(); } LOG_VERBOSE("wait for new task", {}); // wait for new task @@ -385,12 +370,16 @@ struct llama_server_response { std::mutex mutex_results; std::condition_variable condition_results; + // add the task_id to the list of tasks waiting for response void add_waiting_task_id(int task_id) { + LOG_VERBOSE("waiting for task id", {{"task_id", task_id}}); std::unique_lock lock(mutex_results); waiting_task_ids.insert(task_id); } + // when the request is finished, we can remove task associated with it void remove_waiting_task_id(int task_id) { + LOG_VERBOSE("remove waiting for task id", {{"task_id", task_id}}); std::unique_lock lock(mutex_results); waiting_task_ids.erase(task_id); } @@ -403,7 +392,6 @@ struct llama_server_response { condition_results.wait(lock, [&]{ return !queue_results.empty(); }); - LOG_VERBOSE("condition_results unblock", {}); for (int i = 0; i < (int) queue_results.size(); i++) { @@ -428,22 +416,22 @@ struct llama_server_response { // Send a new result to a waiting task_id void send(task_result result) { std::unique_lock lock(mutex_results); - LOG_VERBOSE("send new result", {}); + LOG_VERBOSE("send new result", {{"task_id", result.id}}); for (auto& task_id : waiting_task_ids) { // LOG_TEE("waiting task id %i \n", task_id); // for now, tasks that have associated parent multitasks just get erased once multitask picks up the result if (result.multitask_id == task_id) { - LOG_VERBOSE("callback_update_multitask", {}); + LOG_VERBOSE("callback_update_multitask", {{"task_id", task_id}}); callback_update_multitask(task_id, result.id, result); continue; } if (result.id == task_id) { - LOG_VERBOSE("queue_results.push_back", {}); + LOG_VERBOSE("queue_results.push_back", {{"task_id", task_id}}); queue_results.push_back(result); - condition_results.notify_one(); + condition_results.notify_all(); return; } } @@ -550,3 +538,96 @@ static std::string gen_chatcmplid() chatcmplid << "chatcmpl-" << random_string(); return chatcmplid.str(); } + +// +// other common utils +// + +static size_t common_part(const std::vector &a, const std::vector &b) +{ + size_t i; + for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) + { + } + return i; +} + +static bool ends_with(const std::string &str, const std::string &suffix) +{ + return str.size() >= suffix.size() && + 0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix); +} + +static size_t find_partial_stop_string(const std::string &stop, + const std::string &text) +{ + if (!text.empty() && !stop.empty()) + { + const char text_last_char = text.back(); + for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) + { + if (stop[char_index] == text_last_char) + { + const std::string current_partial = stop.substr(0, char_index + 1); + if (ends_with(text, current_partial)) + { + return text.size() - char_index - 1; + } + } + } + } + return std::string::npos; +} + +// TODO: reuse llama_detokenize +template +static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end) +{ + std::string ret; + for (; begin != end; ++begin) + { + ret += llama_token_to_piece(ctx, *begin); + } + return ret; +} + +// format incomplete utf-8 multibyte character for output +static std::string tokens_to_output_formatted_string(const llama_context *ctx, const llama_token token) +{ + std::string out = token == -1 ? "" : llama_token_to_piece(ctx, token); + // if the size is 1 and first bit is 1, meaning it's a partial character + // (size > 1 meaning it's already a known token) + if (out.size() == 1 && (out[0] & 0x80) == 0x80) + { + std::stringstream ss; + ss << std::hex << (out[0] & 0xff); + std::string res(ss.str()); + out = "byte: \\x" + res; + } + return out; +} + +// convert a vector of completion_token_output to json +static json probs_vector_to_json(const llama_context *ctx, const std::vector &probs) +{ + json out = json::array(); + for (const auto &prob : probs) + { + json probs_for_token = json::array(); + for (const auto &p : prob.probs) + { + std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok); + probs_for_token.push_back(json + { + {"tok_str", tok_str}, + {"prob", p.prob}, + }); + } + std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok); + out.push_back(json{ + {"content", tok_str}, + {"probs", probs_for_token}, + }); + } + return out; +} diff --git a/examples/sycl/ls-sycl-device.cpp b/examples/sycl/ls-sycl-device.cpp index 52442e4ca..74a8b7fd8 100644 --- a/examples/sycl/ls-sycl-device.cpp +++ b/examples/sycl/ls-sycl-device.cpp @@ -7,7 +7,7 @@ #include "ggml-sycl.h" -int main(int argc, char ** argv) { +int main() { ggml_backend_sycl_print_sycl_devices(); return 0; } diff --git a/examples/sycl/run-llama2.sh b/examples/sycl/run-llama2.sh index f5f4c1e98..52f7c01a4 100755 --- a/examples/sycl/run-llama2.sh +++ b/examples/sycl/run-llama2.sh @@ -8,12 +8,19 @@ INPUT2="Building a website can be done in 10 simple steps:\nStep 1:" source /opt/intel/oneapi/setvars.sh if [ $# -gt 0 ]; then - export GGML_SYCL_DEVICE=$1 + GGML_SYCL_DEVICE=$1 else - export GGML_SYCL_DEVICE=0 + GGML_SYCL_DEVICE=0 fi -echo GGML_SYCL_DEVICE=$GGML_SYCL_DEVICE +echo "use $GGML_SYCL_DEVICE as main GPU" #export GGML_SYCL_DEBUG=1 -./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 400 -e -ngl 33 -s 0 -#./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 5 -e -ngl 33 -t 1 -s 0 + + +#ZES_ENABLE_SYSMAN=1, Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory. Recommended to use when --split-mode = layer. + +#use all GPUs with same max compute units +ZES_ENABLE_SYSMAN=1 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 400 -e -ngl 33 -s 0 + +#use main GPU only +#ZES_ENABLE_SYSMAN=1 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 400 -e -ngl 33 -s 0 -mg $GGML_SYCL_DEVICE -sm none diff --git a/examples/train-text-from-scratch/train-text-from-scratch.cpp b/examples/train-text-from-scratch/train-text-from-scratch.cpp index e78ab185d..7eafe8515 100644 --- a/examples/train-text-from-scratch/train-text-from-scratch.cpp +++ b/examples/train-text-from-scratch/train-text-from-scratch.cpp @@ -960,7 +960,7 @@ int main(int argc, char ** argv) { struct ggml_opt_context * opt = train->opt; // set opt params from command line - opt->params = ggml_opt_default_params(GGML_OPT_ADAM); + opt->params = ggml_opt_default_params(GGML_OPT_TYPE_ADAM); opt->params.print_forward_graph = false; opt->params.print_backward_graph = false; opt->params.graph_size = LLAMA_TRAIN_MAX_NODES; diff --git a/flake.lock b/flake.lock index 47d6448b5..b1b091656 100644 --- a/flake.lock +++ b/flake.lock @@ -5,11 +5,11 @@ "nixpkgs-lib": "nixpkgs-lib" }, "locked": { - "lastModified": 1706830856, - "narHash": "sha256-a0NYyp+h9hlb7ddVz4LUn1vT/PLwqfrWYcHMvFB1xYg=", + "lastModified": 1709336216, + "narHash": "sha256-Dt/wOWeW6Sqm11Yh+2+t0dfEWxoMxGBvv3JpIocFl9E=", "owner": "hercules-ci", "repo": "flake-parts", - "rev": "b253292d9c0a5ead9bc98c4e9a26c6312e27d69f", + "rev": "f7b3c975cf067e56e7cda6cb098ebe3fb4d74ca2", "type": "github" }, "original": { @@ -20,11 +20,11 @@ }, "nixpkgs": { "locked": { - "lastModified": 1708118438, - "narHash": "sha256-kk9/0nuVgA220FcqH/D2xaN6uGyHp/zoxPNUmPCMmEE=", + "lastModified": 1709237383, + "narHash": "sha256-cy6ArO4k5qTx+l5o+0mL9f5fa86tYUX3ozE1S+Txlds=", "owner": "NixOS", "repo": "nixpkgs", - "rev": "5863c27340ba4de8f83e7e3c023b9599c3cb3c80", + "rev": "1536926ef5621b09bba54035ae2bb6d806d72ac8", "type": "github" }, "original": { @@ -37,11 +37,11 @@ "nixpkgs-lib": { "locked": { "dir": "lib", - "lastModified": 1706550542, - "narHash": "sha256-UcsnCG6wx++23yeER4Hg18CXWbgNpqNXcHIo5/1Y+hc=", + "lastModified": 1709237383, + "narHash": "sha256-cy6ArO4k5qTx+l5o+0mL9f5fa86tYUX3ozE1S+Txlds=", "owner": "NixOS", "repo": "nixpkgs", - "rev": "97b17f32362e475016f942bbdfda4a4a72a8a652", + "rev": "1536926ef5621b09bba54035ae2bb6d806d72ac8", "type": "github" }, "original": { diff --git a/flake.nix b/flake.nix index ad2f9b295..45f9deda0 100644 --- a/flake.nix +++ b/flake.nix @@ -107,11 +107,12 @@ # ``` # # Cf. https://nixos.org/manual/nix/unstable/command-ref/new-cli/nix3-flake.html?highlight=flake#flake-format - flake.overlays.default = - (final: prev: { + flake.overlays.default = ( + final: prev: { llamaPackages = final.callPackage .devops/nix/scope.nix { inherit llamaVersion; }; inherit (final.llamaPackages) llama-cpp; - }); + } + ); systems = [ "aarch64-darwin" @@ -131,6 +132,9 @@ ... }: { + # For standardised reproducible formatting with `nix fmt` + formatter = pkgs.nixfmt-rfc-style; + # Unlike `.#packages`, legacyPackages may contain values of # arbitrary types (including nested attrsets) and may even throw # exceptions. This attribute isn't recursed into by `nix flake @@ -150,6 +154,7 @@ packages = { default = config.legacyPackages.llamaPackages.llama-cpp; + vulkan = config.packages.default.override { useVulkan = true; }; } // lib.optionalAttrs pkgs.stdenv.isLinux { opencl = config.packages.default.override { useOpenCL = true; }; @@ -157,7 +162,6 @@ mpi-cpu = config.packages.default.override { useMpi = true; }; mpi-cuda = config.packages.default.override { useMpi = true; }; - vulkan = config.packages.default.override { useVulkan = true; }; } // lib.optionalAttrs (system == "x86_64-linux") { rocm = config.legacyPackages.llamaPackagesRocm.llama-cpp; diff --git a/ggml-alloc.c b/ggml-alloc.c index d4123564f..e675306c8 100644 --- a/ggml-alloc.c +++ b/ggml-alloc.c @@ -377,6 +377,9 @@ struct ggml_gallocr { struct node_alloc * node_allocs; // [n_nodes] int n_nodes; + + struct tensor_alloc * leaf_allocs; // [n_leafs] + int n_leafs; }; ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs) { @@ -427,6 +430,7 @@ void ggml_gallocr_free(ggml_gallocr_t galloc) { free(galloc->buffers); free(galloc->buf_tallocs); free(galloc->node_allocs); + free(galloc->leaf_allocs); free(galloc); } @@ -464,7 +468,7 @@ static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor for (int i = 0; i < GGML_MAX_SRC; i++) { struct ggml_tensor * parent = node->src[i]; if (parent == NULL) { - break; + continue; } // if the node's data is external, then we cannot re-use it @@ -544,22 +548,8 @@ static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr memset(galloc->hash_set.keys, 0, galloc->hash_set.size * sizeof(struct ggml_tensor *)); memset(galloc->hash_values, 0, galloc->hash_set.size * sizeof(struct hash_node)); - // allocate all graph inputs first to avoid overwriting them - for (int i = 0; i < graph->n_nodes; i++) { - if (graph->nodes[i]->flags & GGML_TENSOR_FLAG_INPUT) { - ggml_gallocr_allocate_node(galloc, graph->nodes[i], get_node_buffer_id(node_buffer_ids, i)); - } - for (int j = 0; j < GGML_MAX_SRC; j++) { - if (graph->nodes[i]->src[j] == NULL) { - continue; - } - if (graph->nodes[i]->src[j]->flags & GGML_TENSOR_FLAG_INPUT) { - ggml_gallocr_allocate_node(galloc, graph->nodes[i]->src[j], get_node_buffer_id(node_buffer_ids, i)); - } - } - } - // count number of children and views + // allocate all graph inputs and leafs first to avoid overwriting them for (int i = 0; i < graph->n_nodes; i++) { struct ggml_tensor * node = graph->nodes[i]; @@ -568,14 +558,37 @@ static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr ggml_gallocr_hash_get(galloc, view_src)->n_views += 1; } - for (int j = 0; j < GGML_MAX_SRC; j++) { - struct ggml_tensor * parent = node->src[j]; - if (parent == NULL) { - break; - } - ggml_gallocr_hash_get(galloc, parent)->n_children += 1; + if (node->flags & GGML_TENSOR_FLAG_INPUT) { + ggml_gallocr_allocate_node(galloc, graph->nodes[i], get_node_buffer_id(node_buffer_ids, i)); } - } + + for (int j = 0; j < GGML_MAX_SRC; j++) { + struct ggml_tensor * src = node->src[j]; + if (src == NULL) { + continue; + } + + ggml_gallocr_hash_get(galloc, src)->n_children += 1; + + // allocate explicit inputs and leafs + if (src->flags & GGML_TENSOR_FLAG_INPUT || src->op == GGML_OP_NONE) { + ggml_gallocr_allocate_node(galloc, src, get_node_buffer_id(node_buffer_ids, i)); + } + } + } + + // allocate the remaining leafs that are unused on the graph + // these are effectively static tensors that the application is not using in the graph, but may still want to allocate for other purposes + for (int i = 0; i < graph->n_leafs; i++) { + struct ggml_tensor * leaf = graph->leafs[i]; + struct hash_node * hn = ggml_gallocr_hash_get(galloc, leaf); + + if (hn->n_children == 0) { + assert(!hn->allocated); + // since buffer ids are only given for nodes, these leafs are always allocated in the first buffer + ggml_gallocr_allocate_node(galloc, leaf, 0); + } + } // allocate tensors for (int i = 0; i < graph->n_nodes; i++) { @@ -586,7 +599,7 @@ static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr for (int j = 0; j < GGML_MAX_SRC; j++) { struct ggml_tensor * parent = node->src[j]; if (parent == NULL) { - break; + continue; } ggml_gallocr_allocate_node(galloc, parent, buffer_id); } @@ -598,7 +611,7 @@ static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr for (int j = 0; j < GGML_MAX_SRC; j++) { struct ggml_tensor * parent = node->src[j]; if (parent == NULL) { - break; + continue; } AT_PRINTF("%s", parent->name); if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) { @@ -611,7 +624,7 @@ static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr for (int j = 0; j < GGML_MAX_SRC; j++) { struct ggml_tensor * parent = node->src[j]; if (parent == NULL) { - break; + continue; } struct hash_node * p_hn = ggml_gallocr_hash_get(galloc, parent); p_hn->n_children -= 1; @@ -696,6 +709,18 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c } } } + if (galloc->n_leafs < graph->n_leafs) { + free(galloc->leaf_allocs); + galloc->leaf_allocs = calloc(sizeof(struct tensor_alloc), graph->n_leafs); + GGML_ASSERT(galloc->leaf_allocs != NULL); + } + galloc->n_leafs = graph->n_leafs; + for (int i = 0; i < graph->n_leafs; i++) { + struct ggml_tensor * leaf = graph->leafs[i]; + struct hash_node * hn = ggml_gallocr_hash_get(galloc, leaf); + galloc->leaf_allocs[i].offset = hn->offset; + galloc->leaf_allocs[i].size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], leaf); + } // reallocate buffers if needed for (int i = 0; i < galloc->n_buffers; i++) { @@ -722,8 +747,8 @@ bool ggml_gallocr_reserve(ggml_gallocr_t galloc, struct ggml_cgraph *graph) { return ggml_gallocr_reserve_n(galloc, graph, NULL); } -static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor * node, struct node_alloc * node_alloc, struct tensor_alloc * tensor_alloc) { - assert(node->data || node->view_src || ggml_backend_buffer_get_alloc_size(galloc->buffers[node_alloc->buffer_id], node) <= tensor_alloc->size_max); +static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id, struct tensor_alloc * tensor_alloc) { + assert(node->data || node->view_src || ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], node) <= tensor_alloc->size_max); if (node->view_src != NULL) { if (node->buffer == NULL) { @@ -732,29 +757,20 @@ static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor * // this tensor was allocated without ggml-backend return; } - ggml_backend_view_init(galloc->buffers[node_alloc->buffer_id], node); + ggml_backend_view_init(galloc->buffers[buffer_id], node); } } else { if (node->data == NULL) { assert(tensor_alloc->offset != SIZE_MAX); - assert(ggml_backend_buffer_get_alloc_size(galloc->buffers[node_alloc->buffer_id], node) <= tensor_alloc->size_max); - void * base = ggml_backend_buffer_get_base(galloc->buffers[node_alloc->buffer_id]); + assert(ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], node) <= tensor_alloc->size_max); + void * base = ggml_backend_buffer_get_base(galloc->buffers[buffer_id]); void * addr = (char *)base + tensor_alloc->offset; - ggml_backend_tensor_alloc(galloc->buffers[node_alloc->buffer_id], node, addr); + ggml_backend_tensor_alloc(galloc->buffers[buffer_id], node, addr); } else { if (node->buffer == NULL) { // this tensor was allocated without ggml-backend return; } - -#ifndef NDEBUG - size_t offset = - (char *)node->data - - (char *)ggml_backend_buffer_get_base(node->buffer); - size_t size = ggml_backend_buffer_get_alloc_size(node->buffer, node); - assert(tensor_alloc->offset == SIZE_MAX || offset == tensor_alloc->offset); - assert(tensor_alloc->offset == SIZE_MAX || size <= tensor_alloc->size_max); -#endif } } } @@ -773,6 +789,13 @@ static bool ggml_gallocr_needs_realloc(ggml_gallocr_t galloc, struct ggml_cgraph return true; } + if (galloc->n_leafs != graph->n_leafs) { +#ifndef NDEBUG + fprintf(stderr, "%s: graph has different number of leafs\n", __func__); +#endif + return true; + } + for (int i = 0; i < graph->n_nodes; i++) { struct ggml_tensor * node = graph->nodes[i]; struct node_alloc * node_alloc = &galloc->node_allocs[i]; @@ -827,6 +850,7 @@ bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph) } // allocate the graph tensors from the previous assignments + // nodes for (int i = 0; i < graph->n_nodes; i++) { struct ggml_tensor * node = graph->nodes[i]; struct node_alloc * node_alloc = &galloc->node_allocs[i]; @@ -835,9 +859,15 @@ bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph) if (src == NULL) { continue; } - ggml_gallocr_init_tensor(galloc, src, node_alloc, &node_alloc->src[j]); + ggml_gallocr_init_tensor(galloc, src, node_alloc->buffer_id, &node_alloc->src[j]); } - ggml_gallocr_init_tensor(galloc, node, node_alloc, &node_alloc->dst); + ggml_gallocr_init_tensor(galloc, node, node_alloc->buffer_id, &node_alloc->dst); + } + // leafs + for (int i = 0; i < graph->n_leafs; i++) { + struct ggml_tensor * leaf = graph->leafs[i]; + struct tensor_alloc * leaf_alloc = &galloc->leaf_allocs[i]; + ggml_gallocr_init_tensor(galloc, leaf, 0, leaf_alloc); } return true; diff --git a/ggml-backend-impl.h b/ggml-backend-impl.h index f95df47f7..0e5bf0ae1 100644 --- a/ggml-backend-impl.h +++ b/ggml-backend-impl.h @@ -104,6 +104,8 @@ extern "C" { }; struct ggml_backend { + ggml_guid_t guid; + struct ggml_backend_i iface; ggml_backend_context_t context; diff --git a/ggml-backend.c b/ggml-backend.c index 5076d9e5e..c86673b04 100644 --- a/ggml-backend.c +++ b/ggml-backend.c @@ -12,7 +12,6 @@ #define MAX(a, b) ((a) > (b) ? (a) : (b)) - // backend buffer type const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) { @@ -159,6 +158,13 @@ bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml // backend +ggml_guid_t ggml_backend_guid(ggml_backend_t backend) { + if (backend == NULL) { + return NULL; + } + return backend->guid; +} + const char * ggml_backend_name(ggml_backend_t backend) { if (backend == NULL) { return "NULL"; @@ -781,6 +787,11 @@ static struct ggml_backend_i cpu_backend_i = { /* .supports_op = */ ggml_backend_cpu_supports_op, }; +static ggml_guid_t ggml_backend_cpu_guid(void) { + static ggml_guid guid = { 0xaa, 0x67, 0xc7, 0x43, 0x96, 0xe6, 0xa3, 0x8a, 0xe3, 0xaf, 0xea, 0x92, 0x36, 0xbc, 0xfc, 0x89 }; + return &guid; +} + ggml_backend_t ggml_backend_cpu_init(void) { struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context)); if (ctx == NULL) { @@ -800,6 +811,7 @@ ggml_backend_t ggml_backend_cpu_init(void) { } *cpu_backend = (struct ggml_backend) { + /* .guid = */ ggml_backend_cpu_guid(), /* .interface = */ cpu_backend_i, /* .context = */ ctx }; @@ -807,7 +819,7 @@ ggml_backend_t ggml_backend_cpu_init(void) { } GGML_CALL bool ggml_backend_is_cpu(ggml_backend_t backend) { - return backend && backend->iface.get_name == ggml_backend_cpu_name; + return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cpu_guid()); } void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) { diff --git a/ggml-backend.h b/ggml-backend.h index f13c69bff..8fb54bd92 100644 --- a/ggml-backend.h +++ b/ggml-backend.h @@ -49,7 +49,7 @@ extern "C" { // Backend // - + GGML_API ggml_guid_t ggml_backend_guid(ggml_backend_t backend); GGML_API const char * ggml_backend_name(ggml_backend_t backend); GGML_API void ggml_backend_free(ggml_backend_t backend); diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 5c6159a83..a7d2c71dd 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -1,3 +1,7 @@ +#include "ggml-cuda.h" +#include "ggml.h" +#include "ggml-backend-impl.h" + #include #include #include @@ -54,6 +58,8 @@ #define cudaDeviceProp hipDeviceProp_t #define cudaDeviceSynchronize hipDeviceSynchronize #define cudaError_t hipError_t +#define cudaErrorPeerAccessAlreadyEnabled hipErrorPeerAccessAlreadyEnabled +#define cudaErrorPeerAccessNotEnabled hipErrorPeerAccessNotEnabled #define cudaEventCreateWithFlags hipEventCreateWithFlags #define cudaEventDisableTiming hipEventDisableTiming #define cudaEventRecord hipEventRecord @@ -120,11 +126,6 @@ #endif // defined(GGML_USE_HIPBLAS) -// ggml-cuda need half type so keep ggml headers include at last -#include "ggml-cuda.h" -#include "ggml.h" -#include "ggml-backend-impl.h" - #define CUDART_HMAX 11070 // CUDA 11.7, min. ver. for which __hmax and __hmax2 are known to work (may be higher than needed) #define CC_PASCAL 600 @@ -172,6 +173,7 @@ #endif typedef int8_t int8x4_t __attribute__((ext_vector_type(4))); +typedef uint8_t uint8x4_t __attribute__((ext_vector_type(4))); static __device__ __forceinline__ int __vsubss4(const int a, const int b) { const int8x4_t va = reinterpret_cast(a); const int8x4_t vb = reinterpret_cast(b); @@ -196,6 +198,18 @@ static __device__ __forceinline__ int __vsub4(const int a, const int b) { return __vsubss4(a, b); } +static __device__ __forceinline__ unsigned int __vcmpeq4(unsigned int a, unsigned int b) { + const uint8x4_t& va = reinterpret_cast(a); + const uint8x4_t& vb = reinterpret_cast(b); + unsigned int c; + uint8x4_t& vc = reinterpret_cast(c); +#pragma unroll + for (int i = 0; i < 4; ++i) { + vc[i] = va[i] == vb[i] ? 0xff : 0x00; + } + return c; +} + static __device__ __forceinline__ int __dp4a(const int a, const int b, int c) { #if defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx1030__) c = __builtin_amdgcn_sdot4(a, b, c, false); @@ -510,6 +524,17 @@ typedef struct { } block_iq2_xs; static_assert(sizeof(block_iq2_xs) == sizeof(ggml_fp16_t) + QK_K/8*sizeof(uint16_t) + QK_K/32, "wrong iq2_xs block size/padding"); +// 2.5625 bpw quants +#define QR2_S 8 +#define QI2_S (QK_K / (4*QR2_S)) +typedef struct { + half d; + uint8_t qs[QK_K/4]; + uint8_t qh[QK_K/32]; + uint8_t scales[QK_K/32]; +} block_iq2_s; +static_assert(sizeof(block_iq2_s) == sizeof(ggml_fp16_t) + QK_K/4 + QK_K/16, "wrong iq2_s block size/padding"); + #define QR3_XXS 8 #define QI3_XXS (QK_K / (4*QR3_XXS)) typedef struct { @@ -518,6 +543,22 @@ typedef struct { } block_iq3_xxs; static_assert(sizeof(block_iq3_xxs) == sizeof(ggml_fp16_t) + 3*(QK_K/8), "wrong iq3_xxs block size/padding"); +#define QR3_XS 8 +#define QI3_XS (QK_K / (4*QR3_XS)) +#if QK_K == 64 +#define IQ3S_N_SCALE 2 +#else +#define IQ3S_N_SCALE QK_K/64 +#endif +typedef struct { + half d; + uint8_t qs[QK_K/4]; + uint8_t qh[QK_K/32]; + uint8_t signs[QK_K/8]; + uint8_t scales[IQ3S_N_SCALE]; +} block_iq3_s; +static_assert(sizeof(block_iq3_s) == sizeof(ggml_fp16_t) + 13*(QK_K/32) + IQ3S_N_SCALE, "wrong iq3_s block size/padding"); + #define QR1_S 8 #define QI1_S (QK_K / (4*QR1_S)) typedef struct { @@ -527,6 +568,32 @@ typedef struct { } block_iq1_s; static_assert(sizeof(block_iq1_s) == sizeof(ggml_fp16_t) + QK_K/8 + QK_K/16, "wrong iq1_s block size/padding"); +#define QK4_NL 32 +#define QR4_NL 2 +#define QI4_NL (QK4_NL / (4*QR4_NL)) +typedef struct { + half d; + uint8_t qs[QK4_NL/2]; +} block_iq4_nl; +static_assert(sizeof(block_iq4_nl) == sizeof(ggml_fp16_t) + QK4_NL/2, "wrong iq4_nl block size/padding"); + +#if QK_K == 64 +#define block_iq4_xs block_iq4_nl +#define QR4_XS QR4_NL +#define QI4_XS QI4_NL +#else +// QR4_XS = 8 is very slightly faster than QR4_XS = 4 +#define QR4_XS 8 +#define QI4_XS (QK_K / (4*QR4_XS)) +typedef struct { + half d; + uint16_t scales_h; + uint8_t scales_l[QK_K/64]; + uint8_t qs[QK_K/2]; +} block_iq4_xs; +static_assert(sizeof(block_iq4_xs) == sizeof(ggml_fp16_t) + sizeof(uint16_t) + QK_K/64 + QK_K/2, "wrong iq4_xs block size/padding"); +#endif + #define WARP_SIZE 32 #define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses @@ -655,13 +722,13 @@ static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) { static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) { #if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL #pragma unroll - for (int mask = 16; mask > 0; mask >>= 1) { - a = __hadd2(a, __shfl_xor_sync(0xffffffff, a, mask, 32)); - } - return a; + for (int mask = 16; mask > 0; mask >>= 1) { + a = __hadd2(a, __shfl_xor_sync(0xffffffff, a, mask, 32)); + } + return a; #else - (void) a; - NO_DEVICE_CODE; + (void) a; + NO_DEVICE_CODE; #endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL } @@ -1682,6 +1749,265 @@ static const __device__ uint64_t iq2xs_grid[512] = { 0x2b2b2b2b082b2b08, 0x2b2b2b2b082b2b2b, 0x2b2b2b2b2b190819, 0x2b2b2b2b2b2b2b2b, }; +static const __device__ uint64_t iq2s_grid[1024] = { + 0x0808080808080808, 0x080808080808082b, 0x0808080808081919, 0x0808080808082b08, + 0x0808080808082b2b, 0x0808080808190819, 0x0808080808191908, 0x080808080819192b, + 0x0808080808192b19, 0x08080808082b0808, 0x08080808082b082b, 0x08080808082b1919, + 0x08080808082b2b08, 0x0808080819080819, 0x0808080819081908, 0x080808081908192b, + 0x0808080819082b19, 0x0808080819190808, 0x080808081919082b, 0x0808080819191919, + 0x0808080819192b08, 0x08080808192b0819, 0x08080808192b1908, 0x08080808192b192b, + 0x08080808192b2b19, 0x080808082b080808, 0x080808082b08082b, 0x080808082b081919, + 0x080808082b082b08, 0x080808082b190819, 0x080808082b191908, 0x080808082b2b0808, + 0x080808082b2b1919, 0x080808082b2b2b2b, 0x0808081908080819, 0x0808081908081908, + 0x080808190808192b, 0x0808081908082b19, 0x0808081908190808, 0x080808190819082b, + 0x0808081908191919, 0x0808081908192b08, 0x08080819082b0819, 0x08080819082b1908, + 0x0808081919080808, 0x080808191908082b, 0x0808081919081919, 0x0808081919082b08, + 0x0808081919190819, 0x0808081919191908, 0x080808191919192b, 0x0808081919192b19, + 0x08080819192b0808, 0x08080819192b1919, 0x08080819192b2b08, 0x080808192b080819, + 0x080808192b081908, 0x080808192b190808, 0x080808192b19082b, 0x080808192b191919, + 0x080808192b2b0819, 0x080808192b2b1908, 0x0808082b08080808, 0x0808082b0808082b, + 0x0808082b08081919, 0x0808082b08082b08, 0x0808082b08190819, 0x0808082b08191908, + 0x0808082b082b0808, 0x0808082b082b2b2b, 0x0808082b19080819, 0x0808082b19081908, + 0x0808082b1908192b, 0x0808082b19082b19, 0x0808082b19190808, 0x0808082b19191919, + 0x0808082b2b080808, 0x0808082b2b081919, 0x0808082b2b082b2b, 0x0808082b2b191908, + 0x0808082b2b2b082b, 0x0808190808080819, 0x0808190808081908, 0x080819080808192b, + 0x0808190808082b19, 0x0808190808190808, 0x080819080819082b, 0x0808190808191919, + 0x0808190808192b08, 0x08081908082b0819, 0x08081908082b1908, 0x08081908082b192b, + 0x08081908082b2b19, 0x0808190819080808, 0x080819081908082b, 0x0808190819081919, + 0x0808190819082b08, 0x0808190819082b2b, 0x0808190819190819, 0x0808190819191908, + 0x080819081919192b, 0x0808190819192b19, 0x08081908192b0808, 0x08081908192b082b, + 0x08081908192b1919, 0x080819082b080819, 0x080819082b081908, 0x080819082b08192b, + 0x080819082b082b19, 0x080819082b190808, 0x080819082b191919, 0x080819082b192b08, + 0x080819082b2b0819, 0x080819082b2b1908, 0x0808191908080808, 0x080819190808082b, + 0x0808191908081919, 0x0808191908082b08, 0x0808191908082b2b, 0x0808191908190819, + 0x0808191908191908, 0x080819190819192b, 0x0808191908192b19, 0x08081919082b0808, + 0x08081919082b1919, 0x08081919082b2b08, 0x0808191919080819, 0x0808191919081908, + 0x080819191908192b, 0x0808191919082b19, 0x0808191919190808, 0x080819191919082b, + 0x0808191919191919, 0x0808191919192b08, 0x08081919192b0819, 0x08081919192b1908, + 0x080819192b080808, 0x080819192b08082b, 0x080819192b081919, 0x080819192b082b08, + 0x080819192b190819, 0x080819192b191908, 0x080819192b2b0808, 0x0808192b08080819, + 0x0808192b08081908, 0x0808192b0808192b, 0x0808192b08082b19, 0x0808192b08190808, + 0x0808192b08191919, 0x0808192b19080808, 0x0808192b19081919, 0x0808192b19082b08, + 0x0808192b19190819, 0x0808192b19191908, 0x0808192b192b0808, 0x0808192b2b080819, + 0x0808192b2b081908, 0x0808192b2b190808, 0x08082b0808080808, 0x08082b080808082b, + 0x08082b0808081919, 0x08082b0808082b08, 0x08082b0808190819, 0x08082b0808191908, + 0x08082b080819192b, 0x08082b0808192b19, 0x08082b08082b0808, 0x08082b08082b1919, + 0x08082b08082b2b2b, 0x08082b0819080819, 0x08082b0819081908, 0x08082b081908192b, + 0x08082b0819082b19, 0x08082b0819190808, 0x08082b081919082b, 0x08082b0819191919, + 0x08082b0819192b08, 0x08082b08192b0819, 0x08082b08192b1908, 0x08082b082b080808, + 0x08082b082b081919, 0x08082b082b191908, 0x08082b082b2b2b2b, 0x08082b1908080819, + 0x08082b1908081908, 0x08082b1908190808, 0x08082b190819082b, 0x08082b1908191919, + 0x08082b1908192b08, 0x08082b19082b0819, 0x08082b1919080808, 0x08082b1919081919, + 0x08082b1919082b08, 0x08082b1919190819, 0x08082b1919191908, 0x08082b19192b0808, + 0x08082b192b080819, 0x08082b192b190808, 0x08082b2b08080808, 0x08082b2b08190819, + 0x08082b2b08191908, 0x08082b2b082b082b, 0x08082b2b082b2b08, 0x08082b2b082b2b2b, + 0x08082b2b19190808, 0x08082b2b2b192b19, 0x0819080808080819, 0x0819080808081908, + 0x081908080808192b, 0x0819080808082b19, 0x0819080808190808, 0x081908080819082b, + 0x0819080808191919, 0x0819080808192b08, 0x08190808082b0819, 0x08190808082b1908, + 0x08190808082b192b, 0x0819080819080808, 0x081908081908082b, 0x0819080819081919, + 0x0819080819082b08, 0x0819080819190819, 0x0819080819191908, 0x081908081919192b, + 0x0819080819192b19, 0x08190808192b0808, 0x08190808192b082b, 0x08190808192b1919, + 0x08190808192b2b08, 0x081908082b080819, 0x081908082b081908, 0x081908082b08192b, + 0x081908082b190808, 0x081908082b191919, 0x081908082b192b08, 0x081908082b2b0819, + 0x081908082b2b1908, 0x0819081908080808, 0x081908190808082b, 0x0819081908081919, + 0x0819081908082b08, 0x0819081908082b2b, 0x0819081908190819, 0x0819081908191908, + 0x081908190819192b, 0x0819081908192b19, 0x08190819082b0808, 0x08190819082b082b, + 0x08190819082b1919, 0x08190819082b2b08, 0x0819081919080819, 0x0819081919081908, + 0x081908191908192b, 0x0819081919082b19, 0x0819081919190808, 0x081908191919082b, + 0x0819081919191919, 0x0819081919192b08, 0x08190819192b0819, 0x08190819192b1908, + 0x081908192b080808, 0x081908192b08082b, 0x081908192b081919, 0x081908192b082b08, + 0x081908192b190819, 0x081908192b191908, 0x0819082b08080819, 0x0819082b08081908, + 0x0819082b08082b19, 0x0819082b08190808, 0x0819082b08191919, 0x0819082b082b0819, + 0x0819082b082b1908, 0x0819082b19080808, 0x0819082b19081919, 0x0819082b19190819, + 0x0819082b19191908, 0x0819082b2b080819, 0x0819082b2b081908, 0x0819082b2b190808, + 0x0819190808080808, 0x081919080808082b, 0x0819190808081919, 0x0819190808082b08, + 0x0819190808190819, 0x0819190808191908, 0x081919080819192b, 0x0819190808192b19, + 0x08191908082b0808, 0x08191908082b1919, 0x08191908082b2b08, 0x0819190819080819, + 0x0819190819081908, 0x081919081908192b, 0x0819190819082b19, 0x0819190819190808, + 0x081919081919082b, 0x0819190819191919, 0x0819190819192b08, 0x08191908192b0819, + 0x08191908192b1908, 0x081919082b080808, 0x081919082b08082b, 0x081919082b081919, + 0x081919082b082b08, 0x081919082b190819, 0x081919082b191908, 0x081919082b2b0808, + 0x0819191908080819, 0x0819191908081908, 0x081919190808192b, 0x0819191908082b19, + 0x0819191908190808, 0x081919190819082b, 0x0819191908191919, 0x0819191908192b08, + 0x08191919082b0819, 0x08191919082b1908, 0x0819191919080808, 0x081919191908082b, + 0x0819191919081919, 0x0819191919082b08, 0x0819191919190819, 0x0819191919191908, + 0x08191919192b0808, 0x081919192b080819, 0x081919192b081908, 0x081919192b190808, + 0x0819192b08080808, 0x0819192b08081919, 0x0819192b08082b08, 0x0819192b08190819, + 0x0819192b08191908, 0x0819192b082b0808, 0x0819192b19080819, 0x0819192b19081908, + 0x0819192b19190808, 0x0819192b2b080808, 0x0819192b2b2b2b2b, 0x08192b0808080819, + 0x08192b0808081908, 0x08192b080808192b, 0x08192b0808082b19, 0x08192b0808190808, + 0x08192b0808191919, 0x08192b0808192b08, 0x08192b08082b0819, 0x08192b0819080808, + 0x08192b081908082b, 0x08192b0819081919, 0x08192b0819082b08, 0x08192b0819190819, + 0x08192b0819191908, 0x08192b08192b0808, 0x08192b082b080819, 0x08192b082b081908, + 0x08192b1908080808, 0x08192b190808082b, 0x08192b1908081919, 0x08192b1908082b08, + 0x08192b1908190819, 0x08192b1908191908, 0x08192b19082b0808, 0x08192b1919080819, + 0x08192b1919081908, 0x08192b1919190808, 0x08192b19192b2b19, 0x08192b192b2b082b, + 0x08192b2b08081908, 0x08192b2b08190808, 0x08192b2b19080808, 0x08192b2b1919192b, + 0x082b080808080808, 0x082b08080808082b, 0x082b080808081919, 0x082b080808082b08, + 0x082b080808190819, 0x082b080808191908, 0x082b08080819192b, 0x082b080808192b19, + 0x082b0808082b0808, 0x082b0808082b1919, 0x082b0808082b2b2b, 0x082b080819080819, + 0x082b080819081908, 0x082b080819190808, 0x082b08081919082b, 0x082b080819191919, + 0x082b0808192b1908, 0x082b08082b080808, 0x082b08082b082b2b, 0x082b08082b191908, + 0x082b08082b2b2b2b, 0x082b081908080819, 0x082b081908081908, 0x082b081908190808, + 0x082b08190819082b, 0x082b081908191919, 0x082b0819082b0819, 0x082b081919080808, + 0x082b08191908082b, 0x082b081919081919, 0x082b081919190819, 0x082b081919191908, + 0x082b0819192b0808, 0x082b08192b080819, 0x082b08192b081908, 0x082b08192b190808, + 0x082b082b08080808, 0x082b082b08082b2b, 0x082b082b082b082b, 0x082b082b082b2b08, + 0x082b082b082b2b2b, 0x082b082b19081908, 0x082b082b19190808, 0x082b082b2b082b08, + 0x082b082b2b082b2b, 0x082b082b2b2b2b08, 0x082b190808080819, 0x082b190808081908, + 0x082b19080808192b, 0x082b190808082b19, 0x082b190808190808, 0x082b190808191919, + 0x082b190808192b08, 0x082b1908082b0819, 0x082b1908082b1908, 0x082b190819080808, + 0x082b19081908082b, 0x082b190819081919, 0x082b190819082b08, 0x082b190819190819, + 0x082b190819191908, 0x082b1908192b0808, 0x082b19082b080819, 0x082b19082b081908, + 0x082b19082b190808, 0x082b191908080808, 0x082b191908081919, 0x082b191908082b08, + 0x082b191908190819, 0x082b191908191908, 0x082b1919082b0808, 0x082b191919080819, + 0x082b191919081908, 0x082b191919190808, 0x082b1919192b192b, 0x082b19192b080808, + 0x082b192b08080819, 0x082b192b08081908, 0x082b192b08190808, 0x082b192b19080808, + 0x082b192b19192b19, 0x082b2b0808080808, 0x082b2b0808081919, 0x082b2b0808190819, + 0x082b2b0808191908, 0x082b2b0819080819, 0x082b2b0819081908, 0x082b2b0819190808, + 0x082b2b082b082b2b, 0x082b2b082b2b2b2b, 0x082b2b1908080819, 0x082b2b1908081908, + 0x082b2b1908190808, 0x082b2b192b191919, 0x082b2b2b08082b2b, 0x082b2b2b082b082b, + 0x082b2b2b192b1908, 0x082b2b2b2b082b08, 0x082b2b2b2b082b2b, 0x1908080808080819, + 0x1908080808081908, 0x190808080808192b, 0x1908080808082b19, 0x1908080808190808, + 0x190808080819082b, 0x1908080808191919, 0x1908080808192b08, 0x1908080808192b2b, + 0x19080808082b0819, 0x19080808082b1908, 0x19080808082b192b, 0x1908080819080808, + 0x190808081908082b, 0x1908080819081919, 0x1908080819082b08, 0x1908080819082b2b, + 0x1908080819190819, 0x1908080819191908, 0x190808081919192b, 0x1908080819192b19, + 0x19080808192b0808, 0x19080808192b082b, 0x19080808192b1919, 0x190808082b080819, + 0x190808082b081908, 0x190808082b190808, 0x190808082b191919, 0x190808082b192b08, + 0x190808082b2b0819, 0x190808082b2b1908, 0x1908081908080808, 0x190808190808082b, + 0x1908081908081919, 0x1908081908082b08, 0x1908081908190819, 0x1908081908191908, + 0x190808190819192b, 0x1908081908192b19, 0x19080819082b0808, 0x19080819082b082b, + 0x19080819082b1919, 0x1908081919080819, 0x1908081919081908, 0x190808191908192b, + 0x1908081919082b19, 0x1908081919190808, 0x190808191919082b, 0x1908081919191919, + 0x1908081919192b08, 0x19080819192b0819, 0x19080819192b1908, 0x190808192b080808, + 0x190808192b08082b, 0x190808192b081919, 0x190808192b082b08, 0x190808192b190819, + 0x190808192b191908, 0x190808192b2b0808, 0x1908082b08080819, 0x1908082b08081908, + 0x1908082b08190808, 0x1908082b0819082b, 0x1908082b08191919, 0x1908082b08192b08, + 0x1908082b082b1908, 0x1908082b19080808, 0x1908082b19081919, 0x1908082b19082b08, + 0x1908082b19190819, 0x1908082b19191908, 0x1908082b192b0808, 0x1908082b2b080819, + 0x1908082b2b081908, 0x1908190808080808, 0x190819080808082b, 0x1908190808081919, + 0x1908190808082b08, 0x1908190808082b2b, 0x1908190808190819, 0x1908190808191908, + 0x190819080819192b, 0x1908190808192b19, 0x19081908082b0808, 0x19081908082b082b, + 0x19081908082b1919, 0x19081908082b2b08, 0x1908190819080819, 0x1908190819081908, + 0x190819081908192b, 0x1908190819082b19, 0x1908190819190808, 0x190819081919082b, + 0x1908190819191919, 0x1908190819192b08, 0x19081908192b0819, 0x19081908192b1908, + 0x190819082b080808, 0x190819082b08082b, 0x190819082b081919, 0x190819082b082b08, + 0x190819082b190819, 0x190819082b191908, 0x190819082b2b0808, 0x1908191908080819, + 0x1908191908081908, 0x190819190808192b, 0x1908191908082b19, 0x1908191908190808, + 0x190819190819082b, 0x1908191908191919, 0x1908191908192b08, 0x19081919082b0819, + 0x19081919082b1908, 0x1908191919080808, 0x190819191908082b, 0x1908191919081919, + 0x1908191919082b08, 0x1908191919190819, 0x1908191919191908, 0x19081919192b0808, + 0x19081919192b2b2b, 0x190819192b080819, 0x190819192b081908, 0x190819192b190808, + 0x1908192b08080808, 0x1908192b0808082b, 0x1908192b08081919, 0x1908192b08082b08, + 0x1908192b08190819, 0x1908192b08191908, 0x1908192b082b0808, 0x1908192b19080819, + 0x1908192b19081908, 0x1908192b19190808, 0x1908192b2b080808, 0x1908192b2b2b1919, + 0x19082b0808080819, 0x19082b0808081908, 0x19082b0808082b19, 0x19082b0808190808, + 0x19082b080819082b, 0x19082b0808191919, 0x19082b0808192b08, 0x19082b08082b0819, + 0x19082b08082b1908, 0x19082b0819080808, 0x19082b081908082b, 0x19082b0819081919, + 0x19082b0819082b08, 0x19082b0819190819, 0x19082b0819191908, 0x19082b08192b0808, + 0x19082b082b081908, 0x19082b082b190808, 0x19082b1908080808, 0x19082b190808082b, + 0x19082b1908081919, 0x19082b1908082b08, 0x19082b1908190819, 0x19082b1908191908, + 0x19082b19082b0808, 0x19082b1919080819, 0x19082b1919081908, 0x19082b1919190808, + 0x19082b192b080808, 0x19082b192b19192b, 0x19082b2b08080819, 0x19082b2b08081908, + 0x19082b2b08190808, 0x19082b2b19080808, 0x1919080808080808, 0x191908080808082b, + 0x1919080808081919, 0x1919080808082b08, 0x1919080808190819, 0x1919080808191908, + 0x191908080819192b, 0x1919080808192b19, 0x19190808082b0808, 0x19190808082b082b, + 0x19190808082b1919, 0x19190808082b2b08, 0x1919080819080819, 0x1919080819081908, + 0x191908081908192b, 0x1919080819082b19, 0x1919080819190808, 0x191908081919082b, + 0x1919080819191919, 0x1919080819192b08, 0x19190808192b0819, 0x19190808192b1908, + 0x191908082b080808, 0x191908082b08082b, 0x191908082b081919, 0x191908082b082b08, + 0x191908082b190819, 0x191908082b191908, 0x1919081908080819, 0x1919081908081908, + 0x191908190808192b, 0x1919081908082b19, 0x1919081908190808, 0x191908190819082b, + 0x1919081908191919, 0x1919081908192b08, 0x19190819082b0819, 0x19190819082b1908, + 0x1919081919080808, 0x191908191908082b, 0x1919081919081919, 0x1919081919082b08, + 0x1919081919190819, 0x1919081919191908, 0x19190819192b0808, 0x191908192b080819, + 0x191908192b081908, 0x191908192b190808, 0x1919082b08080808, 0x1919082b08081919, + 0x1919082b08082b08, 0x1919082b08190819, 0x1919082b08191908, 0x1919082b082b0808, + 0x1919082b19080819, 0x1919082b19081908, 0x1919082b19190808, 0x1919082b192b2b19, + 0x1919082b2b080808, 0x1919190808080819, 0x1919190808081908, 0x191919080808192b, + 0x1919190808082b19, 0x1919190808190808, 0x191919080819082b, 0x1919190808191919, + 0x1919190808192b08, 0x19191908082b0819, 0x19191908082b1908, 0x1919190819080808, + 0x191919081908082b, 0x1919190819081919, 0x1919190819082b08, 0x1919190819190819, + 0x1919190819191908, 0x19191908192b0808, 0x191919082b080819, 0x191919082b081908, + 0x191919082b190808, 0x1919191908080808, 0x191919190808082b, 0x1919191908081919, + 0x1919191908082b08, 0x1919191908190819, 0x1919191908191908, 0x19191919082b0808, + 0x1919191919080819, 0x1919191919081908, 0x1919191919190808, 0x191919192b080808, + 0x1919192b08080819, 0x1919192b08081908, 0x1919192b08190808, 0x1919192b082b192b, + 0x1919192b19080808, 0x19192b0808080808, 0x19192b080808082b, 0x19192b0808081919, + 0x19192b0808082b08, 0x19192b0808190819, 0x19192b0808191908, 0x19192b08082b0808, + 0x19192b0819080819, 0x19192b0819081908, 0x19192b0819190808, 0x19192b0819192b2b, + 0x19192b082b080808, 0x19192b1908080819, 0x19192b1908081908, 0x19192b1908190808, + 0x19192b1919080808, 0x19192b2b08080808, 0x19192b2b08192b19, 0x19192b2b2b081919, + 0x19192b2b2b2b2b08, 0x192b080808080819, 0x192b080808081908, 0x192b08080808192b, + 0x192b080808190808, 0x192b08080819082b, 0x192b080808191919, 0x192b080808192b08, + 0x192b0808082b0819, 0x192b0808082b1908, 0x192b080819080808, 0x192b080819081919, + 0x192b080819082b08, 0x192b080819190819, 0x192b080819191908, 0x192b0808192b0808, + 0x192b08082b081908, 0x192b08082b190808, 0x192b081908080808, 0x192b08190808082b, + 0x192b081908081919, 0x192b081908082b08, 0x192b081908190819, 0x192b081908191908, + 0x192b0819082b0808, 0x192b081919080819, 0x192b081919081908, 0x192b081919190808, + 0x192b08192b080808, 0x192b08192b192b19, 0x192b082b08081908, 0x192b082b08190808, + 0x192b082b19080808, 0x192b082b1919192b, 0x192b082b2b2b0819, 0x192b190808080808, + 0x192b190808081919, 0x192b190808082b08, 0x192b190808190819, 0x192b190808191908, + 0x192b1908082b0808, 0x192b190819080819, 0x192b190819081908, 0x192b190819190808, + 0x192b19082b080808, 0x192b191908080819, 0x192b191908081908, 0x192b191908190808, + 0x192b191919080808, 0x192b191919082b2b, 0x192b1919192b2b08, 0x192b19192b19082b, + 0x192b192b08080808, 0x192b192b2b191908, 0x192b2b0808080819, 0x192b2b0808081908, + 0x192b2b0808190808, 0x192b2b08192b1919, 0x192b2b082b192b08, 0x192b2b1908080808, + 0x192b2b19082b2b2b, 0x192b2b2b1908082b, 0x192b2b2b2b2b0819, 0x2b08080808080808, + 0x2b0808080808082b, 0x2b08080808081919, 0x2b08080808082b08, 0x2b08080808190819, + 0x2b08080808191908, 0x2b08080808192b19, 0x2b080808082b0808, 0x2b080808082b1919, + 0x2b08080819080819, 0x2b08080819081908, 0x2b08080819190808, 0x2b0808081919082b, + 0x2b08080819191919, 0x2b08080819192b08, 0x2b080808192b0819, 0x2b0808082b080808, + 0x2b0808082b081919, 0x2b0808082b190819, 0x2b0808082b191908, 0x2b08081908080819, + 0x2b08081908081908, 0x2b08081908082b19, 0x2b08081908190808, 0x2b0808190819082b, + 0x2b08081908191919, 0x2b08081908192b08, 0x2b080819082b0819, 0x2b080819082b1908, + 0x2b08081919080808, 0x2b0808191908082b, 0x2b08081919081919, 0x2b08081919082b08, + 0x2b08081919190819, 0x2b08081919191908, 0x2b0808192b080819, 0x2b0808192b081908, + 0x2b0808192b190808, 0x2b0808192b2b2b19, 0x2b08082b08080808, 0x2b08082b08081919, + 0x2b08082b08082b2b, 0x2b08082b08190819, 0x2b08082b08191908, 0x2b08082b19080819, + 0x2b08082b19081908, 0x2b08082b19190808, 0x2b08190808080819, 0x2b08190808081908, + 0x2b0819080808192b, 0x2b08190808082b19, 0x2b08190808190808, 0x2b0819080819082b, + 0x2b08190808191919, 0x2b08190808192b08, 0x2b081908082b0819, 0x2b08190819080808, + 0x2b0819081908082b, 0x2b08190819081919, 0x2b08190819082b08, 0x2b08190819190819, + 0x2b08190819191908, 0x2b081908192b0808, 0x2b0819082b080819, 0x2b0819082b081908, + 0x2b0819082b190808, 0x2b08191908080808, 0x2b0819190808082b, 0x2b08191908081919, + 0x2b08191908082b08, 0x2b08191908190819, 0x2b08191908191908, 0x2b081919082b0808, + 0x2b08191919080819, 0x2b08191919081908, 0x2b08191919190808, 0x2b0819192b080808, + 0x2b0819192b082b2b, 0x2b08192b08080819, 0x2b08192b08081908, 0x2b08192b08190808, + 0x2b08192b082b2b19, 0x2b08192b19080808, 0x2b082b0808080808, 0x2b082b0808081919, + 0x2b082b0808190819, 0x2b082b0808191908, 0x2b082b0819080819, 0x2b082b0819081908, + 0x2b082b0819190808, 0x2b082b082b2b082b, 0x2b082b1908080819, 0x2b082b1908081908, + 0x2b082b1919080808, 0x2b082b19192b1919, 0x2b082b2b082b082b, 0x2b082b2b19192b08, + 0x2b082b2b19192b2b, 0x2b082b2b2b08082b, 0x2b082b2b2b2b082b, 0x2b19080808080819, + 0x2b19080808081908, 0x2b19080808082b19, 0x2b19080808190808, 0x2b1908080819082b, + 0x2b19080808191919, 0x2b19080808192b08, 0x2b190808082b1908, 0x2b19080819080808, + 0x2b1908081908082b, 0x2b19080819081919, 0x2b19080819082b08, 0x2b19080819190819, + 0x2b19080819191908, 0x2b190808192b0808, 0x2b1908082b080819, 0x2b1908082b081908, + 0x2b1908082b190808, 0x2b19081908080808, 0x2b19081908081919, 0x2b19081908190819, + 0x2b19081908191908, 0x2b19081919080819, 0x2b19081919081908, 0x2b19081919190808, + 0x2b19081919192b2b, 0x2b19082b08080819, 0x2b19082b08081908, 0x2b19082b08190808, + 0x2b19082b19080808, 0x2b19082b2b2b192b, 0x2b19190808080808, 0x2b1919080808082b, + 0x2b19190808081919, 0x2b19190808082b08, 0x2b19190808190819, 0x2b19190808191908, + 0x2b191908082b0808, 0x2b19190819080819, 0x2b19190819081908, 0x2b19190819190808, + 0x2b1919082b080808, 0x2b1919082b19192b, 0x2b19191908080819, 0x2b19191908081908, + 0x2b19191908190808, 0x2b19191919080808, 0x2b1919192b192b08, 0x2b1919192b2b0819, + 0x2b19192b08080808, 0x2b19192b1908192b, 0x2b19192b192b1908, 0x2b192b0808080819, + 0x2b192b0808081908, 0x2b192b0808190808, 0x2b192b08082b192b, 0x2b192b0819080808, + 0x2b192b082b2b2b19, 0x2b192b1908080808, 0x2b192b1919082b19, 0x2b192b191919082b, + 0x2b192b2b2b190808, 0x2b2b080808080808, 0x2b2b080808081919, 0x2b2b080808082b2b, + 0x2b2b080808191908, 0x2b2b0808082b082b, 0x2b2b0808082b2b2b, 0x2b2b080819080819, + 0x2b2b080819081908, 0x2b2b080819190808, 0x2b2b08082b2b082b, 0x2b2b08082b2b2b2b, + 0x2b2b081919080808, 0x2b2b0819192b1919, 0x2b2b082b0808082b, 0x2b2b082b08082b2b, + 0x2b2b082b082b082b, 0x2b2b082b082b2b08, 0x2b2b082b082b2b2b, 0x2b2b082b2b08082b, + 0x2b2b082b2b082b08, 0x2b2b082b2b082b2b, 0x2b2b082b2b2b2b08, 0x2b2b190808080819, + 0x2b2b190808081908, 0x2b2b190808190808, 0x2b2b190819080808, 0x2b2b19082b082b19, + 0x2b2b19082b2b1908, 0x2b2b191908080808, 0x2b2b191908192b19, 0x2b2b192b19190819, + 0x2b2b2b0808082b2b, 0x2b2b2b08082b2b08, 0x2b2b2b082b2b082b, 0x2b2b2b1919191908, + 0x2b2b2b192b08192b, 0x2b2b2b2b08082b08, 0x2b2b2b2b08082b2b, 0x2b2b2b2b082b0808, + 0x2b2b2b2b082b082b, 0x2b2b2b2b082b2b08, 0x2b2b2b2b2b082b08, 0x2b2b2b2b2b2b2b2b, +}; + static const __device__ uint32_t iq3xxs_grid[256] = { 0x04040404, 0x04040414, 0x04040424, 0x04040c0c, 0x04040c1c, 0x04040c3e, 0x04041404, 0x04041414, 0x04041c0c, 0x04042414, 0x04043e1c, 0x04043e2c, 0x040c040c, 0x040c041c, 0x040c0c04, 0x040c0c14, @@ -1717,6 +2043,73 @@ static const __device__ uint32_t iq3xxs_grid[256] = { 0x3e1c1c1c, 0x3e1c3404, 0x3e24140c, 0x3e24240c, 0x3e2c0404, 0x3e2c0414, 0x3e2c1424, 0x3e341c04, }; +static const __device__ uint32_t iq3s_grid[512] = { + 0x01010101, 0x01010103, 0x01010105, 0x0101010b, 0x0101010f, 0x01010301, 0x01010303, 0x01010305, + 0x01010309, 0x0101030d, 0x01010501, 0x01010503, 0x0101050b, 0x01010707, 0x01010901, 0x01010905, + 0x0101090b, 0x0101090f, 0x01010b03, 0x01010b07, 0x01010d01, 0x01010d05, 0x01010f03, 0x01010f09, + 0x01010f0f, 0x01030101, 0x01030103, 0x01030105, 0x01030109, 0x01030301, 0x01030303, 0x0103030b, + 0x01030501, 0x01030507, 0x0103050f, 0x01030703, 0x0103070b, 0x01030909, 0x01030d03, 0x01030d0b, + 0x01030f05, 0x01050101, 0x01050103, 0x0105010b, 0x0105010f, 0x01050301, 0x01050307, 0x0105030d, + 0x01050503, 0x0105050b, 0x01050701, 0x01050709, 0x01050905, 0x0105090b, 0x0105090f, 0x01050b03, + 0x01050b07, 0x01050f01, 0x01050f07, 0x01070107, 0x01070303, 0x0107030b, 0x01070501, 0x01070505, + 0x01070703, 0x01070707, 0x0107070d, 0x01070909, 0x01070b01, 0x01070b05, 0x01070d0f, 0x01070f03, + 0x01070f0b, 0x01090101, 0x01090307, 0x0109030f, 0x01090503, 0x01090509, 0x01090705, 0x01090901, + 0x01090907, 0x01090b03, 0x01090f01, 0x010b0105, 0x010b0109, 0x010b0501, 0x010b0505, 0x010b050d, + 0x010b0707, 0x010b0903, 0x010b090b, 0x010b090f, 0x010b0d0d, 0x010b0f07, 0x010d010d, 0x010d0303, + 0x010d0307, 0x010d0703, 0x010d0b05, 0x010d0f03, 0x010f0101, 0x010f0105, 0x010f0109, 0x010f0501, + 0x010f0505, 0x010f050d, 0x010f0707, 0x010f0b01, 0x010f0b09, 0x03010101, 0x03010103, 0x03010105, + 0x03010109, 0x03010301, 0x03010303, 0x03010307, 0x0301030b, 0x0301030f, 0x03010501, 0x03010505, + 0x03010703, 0x03010709, 0x0301070d, 0x03010b09, 0x03010b0d, 0x03010d03, 0x03010f05, 0x03030101, + 0x03030103, 0x03030107, 0x0303010d, 0x03030301, 0x03030309, 0x03030503, 0x03030701, 0x03030707, + 0x03030903, 0x03030b01, 0x03030b05, 0x03030f01, 0x03030f0d, 0x03050101, 0x03050305, 0x0305030b, + 0x0305030f, 0x03050501, 0x03050509, 0x03050705, 0x03050901, 0x03050907, 0x03050b0b, 0x03050d01, + 0x03050f05, 0x03070103, 0x03070109, 0x0307010f, 0x03070301, 0x03070307, 0x03070503, 0x0307050f, + 0x03070701, 0x03070709, 0x03070903, 0x03070d05, 0x03070f01, 0x03090107, 0x0309010b, 0x03090305, + 0x03090309, 0x03090703, 0x03090707, 0x03090905, 0x0309090d, 0x03090b01, 0x03090b09, 0x030b0103, + 0x030b0301, 0x030b0307, 0x030b0503, 0x030b0701, 0x030b0705, 0x030b0b03, 0x030d0501, 0x030d0509, + 0x030d050f, 0x030d0909, 0x030d090d, 0x030f0103, 0x030f0107, 0x030f0301, 0x030f0305, 0x030f0503, + 0x030f070b, 0x030f0903, 0x030f0d05, 0x030f0f01, 0x05010101, 0x05010103, 0x05010107, 0x0501010b, + 0x0501010f, 0x05010301, 0x05010305, 0x05010309, 0x0501030d, 0x05010503, 0x05010507, 0x0501050f, + 0x05010701, 0x05010705, 0x05010903, 0x05010907, 0x0501090b, 0x05010b01, 0x05010b05, 0x05010d0f, + 0x05010f01, 0x05010f07, 0x05010f0b, 0x05030101, 0x05030105, 0x05030301, 0x05030307, 0x0503030f, + 0x05030505, 0x0503050b, 0x05030703, 0x05030709, 0x05030905, 0x05030b03, 0x05050103, 0x05050109, + 0x0505010f, 0x05050503, 0x05050507, 0x05050701, 0x0505070f, 0x05050903, 0x05050b07, 0x05050b0f, + 0x05050f03, 0x05050f09, 0x05070101, 0x05070105, 0x0507010b, 0x05070303, 0x05070505, 0x05070509, + 0x05070703, 0x05070707, 0x05070905, 0x05070b01, 0x05070d0d, 0x05090103, 0x0509010f, 0x05090501, + 0x05090507, 0x05090705, 0x0509070b, 0x05090903, 0x05090f05, 0x05090f0b, 0x050b0109, 0x050b0303, + 0x050b0505, 0x050b070f, 0x050b0901, 0x050b0b07, 0x050b0f01, 0x050d0101, 0x050d0105, 0x050d010f, + 0x050d0503, 0x050d0b0b, 0x050d0d03, 0x050f010b, 0x050f0303, 0x050f050d, 0x050f0701, 0x050f0907, + 0x050f0b01, 0x07010105, 0x07010303, 0x07010307, 0x0701030b, 0x0701030f, 0x07010505, 0x07010703, + 0x07010707, 0x0701070b, 0x07010905, 0x07010909, 0x0701090f, 0x07010b03, 0x07010d07, 0x07010f03, + 0x07030103, 0x07030107, 0x0703010b, 0x07030309, 0x07030503, 0x07030507, 0x07030901, 0x07030d01, + 0x07030f05, 0x07030f0d, 0x07050101, 0x07050305, 0x07050501, 0x07050705, 0x07050709, 0x07050b01, + 0x07070103, 0x07070301, 0x07070309, 0x07070503, 0x07070507, 0x0707050f, 0x07070701, 0x07070903, + 0x07070907, 0x0707090f, 0x07070b0b, 0x07070f07, 0x07090107, 0x07090303, 0x0709030d, 0x07090505, + 0x07090703, 0x07090b05, 0x07090d01, 0x07090d09, 0x070b0103, 0x070b0301, 0x070b0305, 0x070b050b, + 0x070b0705, 0x070b0909, 0x070b0b0d, 0x070b0f07, 0x070d030d, 0x070d0903, 0x070f0103, 0x070f0107, + 0x070f0501, 0x070f0505, 0x070f070b, 0x09010101, 0x09010109, 0x09010305, 0x09010501, 0x09010509, + 0x0901050f, 0x09010705, 0x09010903, 0x09010b01, 0x09010f01, 0x09030105, 0x0903010f, 0x09030303, + 0x09030307, 0x09030505, 0x09030701, 0x0903070b, 0x09030907, 0x09030b03, 0x09030b0b, 0x09050103, + 0x09050107, 0x09050301, 0x0905030b, 0x09050503, 0x09050707, 0x09050901, 0x09050b0f, 0x09050d05, + 0x09050f01, 0x09070109, 0x09070303, 0x09070307, 0x09070501, 0x09070505, 0x09070703, 0x0907070b, + 0x09090101, 0x09090105, 0x09090509, 0x0909070f, 0x09090901, 0x09090f03, 0x090b010b, 0x090b010f, + 0x090b0503, 0x090b0d05, 0x090d0307, 0x090d0709, 0x090d0d01, 0x090f0301, 0x090f030b, 0x090f0701, + 0x090f0907, 0x090f0b03, 0x0b010105, 0x0b010301, 0x0b010309, 0x0b010505, 0x0b010901, 0x0b010909, + 0x0b01090f, 0x0b010b05, 0x0b010d0d, 0x0b010f09, 0x0b030103, 0x0b030107, 0x0b03010b, 0x0b030305, + 0x0b030503, 0x0b030705, 0x0b030f05, 0x0b050101, 0x0b050303, 0x0b050507, 0x0b050701, 0x0b05070d, + 0x0b050b07, 0x0b070105, 0x0b07010f, 0x0b070301, 0x0b07050f, 0x0b070909, 0x0b070b03, 0x0b070d0b, + 0x0b070f07, 0x0b090103, 0x0b090109, 0x0b090501, 0x0b090705, 0x0b09090d, 0x0b0b0305, 0x0b0b050d, + 0x0b0b0b03, 0x0b0b0b07, 0x0b0d0905, 0x0b0f0105, 0x0b0f0109, 0x0b0f0505, 0x0d010303, 0x0d010307, + 0x0d01030b, 0x0d010703, 0x0d010707, 0x0d010d01, 0x0d030101, 0x0d030501, 0x0d03050f, 0x0d030d09, + 0x0d050305, 0x0d050709, 0x0d050905, 0x0d050b0b, 0x0d050d05, 0x0d050f01, 0x0d070101, 0x0d070309, + 0x0d070503, 0x0d070901, 0x0d09050b, 0x0d090907, 0x0d090d05, 0x0d0b0101, 0x0d0b0107, 0x0d0b0709, + 0x0d0b0d01, 0x0d0d010b, 0x0d0d0901, 0x0d0f0303, 0x0d0f0307, 0x0f010101, 0x0f010109, 0x0f01010f, + 0x0f010501, 0x0f010505, 0x0f01070d, 0x0f010901, 0x0f010b09, 0x0f010d05, 0x0f030105, 0x0f030303, + 0x0f030509, 0x0f030907, 0x0f03090b, 0x0f050103, 0x0f050109, 0x0f050301, 0x0f05030d, 0x0f050503, + 0x0f050701, 0x0f050b03, 0x0f070105, 0x0f070705, 0x0f07070b, 0x0f070b07, 0x0f090103, 0x0f09010b, + 0x0f090307, 0x0f090501, 0x0f090b01, 0x0f0b0505, 0x0f0b0905, 0x0f0d0105, 0x0f0d0703, 0x0f0f0101, +}; + static const __device__ uint64_t iq1s_grid[512] = { 0xffffffffffff0101, 0xffffffffff01ff00, 0xffffffffff010100, 0xffffffff00000000, 0xffffffff01ff00ff, 0xffffffff01ff0001, 0xffffffff0101ffff, 0xffffffff0101ff01, @@ -1962,6 +2355,27 @@ static __global__ void dequantize_block_iq2_xs(const void * __restrict__ vx, dst } +template +static __global__ void dequantize_block_iq2_s(const void * __restrict__ vx, dst_t * __restrict__ yy) { + + const int i = blockIdx.x; + const block_iq2_s * x = (const block_iq2_s *) vx; + + const int tid = threadIdx.x; +#if QK_K == 256 + const int il = tid/8; // 0...3 + const int ib = tid%8; // 0...7 + dst_t * y = yy + i*QK_K + 32*ib + 8*il; + const uint8_t * grid = (const uint8_t *)(iq2s_grid + (x[i].qs[4*ib+il] | ((x[i].qh[ib] << (8-2*il)) & 0x300))); + const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f; + const uint8_t signs = x[i].qs[QK_K/8+4*ib+il]; + for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f); +#else + assert(false); +#endif + +} + template static __global__ void dequantize_block_iq3_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy) { @@ -1990,6 +2404,32 @@ static __global__ void dequantize_block_iq3_xxs(const void * __restrict__ vx, ds } +template +static __global__ void dequantize_block_iq3_s(const void * __restrict__ vx, dst_t * __restrict__ yy) { + + const int i = blockIdx.x; + const block_iq3_s * x = (const block_iq3_s *) vx; + + const int tid = threadIdx.x; +#if QK_K == 256 + const int il = tid/8; // 0...3 + const int ib = tid%8; // 0...7 + dst_t * y = yy + i*QK_K + 32*ib + 8*il; + const uint8_t * qs = x[i].qs + 8*ib; + const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*il+0] | ((x[i].qh[ib] << (8-2*il)) & 256))); + const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*il+1] | ((x[i].qh[ib] << (7-2*il)) & 256))); + const float d = (float)x[i].d * (1 + 2*((x[i].scales[ib/2] >> 4*(ib%2)) & 0xf)); + const uint8_t signs = x[i].signs[4*ib + il]; + for (int j = 0; j < 4; ++j) { + y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f); + y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f); + } +#else + assert(false); +#endif + +} + template static __global__ void dequantize_block_iq1_s(const void * __restrict__ vx, dst_t * __restrict__ yy) { @@ -2012,6 +2452,45 @@ static __global__ void dequantize_block_iq1_s(const void * __restrict__ vx, dst_ } +static const __device__ int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113}; + +template +static __global__ void dequantize_block_iq4_nl(const void * __restrict__ vx, dst_t * __restrict__ yy) { + + const int i = blockIdx.x; + const block_iq4_nl * x = (const block_iq4_nl *) vx + i*(QK_K/QK4_NL); + + const int tid = threadIdx.x; + const int il = tid/8; // 0...3 + const int ib = tid%8; // 0...7 + dst_t * y = yy + i*QK_K + 32*ib + 4*il; + const uint8_t * q4 = x[ib].qs + 4*il; + const float d = (float)x[ib].d; + for (int j = 0; j < 4; ++j) { + y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf]; + y[j+16] = d * kvalues_iq4nl[q4[j] >> 4]; + } + +} + +#if QK_K != 64 +template +static __global__ void dequantize_block_iq4_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) { + const int i = blockIdx.x; + const block_iq4_xs * x = (const block_iq4_xs *)vx; + + const int tid = threadIdx.x; + const int il = tid/8; // 0...3 + const int ib = tid%8; // 0...7 + dst_t * y = yy + i*QK_K + 32*ib + 4*il; + const uint8_t * q4 = x[i].qs + 16*ib + 4*il; + const float d = (float)x[i].d * ((((x[i].scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((x[i].scales_h >> 2*ib) & 3) << 4)) - 32); + for (int j = 0; j < 4; ++j) { + y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf]; + y[j+16] = d * kvalues_iq4nl[q4[j] >> 4]; + } +} +#endif static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) { @@ -2109,10 +2588,7 @@ static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx, #endif // sum up partial sums and write back result -#pragma unroll - for (int mask = 16; mask > 0; mask >>= 1) { - tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); - } + tmp = warp_reduce_sum(tmp); if (threadIdx.x == 0) { dst[row] = tmp; @@ -2213,10 +2689,7 @@ static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx, #endif // sum up partial sums and write back result -#pragma unroll - for (int mask = 16; mask > 0; mask >>= 1) { - tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); - } + tmp = warp_reduce_sum(tmp); if (threadIdx.x == 0) { dst[row] = tmp; @@ -2349,10 +2822,7 @@ static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx, #endif // sum up partial sums and write back result -#pragma unroll - for (int mask = 16; mask > 0; mask >>= 1) { - tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); - } + tmp = warp_reduce_sum(tmp); if (tid == 0) { dst[row] = tmp; @@ -2465,10 +2935,7 @@ static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx, #endif // sum up partial sums and write back result -#pragma unroll - for (int mask = 16; mask > 0; mask >>= 1) { - tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); - } + tmp = warp_reduce_sum(tmp); if (threadIdx.x == 0) { dst[row] = tmp; @@ -2575,10 +3042,7 @@ static __global__ void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, #endif // sum up partial sums and write back result -#pragma unroll - for (int mask = 16; mask > 0; mask >>= 1) { - tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); - } + tmp = warp_reduce_sum(tmp); if (tid == 0) { dst[row] = tmp; @@ -2613,11 +3077,8 @@ static __global__ void quantize_q8_1(const float * __restrict__ x, void * __rest float amax = fabsf(xi); float sum = xi; -#pragma unroll - for (int mask = 16; mask > 0; mask >>= 1) { - amax = fmaxf(amax, __shfl_xor_sync(0xffffffff, amax, mask, 32)); - sum += __shfl_xor_sync(0xffffffff, sum, mask, 32); - } + amax = warp_reduce_max(amax); + sum = warp_reduce_sum(sum); const float d = amax / 127; const int8_t q = amax == 0.0f ? 0 : roundf(xi / d); @@ -4668,10 +5129,60 @@ static __device__ __forceinline__ float vec_dot_iq2_xs_q8_1( const float d = (float)bq2->d * __low2float(bq8_1[ib32].ds) * 0.25f; return d * ((0.5f + ls1) * sumi1 + (0.5f + ls2) * sumi2); #else + (void) ksigns64; assert(false); return 0.f; #endif #else + (void) ksigns64; + assert(false); + return 0.f; +#endif +} + +// TODO +static __device__ __forceinline__ float vec_dot_iq2_s_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { +#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics +#if QK_K == 256 + const block_iq2_s * bq2 = (const block_iq2_s *) vbq; + + const int ib32 = iqs; + const int8_t * q8 = bq8_1[ib32].qs; + const uint8_t * signs = bq2->qs + QK_K/8 + 4*ib32; + const uint8_t ls1 = bq2->scales[ib32] & 0xf; + const uint8_t ls2 = bq2->scales[ib32] >> 4; + int sumi1 = 0; + for (int l = 0; l < 2; ++l) { + const uint32_t * grid = (const uint32_t *)(iq2s_grid + (bq2->qs[4*ib32+l] | ((bq2->qh[ib32] << (8-2*l)) & 0x300))); + const uint32_t signs0 = __vcmpeq4(((signs[l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201); + const uint32_t signs1 = __vcmpeq4(((signs[l] >> 4) * 0x01010101) & 0x08040201, 0x08040201); + const int grid_l = __vsub4(grid[0] ^ signs0, signs0); + const int grid_h = __vsub4(grid[1] ^ signs1, signs1); + sumi1 = __dp4a(grid_l, *((const int *)q8 + 0), sumi1); + sumi1 = __dp4a(grid_h, *((const int *)q8 + 1), sumi1); + q8 += 8; + } + int sumi2 = 0; + for (int l = 2; l < 4; ++l) { + const uint32_t * grid = (const uint32_t *)(iq2s_grid + (bq2->qs[4*ib32+l] | ((bq2->qh[ib32] << (8-2*l)) & 0x300))); + const uint32_t signs0 = __vcmpeq4(((signs[l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201); + const uint32_t signs1 = __vcmpeq4(((signs[l] >> 4) * 0x01010101) & 0x08040201, 0x08040201); + const int grid_l = __vsub4(grid[0] ^ signs0, signs0); + const int grid_h = __vsub4(grid[1] ^ signs1, signs1); + sumi2 = __dp4a(grid_l, *((const int *)q8 + 0), sumi2); + sumi2 = __dp4a(grid_h, *((const int *)q8 + 1), sumi2); + q8 += 8; + } + const float d = (float)bq2->d * __low2float(bq8_1[ib32].ds) * 0.25f; + return d * ((0.5f + ls1) * sumi1 + (0.5f + ls2) * sumi2); +#else + (void) ksigns64; + assert(false); + return 0.f; +#endif +#else + (void) ksigns64; assert(false); return 0.f; #endif @@ -4712,6 +5223,41 @@ static __device__ __forceinline__ float vec_dot_iq3_xxs_q8_1( #endif } +// TODO: don't use lookup table for signs +static __device__ __forceinline__ float vec_dot_iq3_s_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { +#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics +#if QK_K == 256 + const block_iq3_s * bq2 = (const block_iq3_s *) vbq; + + const int ib32 = iqs; + const uint8_t * qs = bq2->qs + 8*ib32; + const int8_t * q8 = bq8_1[ib32].qs; + int sumi = 0; + for (int l = 0; l < 4; ++l) { + const uint32_t * grid1 = iq3s_grid + (qs[2*l+0] | ((bq2->qh[ib32] << (8 - 2*l)) & 256)); + const uint32_t * grid2 = iq3s_grid + (qs[2*l+1] | ((bq2->qh[ib32] << (7 - 2*l)) & 256)); + uint32_t signs0 = __vcmpeq4(((bq2->signs[4*ib32+l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201); + uint32_t signs1 = __vcmpeq4(((bq2->signs[4*ib32+l] >> 4) * 0x01010101) & 0x08040201, 0x08040201); + const int grid_l = __vsub4(grid1[0] ^ signs0, signs0); + const int grid_h = __vsub4(grid2[0] ^ signs1, signs1); + sumi = __dp4a(grid_l, *((int *)q8+0), sumi); + sumi = __dp4a(grid_h, *((int *)q8+1), sumi); + q8 += 8; + } + const float d = (float)bq2->d * (1 + 2*((bq2->scales[ib32/2] >> 4*(ib32%2)) & 0xf)) * __low2float(bq8_1[ib32].ds); + return d * sumi; +#else + assert(false); + return 0.f; +#endif +#else + assert(false); + return 0.f; +#endif +} + + static __device__ __forceinline__ float vec_dot_iq1_s_q8_1( const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { #if QK_K == 256 @@ -4755,6 +5301,125 @@ static __device__ __forceinline__ float vec_dot_iq1_s_q8_1( #endif } +#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics +static __device__ __forceinline__ void get_int_from_table_16(const uint32_t & q4, const uint8_t * values, + int & val1, int & val2) { + + uint32_t aux32; const uint8_t * q8 = (const uint8_t *)&aux32; + aux32 = q4 & 0x0f0f0f0f; + uint16_t v1 = values[q8[0]] | (values[q8[1]] << 8); + uint16_t v2 = values[q8[2]] | (values[q8[3]] << 8); + val1 = v1 | (v2 << 16); + aux32 = (q4 >> 4) & 0x0f0f0f0f; + v1 = values[q8[0]] | (values[q8[1]] << 8); + v2 = values[q8[2]] | (values[q8[3]] << 8); + val2 = v1 | (v2 << 16); +} +#endif + +static __device__ __forceinline__ float vec_dot_iq4_nl_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { + + const block_iq4_nl * bq = (const block_iq4_nl *) vbq; + +#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics + const uint16_t * q4 = (const uint16_t *)bq->qs + 2*iqs; + const int32_t * q8 = (const int32_t *)bq8_1->qs + iqs; + + const uint8_t * values = (const uint8_t *)kvalues_iq4nl; + + int v1, v2; + int sumi1 = 0, sumi2 = 0; + for (int l = 0; l < VDR_Q4_0_Q8_1_MMVQ; ++l) { + const uint32_t aux = q4[2*l] | (q4[2*l+1] << 16); + get_int_from_table_16(aux, values, v1, v2); + sumi1 = __dp4a(v1, q8[l+0], sumi1); + sumi2 = __dp4a(v2, q8[l+4], sumi2); + } + +#else + const uint8_t * q4 = bq->qs + 4*iqs; + const int8_t * q8 = bq8_1->qs + 4*iqs; + + int sumi1 = 0, sumi2 = 0; + for (int l = 0; l < 4*VDR_Q4_0_Q8_1_MMVQ; ++l) { + sumi1 += q8[l+ 0] * kvalues_iq4nl[q4[l] & 0xf]; + sumi2 += q8[l+16] * kvalues_iq4nl[q4[l] >> 4]; + } +#endif + const float d = (float)bq->d * __low2float(bq8_1->ds); + return d * (sumi1 + sumi2); +} + +static __device__ __forceinline__ float vec_dot_iq4_xs_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { + +#if QK_K == 256 +#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics + + const block_iq4_xs * bq4 = (const block_iq4_xs *) vbq; + const uint8_t * values = (const uint8_t *)kvalues_iq4nl; + + //// iqs is 0...7 + //const int ib64 = iqs/2; + //const int il = iqs%2; + //const int32_t * q8_1 = (const int *)bq8_1[2*ib64+0].qs + 2*il; + //const int32_t * q8_2 = (const int *)bq8_1[2*ib64+1].qs + 2*il; + //const uint32_t * q4_1 = (const uint32_t *)bq4->qs + 8*ib64 + 2*il; + //const uint32_t * q4_2 = q4_1 + 4; + //const int8_t ls1 = (bq4->scales_l[ib64] & 0xf) | (((bq4->scales_h >> (4*ib64+0)) & 3) << 4); + //const int8_t ls2 = (bq4->scales_l[ib64] >> 4) | (((bq4->scales_h >> (4*ib64+2)) & 3) << 4); + //const float d1 = (float)bq4->d * (ls1 - 32) * __low2float(bq8_1[2*ib64+0].ds); + //const float d2 = (float)bq4->d * (ls2 - 32) * __low2float(bq8_1[2*ib64+1].ds); + //int v1, v2; + //int sumi1 = 0, sumi2 = 0; + //for (int j = 0; j < 2; ++j) { + // get_int_from_table_16(q4_1[j], values, v1, v2); + // sumi1 = __dp4a(v2, q8_1[j+4], __dp4a(v1, q8_1[j+0], sumi1)); + // get_int_from_table_16(q4_2[j], values, v1, v2); + // sumi2 = __dp4a(v2, q8_2[j+4], __dp4a(v1, q8_2[j+0], sumi2)); + //} + //return d1 * sumi1 + d2 * sumi2; + + // iqs is 0...7 + const int ib32 = iqs; + const int32_t * q8 = (const int *)bq8_1[ib32].qs; + const uint32_t * q4 = (const uint32_t *)bq4->qs + 4*ib32; + const int8_t ls = ((bq4->scales_l[ib32/2] >> 4*(ib32%2)) & 0xf) | (((bq4->scales_h >> 2*ib32) & 3) << 4); + const float d = (float)bq4->d * (ls - 32) * __low2float(bq8_1[ib32].ds); + int v1, v2; + int sumi1 = 0, sumi2 = 0; + for (int j = 0; j < 4; ++j) { + get_int_from_table_16(q4[j], values, v1, v2); + sumi1 = __dp4a(v1, q8[j+0], sumi1); + sumi2 = __dp4a(v2, q8[j+4], sumi2); + } + return d * (sumi1 + sumi2); + + //// iqs is 0...15 + //const int ib32 = iqs/2; + //const int il = iqs%2; + //const int32_t * q8 = (const int *)bq8_1[ib32].qs + 2*il; + //const uint32_t * q4 = (const uint32_t *)bq4->qs + 4*ib32 + 2*il; + //const int8_t ls = ((bq4->scales_l[ib32/2] >> 4*(ib32%2)) & 0xf) | (((bq4->scales_h >> 2*ib32) & 3) << 4); + //const float d = (float)bq4->d * (ls - 32) * __low2float(bq8_1[ib32].ds); + //int v1, v2; + //int sumi1 = 0, sumi2 = 0; + //for (int j = 0; j < 2; ++j) { + // get_int_from_table_16(q4[j], values, v1, v2); + // sumi1 = __dp4a(v1, q8[j+0], sumi1); + // sumi2 = __dp4a(v2, q8[j+4], sumi2); + //} + //return d * (sumi1 + sumi2); +#else + assert(false); + return 0.f; +#endif +#else + return vec_dot_iq4_xs_q8_1(vbq, bq8_1, iqs); +#endif +} + template static __device__ __forceinline__ void mul_mat_q( @@ -5675,10 +6340,7 @@ static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, cons } // sum up partial sums and write back result -#pragma unroll - for (int mask = 16; mask > 0; mask >>= 1) { - tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); - } + tmp = warp_reduce_sum(tmp); if (tid == 0) { #ifdef GGML_CUDA_F16 @@ -5728,10 +6390,7 @@ static __global__ void mul_mat_p021_f16_f32( const int idst = channel*nrows_dst + row_dst; // sum up partial sums and write back result -#pragma unroll - for (int mask = 16; mask > 0; mask >>= 1) { - tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); - } + tmp = warp_reduce_sum(tmp); if (threadIdx.x == 0) { dst[idst] = tmp; @@ -5774,10 +6433,7 @@ static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous } // sum up partial sums and write back result -#pragma unroll - for (int mask = 16; mask > 0; mask >>= 1) { - tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); - } + tmp = warp_reduce_sum(tmp); if (threadIdx.x == 0) { dst[idst] = tmp; @@ -6161,11 +6817,11 @@ static __global__ void k_argsort_f32_i32(const float * x, int * dst, const int n int ixj = col ^ j; if (ixj > col) { if ((col & k) == 0) { - if (order == GGML_SORT_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) { + if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) { swap(dst_row[col], dst_row[ixj]); } } else { - if (order == GGML_SORT_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) { + if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) { swap(dst_row[col], dst_row[ixj]); } } @@ -7318,18 +7974,46 @@ static void dequantize_row_iq2_xs_cuda(const void * vx, dst_t * y, const int k, dequantize_block_iq2_xs<<>>(vx, y); } +template +static void dequantize_row_iq2_s_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) { + const int nb = k / QK_K; + dequantize_block_iq2_s<<>>(vx, y); +} + template static void dequantize_row_iq3_xxs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) { const int nb = k / QK_K; dequantize_block_iq3_xxs<<>>(vx, y); } +template +static void dequantize_row_iq3_s_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) { + const int nb = k / QK_K; + dequantize_block_iq3_s<<>>(vx, y); +} + template static void dequantize_row_iq1_s_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) { const int nb = k / QK_K; dequantize_block_iq1_s<<>>(vx, y); } +template +static void dequantize_row_iq4_nl_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) { + const int nb = (k + QK_K - 1) / QK_K; + dequantize_block_iq4_nl<<>>(vx, y); +} + +template +static void dequantize_row_iq4_xs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) { + const int nb = (k + QK_K - 1) / QK_K; +#if QK_K == 64 + dequantize_block_iq4_nl<<>>(vx, y); +#else + dequantize_block_iq4_xs<<>>(vx, y); +#endif +} + template static void convert_unary_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE; @@ -7367,10 +8051,18 @@ static to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) { return dequantize_row_iq2_xxs_cuda; case GGML_TYPE_IQ2_XS: return dequantize_row_iq2_xs_cuda; + case GGML_TYPE_IQ2_S: + return dequantize_row_iq2_s_cuda; case GGML_TYPE_IQ3_XXS: return dequantize_row_iq3_xxs_cuda; case GGML_TYPE_IQ1_S: return dequantize_row_iq1_s_cuda; + case GGML_TYPE_IQ4_NL: + return dequantize_row_iq4_nl_cuda; + case GGML_TYPE_IQ4_XS: + return dequantize_row_iq4_xs_cuda; + case GGML_TYPE_IQ3_S: + return dequantize_row_iq3_s_cuda; case GGML_TYPE_F32: return convert_unary_cuda; default: @@ -7404,10 +8096,18 @@ static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) { return dequantize_row_iq2_xxs_cuda; case GGML_TYPE_IQ2_XS: return dequantize_row_iq2_xs_cuda; + case GGML_TYPE_IQ2_S: + return dequantize_row_iq2_s_cuda; case GGML_TYPE_IQ3_XXS: return dequantize_row_iq3_xxs_cuda; case GGML_TYPE_IQ1_S: return dequantize_row_iq1_s_cuda; + case GGML_TYPE_IQ4_NL: + return dequantize_row_iq4_nl_cuda; + case GGML_TYPE_IQ4_XS: + return dequantize_row_iq4_xs_cuda; + case GGML_TYPE_IQ3_S: + return dequantize_row_iq3_s_cuda; case GGML_TYPE_F16: return convert_unary_cuda; default: @@ -8229,10 +8929,10 @@ static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, co const dim3 block_dims(ncols, 1, 1); const dim3 block_nums(1, nrows, 1); - if (order == GGML_SORT_ASC) { - k_argsort_f32_i32<<>>(x, dst, ncols); - } else if (order == GGML_SORT_DESC) { - k_argsort_f32_i32<<>>(x, dst, ncols); + if (order == GGML_SORT_ORDER_ASC) { + k_argsort_f32_i32<<>>(x, dst, ncols); + } else if (order == GGML_SORT_ORDER_DESC) { + k_argsort_f32_i32<<>>(x, dst, ncols); } else { GGML_ASSERT(false); } @@ -8388,8 +9088,8 @@ static void * ggml_cuda_pool_malloc_leg(int device, size_t size, size_t * actual *actual_size = look_ahead_size; g_cuda_pool_size[device] += look_ahead_size; #ifdef DEBUG_CUDA_MALLOC - fprintf(stderr, "%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, requested %u MB\n", __func__, id, nnz, - (uint32_t)(max_size/1024/1024), (uint32_t)(g_cuda_pool_size[id]/1024/1024), (uint32_t)(size/1024/1024)); + fprintf(stderr, "%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, requested %u MB\n", __func__, device, nnz, + (uint32_t)(max_size/1024/1024), (uint32_t)(g_cuda_pool_size[device]/1024/1024), (uint32_t)(size/1024/1024)); #endif return ptr; } @@ -8475,7 +9175,7 @@ static void * ggml_cuda_pool_malloc_vmm(int device, size_t size, size_t * actual g_cuda_pool_used[device] += size; #ifdef DEBUG_CUDA_MALLOC - printf("cuda pool[%d]: allocated %llu bytes at %llx [%s]\n", id, (unsigned long long) size, ptr); + printf("cuda pool[%d]: allocated %llu bytes at %llx\n", device, (unsigned long long) size, ptr); #endif return ptr; @@ -8485,7 +9185,7 @@ static void ggml_cuda_pool_free_vmm(int device, void * ptr, size_t size) { scoped_spin_lock lock(g_cuda_pool_lock); #ifdef DEBUG_CUDA_MALLOC - printf("cuda pool[%d]: freed %llu bytes at %llx\n", id, (unsigned long long) size, ptr); + printf("cuda pool[%d]: freed %llu bytes at %llx\n", device, (unsigned long long) size, ptr); #endif g_cuda_pool_used[device] -= size; @@ -8671,11 +9371,11 @@ static cudaError_t ggml_cuda_cpy_tensor_2d( cudaMemcpyKind kind; char * src_ptr; - if (src->backend == GGML_BACKEND_CPU) { + if (src->backend == GGML_BACKEND_TYPE_CPU) { kind = cudaMemcpyHostToDevice; src_ptr = (char *) src->data; - } else if (src->backend == GGML_BACKEND_GPU || src->backend == GGML_BACKEND_GPU_SPLIT) { - GGML_ASSERT(src->backend != GGML_BACKEND_GPU_SPLIT || (i1_low == 0 && i1_high == src->ne[1])); + } else if (src->backend == GGML_BACKEND_TYPE_GPU || src->backend == GGML_BACKEND_TYPE_GPU_SPLIT) { + GGML_ASSERT(src->backend != GGML_BACKEND_TYPE_GPU_SPLIT || (i1_low == 0 && i1_high == src->ne[1])); kind = cudaMemcpyDeviceToDevice; ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra; int id; @@ -9080,7 +9780,7 @@ static void ggml_cuda_op_mul_mat_q( // the main device has a larger memory buffer to hold the results from all GPUs // nrows_dst == nrows of the matrix that the kernel writes into - const int64_t nrows_dst = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : row_diff; + const int64_t nrows_dst = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device ? ne0 : row_diff; switch (src0->type) { case GGML_TYPE_Q4_0: @@ -9157,8 +9857,12 @@ static int64_t get_row_rounding(ggml_type type, const std::array= CC_RDNA2 ? 128 : 64; default: GGML_ASSERT(false); @@ -9181,8 +9885,12 @@ static int64_t get_row_rounding(ggml_type type, const std::array= CC_VOLTA ? 128 : 64; case GGML_TYPE_Q6_K: return 64; @@ -9225,7 +9933,7 @@ static void ggml_cuda_op_mul_mat_vec_q( // the main device has a larger memory buffer to hold the results from all GPUs // nrows_dst == nrows of the matrix that the kernel writes into - const int64_t nrows_dst = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : row_diff; + const int64_t nrows_dst = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device ? ne0 : row_diff; switch (src0->type) { case GGML_TYPE_Q4_0: @@ -9276,6 +9984,10 @@ static void ggml_cuda_op_mul_mat_vec_q( mul_mat_vec_q_cuda (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream); break; + case GGML_TYPE_IQ2_S: + mul_mat_vec_q_cuda + (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream); + break; case GGML_TYPE_IQ3_XXS: mul_mat_vec_q_cuda (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream); @@ -9284,6 +9996,18 @@ static void ggml_cuda_op_mul_mat_vec_q( mul_mat_vec_q_cuda (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream); break; + case GGML_TYPE_IQ4_NL: + mul_mat_vec_q_cuda + (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream); + break; + case GGML_TYPE_IQ4_XS: + mul_mat_vec_q_cuda + (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream); + break; + case GGML_TYPE_IQ3_S: + mul_mat_vec_q_cuda + (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream); + break; default: GGML_ASSERT(false); break; @@ -9393,7 +10117,7 @@ static void ggml_cuda_op_mul_mat_cublas( // the main device has a larger memory buffer to hold the results from all GPUs // ldc == nrows of the matrix that cuBLAS writes into - int ldc = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : row_diff; + int ldc = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device ? ne0 : row_diff; const int compute_capability = g_device_caps[id].cc; @@ -9741,7 +10465,7 @@ static void ggml_cuda_op_soft_max( const bool use_src2 = src2 != nullptr; if (use_src2) { - const bool src2_on_device = src2->backend == GGML_BACKEND_GPU; + const bool src2_on_device = src2->backend == GGML_BACKEND_TYPE_GPU; if (src2_on_device) { ggml_tensor_extra_gpu * src2_extra = (ggml_tensor_extra_gpu *) src2->extra; @@ -9799,16 +10523,16 @@ static void ggml_cuda_op_flatten(const ggml_tensor * src0, const ggml_tensor * s const bool use_src1 = src1 != nullptr; const int64_t nrows1 = use_src1 ? ggml_nrows(src1) : 1; - GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_GPU_SPLIT); - GGML_ASSERT( dst->backend != GGML_BACKEND_GPU_SPLIT); + GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT); + GGML_ASSERT( dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT); ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr; ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; - const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT; - const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_GPU; - const bool dst_on_device = dst->backend == GGML_BACKEND_GPU; + const bool src0_on_device = src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT; + const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_TYPE_GPU; + const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU; // dd = data device float * src0_ddf = nullptr; @@ -9852,7 +10576,7 @@ static void ggml_cuda_op_flatten(const ggml_tensor * src0, const ggml_tensor * s CUDA_CHECK(cudaMemcpyAsync(dst->data, dst_ddf, ggml_nbytes(dst), cudaMemcpyDeviceToHost, main_stream)); } - if (dst->backend == GGML_BACKEND_CPU) { + if (dst->backend == GGML_BACKEND_TYPE_CPU) { CUDA_CHECK(cudaDeviceSynchronize()); } } @@ -9887,9 +10611,15 @@ static void ggml_cuda_set_peer_access(const int n_tokens) { CUDA_CHECK(cudaDeviceCanAccessPeer(&can_access_peer, id, id_other)); if (can_access_peer) { if (enable_peer_access) { - CUDA_CHECK(cudaDeviceEnablePeerAccess(id_other, 0)); + cudaError_t err = cudaDeviceEnablePeerAccess(id_other, 0); + if (err != cudaErrorPeerAccessAlreadyEnabled) { + CUDA_CHECK(err); + } } else { - CUDA_CHECK(cudaDeviceDisablePeerAccess(id_other)); + cudaError_t err = cudaDeviceDisablePeerAccess(id_other); + if (err != cudaErrorPeerAccessNotEnabled) { + CUDA_CHECK(err); + } } } } @@ -9927,8 +10657,8 @@ static void ggml_cuda_op_mul_mat( const int nb2 = dst->nb[2]; const int nb3 = dst->nb[3]; - GGML_ASSERT(dst->backend != GGML_BACKEND_GPU_SPLIT); - GGML_ASSERT(src1->backend != GGML_BACKEND_GPU_SPLIT); + GGML_ASSERT(dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT); + GGML_ASSERT(src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT); GGML_ASSERT(src1->type == GGML_TYPE_F32 || (src1->ne[2] == 1 && src1->ne[3] == 1)); GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0); @@ -9944,20 +10674,20 @@ static void ggml_cuda_op_mul_mat( ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra; ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; - const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT; + const bool src0_on_device = src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT; const bool src0_is_contiguous = ggml_is_contiguous(src0); const bool src1_is_contiguous = ggml_is_contiguous(src1); const int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING); - const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT; + const bool split = src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT; GGML_ASSERT(!(split && ne02 > 1)); GGML_ASSERT(!(split && ne03 > 1)); GGML_ASSERT(!(split && ne02 < ne12)); std::array tensor_split; if (split) { - // TODO: check that src0->buffer->buft is a split buffer type, replace GGML_BACKEND_GPU_SPLIT check + // TODO: check that src0->buffer->buft is a split buffer type, replace GGML_BACKEND_TYPE_GPU_SPLIT check // GGML_ASSERT(src0->buffer != nullptr && src0->buffer->buft == ...); ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context; tensor_split = buft_ctx->tensor_split; @@ -10015,8 +10745,8 @@ static void ggml_cuda_op_mul_mat( used_devices++; - const bool src1_on_device = src1->backend == GGML_BACKEND_GPU && id == g_main_device; - const bool dst_on_device = dst->backend == GGML_BACKEND_GPU && id == g_main_device; + const bool src1_on_device = src1->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device; + const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device; ggml_cuda_set_device(id); cudaStream_t stream = g_cudaStreams[id][0]; @@ -10067,8 +10797,8 @@ static void ggml_cuda_op_mul_mat( continue; } - const bool src1_on_device = src1->backend == GGML_BACKEND_GPU && id == g_main_device; - const bool dst_on_device = dst->backend == GGML_BACKEND_GPU && id == g_main_device; + const bool src1_on_device = src1->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device; + const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device; const int64_t row_diff = dev[id].row_high - dev[id].row_low; ggml_cuda_set_device(id); @@ -10093,12 +10823,12 @@ static void ggml_cuda_op_mul_mat( // the main device memory buffer can be on VRAM scratch, with space for all partial results // in that case an offset on dst_ddf_i is needed - if (dst->backend == GGML_BACKEND_GPU && id == g_main_device) { + if (dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device) { dst_dd_i += dev[id].row_low; // offset is 0 if no tensor split } // copy src0, src1 to device if necessary - if (src1->backend == GGML_BACKEND_GPU && src1_is_contiguous) { + if (src1->backend == GGML_BACKEND_TYPE_GPU && src1_is_contiguous) { if (id != g_main_device) { if (convert_src1_to_q8_1) { char * src1_ddq_i_source = dev[g_main_device].src1_ddq + src1_ddq_i_offset; @@ -10111,14 +10841,14 @@ static void ggml_cuda_op_mul_mat( src1_ncols*ne10*sizeof(float), stream)); } } - } else if (src1->backend == GGML_BACKEND_CPU || (src1_on_device && !src1_is_contiguous)) { + } else if (src1->backend == GGML_BACKEND_TYPE_CPU || (src1_on_device && !src1_is_contiguous)) { CUDA_CHECK(ggml_cuda_cpy_tensor_2d( src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream)); } else { GGML_ASSERT(false); } - if (convert_src1_to_q8_1 && (src1->backend == GGML_BACKEND_CPU || !src1_is_contiguous)) { + if (convert_src1_to_q8_1 && (src1->backend == GGML_BACKEND_TYPE_CPU || !src1_is_contiguous)) { quantize_row_q8_1_cuda(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream); CUDA_CHECK(cudaGetLastError()); } @@ -10136,10 +10866,10 @@ static void ggml_cuda_op_mul_mat( if (!dst_on_device) { void * dst_off_device; cudaMemcpyKind kind; - if (dst->backend == GGML_BACKEND_CPU) { + if (dst->backend == GGML_BACKEND_TYPE_CPU) { dst_off_device = dst->data; kind = cudaMemcpyDeviceToHost; - } else if (dst->backend == GGML_BACKEND_GPU) { + } else if (dst->backend == GGML_BACKEND_TYPE_GPU) { dst_off_device = dst_extra->data_device[g_main_device]; kind = cudaMemcpyDeviceToDevice; } else { @@ -10204,7 +10934,7 @@ static void ggml_cuda_op_mul_mat( } } - if (dst->backend == GGML_BACKEND_CPU) { + if (dst->backend == GGML_BACKEND_TYPE_CPU) { ggml_cuda_set_device(g_main_device); CUDA_CHECK(cudaDeviceSynchronize()); } @@ -10310,7 +11040,7 @@ GGML_CALL bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const stru static void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){ GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1)); - GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT); + GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT); GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation GGML_ASSERT(src0->type == GGML_TYPE_F16); @@ -10341,7 +11071,7 @@ static void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor GGML_ASSERT(!ggml_is_transposed(src0)); GGML_ASSERT(!ggml_is_transposed(src1)); GGML_ASSERT(!ggml_is_permuted(src0)); - GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT); + GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT); GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F32); @@ -10400,7 +11130,7 @@ static void ggml_cuda_mul_mat_batched_cublas(const ggml_tensor * src0, const ggm GGML_ASSERT(!ggml_is_transposed(src0)); GGML_ASSERT(!ggml_is_transposed(src1)); - GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT); + GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT); GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_TENSOR_BINARY_OP_LOCALS @@ -10546,11 +11276,11 @@ static void ggml_cuda_mul_mat_batched_cublas(const ggml_tensor * src0, const ggm static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { const bool all_on_device = - (src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT) && - (src1->backend == GGML_BACKEND_GPU) && - ( dst->backend == GGML_BACKEND_GPU); + (src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT) && + (src1->backend == GGML_BACKEND_TYPE_GPU) && + ( dst->backend == GGML_BACKEND_TYPE_GPU); - const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT; + const bool split = src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT; int64_t min_compute_capability = INT_MAX; @@ -10700,7 +11430,7 @@ static void ggml_cuda_mul_mat_id_cublas(ggml_tensor * dst) { GGML_ASSERT(!ggml_is_transposed(src00)); GGML_ASSERT(!ggml_is_transposed(src1)); - GGML_ASSERT(src00->backend != GGML_BACKEND_GPU_SPLIT); + GGML_ASSERT(src00->backend != GGML_BACKEND_TYPE_GPU_SPLIT); GGML_ASSERT(src1->type == GGML_TYPE_F32); const int64_t ne00 = src00->ne[0]; GGML_UNUSED(ne00); @@ -10844,7 +11574,7 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s cudaStream_t stream = g_cudaStreams[g_main_device][0]; - if (ids->backend == GGML_BACKEND_GPU) { + if (ids->backend == GGML_BACKEND_TYPE_GPU) { const char * ids_dev = (const char *)((const ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device]; CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream)); CUDA_CHECK(cudaStreamSynchronize(stream)); @@ -10861,20 +11591,20 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s ggml_tensor src1_row = *src1; ggml_tensor dst_row = *dst; - src1_row.backend = GGML_BACKEND_GPU; - dst_row.backend = GGML_BACKEND_GPU; + src1_row.backend = GGML_BACKEND_TYPE_GPU; + dst_row.backend = GGML_BACKEND_TYPE_GPU; src1_row.extra = &src1_row_extra; dst_row.extra = &dst_row_extra; - char * src1_original = src1->backend == GGML_BACKEND_CPU ? + char * src1_original = src1->backend == GGML_BACKEND_TYPE_CPU ? (char *) src1->data : (char *) src1_extra->data_device[g_main_device]; - char * dst_original = dst->backend == GGML_BACKEND_CPU ? + char * dst_original = dst->backend == GGML_BACKEND_TYPE_CPU ? (char *) dst->data : (char *) dst_extra->data_device[g_main_device]; if (src1->ne[1] == 1) { - GGML_ASSERT(src1->backend == GGML_BACKEND_GPU); - GGML_ASSERT(dst->backend == GGML_BACKEND_GPU); + GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU); + GGML_ASSERT(dst->backend == GGML_BACKEND_TYPE_GPU); for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) { //int32_t row_id; @@ -10902,9 +11632,9 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s src1_row_extra.data_device[g_main_device] = src1_contiguous.get(); dst_row_extra.data_device[g_main_device] = dst_contiguous.get(); - const cudaMemcpyKind src1_kind = src1->backend == GGML_BACKEND_CPU ? + const cudaMemcpyKind src1_kind = src1->backend == GGML_BACKEND_TYPE_CPU ? cudaMemcpyHostToDevice : cudaMemcpyDeviceToDevice; - const cudaMemcpyKind dst_kind = dst->backend == GGML_BACKEND_CPU ? + const cudaMemcpyKind dst_kind = dst->backend == GGML_BACKEND_TYPE_CPU ? cudaMemcpyDeviceToHost : cudaMemcpyDeviceToDevice; for (int32_t row_id = 0; row_id < n_as; ++row_id) { @@ -10959,7 +11689,7 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s } } - if (dst->backend == GGML_BACKEND_CPU) { + if (dst->backend == GGML_BACKEND_TYPE_CPU) { CUDA_CHECK(cudaStreamSynchronize(stream)); } } @@ -10970,10 +11700,10 @@ inline void ggml_cuda_flash_attn(const ggml_tensor * Q, const ggml_tensor * K, c GGML_ASSERT(V->type == GGML_TYPE_F32); GGML_ASSERT(KQV->type == GGML_TYPE_F32); - GGML_ASSERT(Q->backend == GGML_BACKEND_GPU); - GGML_ASSERT(K->backend == GGML_BACKEND_GPU); - GGML_ASSERT(V->backend == GGML_BACKEND_GPU); - GGML_ASSERT(KQV->backend == GGML_BACKEND_GPU); + GGML_ASSERT(Q->backend == GGML_BACKEND_TYPE_GPU); + GGML_ASSERT(K->backend == GGML_BACKEND_TYPE_GPU); + GGML_ASSERT(V->backend == GGML_BACKEND_TYPE_GPU); + GGML_ASSERT(KQV->backend == GGML_BACKEND_TYPE_GPU); ggml_cuda_set_device(g_main_device); const cudaStream_t main_stream = g_cudaStreams[g_main_device][0]; @@ -11016,13 +11746,13 @@ inline void ggml_cuda_flash_attn_ext(const ggml_tensor * Q, const ggml_tensor * GGML_ASSERT(V->type == GGML_TYPE_F16); GGML_ASSERT(KQV->type == GGML_TYPE_F32); - GGML_ASSERT(Q->backend == GGML_BACKEND_GPU); - GGML_ASSERT(K->backend == GGML_BACKEND_GPU); - GGML_ASSERT(V->backend == GGML_BACKEND_GPU); - GGML_ASSERT(KQV->backend == GGML_BACKEND_GPU); + GGML_ASSERT(Q->backend == GGML_BACKEND_TYPE_GPU); + GGML_ASSERT(K->backend == GGML_BACKEND_TYPE_GPU); + GGML_ASSERT(V->backend == GGML_BACKEND_TYPE_GPU); + GGML_ASSERT(KQV->backend == GGML_BACKEND_TYPE_GPU); GGML_ASSERT(!mask || mask->type == GGML_TYPE_F16); - GGML_ASSERT(!mask || mask->backend == GGML_BACKEND_GPU); + GGML_ASSERT(!mask || mask->backend == GGML_BACKEND_TYPE_GPU); GGML_ASSERT(!mask || mask->ne[1] >= GGML_PAD(Q->ne[1], 16) && "the Flash-Attention CUDA kernel requires the mask to be padded to 16 and at least n_queries big"); @@ -11181,8 +11911,8 @@ static void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, gg const int64_t ne = ggml_nelements(src0); GGML_ASSERT(ne == ggml_nelements(src1)); - GGML_ASSERT(src0->backend == GGML_BACKEND_GPU); - GGML_ASSERT(src1->backend == GGML_BACKEND_GPU); + GGML_ASSERT(src0->backend == GGML_BACKEND_TYPE_GPU); + GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU); GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX); GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX); @@ -11313,9 +12043,9 @@ GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, st if (!g_cublas_loaded) return false; ggml_cuda_func_t func; - const bool any_on_device = tensor->backend == GGML_BACKEND_GPU - || (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT)) - || (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_GPU); + const bool any_on_device = tensor->backend == GGML_BACKEND_TYPE_GPU + || (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU || tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT)) + || (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_TYPE_GPU); if (!any_on_device && tensor->op != GGML_OP_MUL_MAT && tensor->op != GGML_OP_MUL_MAT_ID) { return false; @@ -11466,14 +12196,14 @@ GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, st return false; } - if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT) { + if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT) { ggml_cuda_set_peer_access(tensor->src[1]->ne[1]); } if (params->ith != 0) { return true; } - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return true; } if(tensor->op == GGML_OP_FLASH_ATTN) { @@ -11578,7 +12308,7 @@ GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t extra->data_device[ctx->device] = tensor->data; - tensor->backend = GGML_BACKEND_GPU; + tensor->backend = GGML_BACKEND_TYPE_GPU; tensor->extra = extra; if (ggml_is_quantized(tensor->type)) { @@ -11593,7 +12323,7 @@ GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t } GGML_CALL static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { - GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); + GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU); ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; @@ -11604,7 +12334,7 @@ GGML_CALL static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t } GGML_CALL static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { - GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); + GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU); ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; @@ -11776,10 +12506,10 @@ GGML_CALL static const char * ggml_backend_cuda_split_buffer_get_name(ggml_backe UNUSED(buffer); } -// unused at the moment -//static bool ggml_backend_buffer_is_cuda_split(ggml_backend_buffer_t buffer) { -// return buffer->iface.get_name == ggml_backend_cuda_split_buffer_get_name; -//} +static bool ggml_backend_buffer_is_cuda_split(ggml_backend_buffer_t buffer) { + return buffer->iface.get_name == ggml_backend_cuda_split_buffer_get_name; + UNUSED(ggml_backend_buffer_is_cuda_split); // only used in debug builds currently, avoid unused function warning in release builds +} GGML_CALL static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) { ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context; @@ -11839,7 +12569,7 @@ GGML_CALL static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_bu CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id][is], cudaEventDisableTiming)); } } - tensor->backend = GGML_BACKEND_GPU_SPLIT; + tensor->backend = GGML_BACKEND_TYPE_GPU_SPLIT; tensor->extra = extra; } @@ -12111,7 +12841,7 @@ GGML_CALL static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend, ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; GGML_ASSERT(tensor->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type"); - GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); + GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU); CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, g_cudaStreams[cuda_ctx->device][0])); } @@ -12120,7 +12850,7 @@ GGML_CALL static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; GGML_ASSERT(tensor->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type"); - GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); + GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU); CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, g_cudaStreams[cuda_ctx->device][0])); } @@ -12150,7 +12880,7 @@ GGML_CALL static bool ggml_backend_cuda_graph_compute(ggml_backend_t backend, gg ggml_cuda_set_main_device(cuda_ctx->device); ggml_compute_params params = {}; - params.type = GGML_TASK_COMPUTE; + params.type = GGML_TASK_TYPE_COMPUTE; params.ith = 0; for (int i = 0; i < cgraph->n_nodes; i++) { ggml_tensor * node = cgraph->nodes[i]; @@ -12160,14 +12890,14 @@ GGML_CALL static bool ggml_backend_cuda_graph_compute(ggml_backend_t backend, gg } #ifndef NDEBUG - assert(node->backend == GGML_BACKEND_GPU || node->backend == GGML_BACKEND_GPU_SPLIT); + assert(node->backend == GGML_BACKEND_TYPE_GPU || node->backend == GGML_BACKEND_TYPE_GPU_SPLIT); assert(node->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device)); assert(node->extra != nullptr); for (int j = 0; j < GGML_MAX_SRC; j++) { if (node->src[j] != nullptr) { - assert(node->src[j]->backend == GGML_BACKEND_GPU || node->src[j]->backend == GGML_BACKEND_GPU_SPLIT); - assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device)); + assert(node->src[j]->backend == GGML_BACKEND_TYPE_GPU || node->src[j]->backend == GGML_BACKEND_TYPE_GPU_SPLIT); + assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) || ggml_backend_buffer_is_cuda_split(node->src[j]->buffer)); assert(node->src[j]->extra != nullptr); } } @@ -12215,7 +12945,9 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons return false; } ggml_type a_type = a->type; - if (a_type == GGML_TYPE_IQ2_XXS || a_type == GGML_TYPE_IQ2_XS || a_type == GGML_TYPE_IQ3_XXS || a_type == GGML_TYPE_IQ1_S) { + if (a_type == GGML_TYPE_IQ2_XXS || a_type == GGML_TYPE_IQ2_XS || a_type == GGML_TYPE_IQ3_XXS || + a_type == GGML_TYPE_IQ1_S || a_type == GGML_TYPE_IQ4_NL || a_type == GGML_TYPE_IQ3_S || + a_type == GGML_TYPE_IQ2_S || a_type == GGML_TYPE_IQ4_XS) { if (b->ne[1] == 1 && ggml_nrows(b) > 1) { return false; } @@ -12322,6 +13054,11 @@ static ggml_backend_i ggml_backend_cuda_interface = { /* .supports_op = */ ggml_backend_cuda_supports_op, }; +static ggml_guid_t ggml_backend_cuda_guid() { + static ggml_guid guid = { 0x2c, 0xdd, 0xe8, 0x1c, 0x65, 0xb3, 0x65, 0x73, 0x6a, 0x12, 0x88, 0x61, 0x1c, 0xc9, 0xdc, 0x25 }; + return &guid; +} + GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device) { ggml_init_cublas(); // TODO: remove from ggml.c @@ -12339,6 +13076,7 @@ GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device) { }; ggml_backend_t cuda_backend = new ggml_backend { + /* .guid = */ ggml_backend_cuda_guid(), /* .interface = */ ggml_backend_cuda_interface, /* .context = */ ctx }; @@ -12347,7 +13085,7 @@ GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device) { } GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend) { - return backend && backend->iface.get_name == ggml_backend_cuda_name; + return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cuda_guid()); } GGML_CALL int ggml_backend_cuda_get_device_count() { diff --git a/ggml-impl.h b/ggml-impl.h index 19df66bce..c5637e4d4 100644 --- a/ggml-impl.h +++ b/ggml-impl.h @@ -53,11 +53,23 @@ extern "C" { // #include -#define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x)) -#define GGML_COMPUTE_FP32_TO_FP16(x) (x) +#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x) +#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x) -#define GGML_FP16_TO_FP32(x) ((float) (x)) -#define GGML_FP32_TO_FP16(x) (x) +#define GGML_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x) + +static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) { + __fp16 tmp; + memcpy(&tmp, &h, sizeof(ggml_fp16_t)); + return (float)tmp; +} + +static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) { + ggml_fp16_t res; + __fp16 tmp = f; + memcpy(&res, &tmp, sizeof(ggml_fp16_t)); + return res; +} #else @@ -214,8 +226,7 @@ extern float ggml_table_f32_f16[1 << 16]; // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32, // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON. // This is also true for POWER9. -#if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16) - +#if !defined(GGML_FP16_TO_FP32) inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) { uint16_t s; memcpy(&s, &f, sizeof(uint16_t)); @@ -223,8 +234,10 @@ inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) { } #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x) -#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x) +#endif +#if !defined(GGML_FP32_TO_FP16) +#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x) #endif #define GGML_HASHTABLE_FULL ((size_t)-1) diff --git a/ggml-kompute.cpp b/ggml-kompute.cpp index 51c5af8ec..e740a76d1 100644 --- a/ggml-kompute.cpp +++ b/ggml-kompute.cpp @@ -1953,11 +1953,17 @@ static struct ggml_backend_i kompute_backend_i = { /* .supports_op = */ ggml_backend_kompute_supports_op, }; +static ggml_guid_t ggml_backend_kompute_guid() { + static ggml_guid guid = { 0x7b, 0x57, 0xdc, 0xaf, 0xde, 0x12, 0x1d, 0x49, 0xfb, 0x35, 0xfa, 0x9b, 0x18, 0x31, 0x1d, 0xca }; + return &guid; +} + ggml_backend_t ggml_backend_kompute_init(int device) { GGML_ASSERT(s_kompute_context == nullptr); s_kompute_context = new ggml_kompute_context(device); ggml_backend_t kompute_backend = new ggml_backend { + /* .guid = */ ggml_backend_kompute_guid(), /* .interface = */ kompute_backend_i, /* .context = */ s_kompute_context, }; @@ -1966,7 +1972,7 @@ ggml_backend_t ggml_backend_kompute_init(int device) { } bool ggml_backend_is_kompute(ggml_backend_t backend) { - return backend && backend->iface.get_name == ggml_backend_kompute_name; + return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_kompute_guid()); } static ggml_backend_t ggml_backend_reg_kompute_init(const char * params, void * user_data) { diff --git a/ggml-metal.m b/ggml-metal.m index 9b74155c8..05350f7da 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -61,7 +61,11 @@ enum ggml_metal_kernel_type { GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS, GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS, GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS, + GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_S, + GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_S, GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S, + GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL, + GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS, GGML_METAL_KERNEL_TYPE_GET_ROWS_I32, GGML_METAL_KERNEL_TYPE_RMS_NORM, GGML_METAL_KERNEL_TYPE_GROUP_NORM, @@ -84,7 +88,11 @@ enum ggml_metal_kernel_type { GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_S_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_S_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32, //GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32, @@ -103,7 +111,11 @@ enum ggml_metal_kernel_type { GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_S_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_S_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32, @@ -119,7 +131,11 @@ enum ggml_metal_kernel_type { GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32, @@ -135,7 +151,11 @@ enum ggml_metal_kernel_type { GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32, GGML_METAL_KERNEL_TYPE_ROPE_F32, GGML_METAL_KERNEL_TYPE_ROPE_F16, GGML_METAL_KERNEL_TYPE_ALIBI_F32, @@ -283,6 +303,14 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) { return NULL; } } else { +#if GGML_METAL_EMBED_LIBRARY + GGML_METAL_LOG_INFO("%s: using embedded metal library\n", __func__); + + extern const char ggml_metallib_start[]; + extern const char ggml_metallib_end[]; + + NSString * src = [[NSString alloc] initWithBytes:ggml_metallib_start length:(ggml_metallib_end-ggml_metallib_start) encoding:NSUTF8StringEncoding]; +#else GGML_METAL_LOG_INFO("%s: default.metallib not found, loading from source\n", __func__); NSString * sourcePath; @@ -305,6 +333,7 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]); return NULL; } +#endif @autoreleasepool { // dictionary of preprocessor macros @@ -447,7 +476,11 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS, get_rows_iq2_xxs, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS, get_rows_iq2_xs, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS, get_rows_iq3_xxs, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_S, get_rows_iq3_s, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_S, get_rows_iq2_s, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S, get_rows_iq1_s, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL, get_rows_iq4_nl, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS, get_rows_iq4_xs, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_I32, get_rows_i32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RMS_NORM, rms_norm, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GROUP_NORM, group_norm, ctx->support_simdgroup_reduction); @@ -470,7 +503,11 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32, mul_mv_iq2_xxs_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32, mul_mv_iq2_xs_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32, mul_mv_iq3_xxs_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_S_F32, mul_mv_iq3_s_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_S_F32, mul_mv_iq2_s_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32, mul_mv_iq1_s_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32, mul_mv_iq4_nl_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32, mul_mv_iq4_xs_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32, mul_mv_id_f32_f32, ctx->support_simdgroup_reduction); //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16, mul_mv_id_f16_f16, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32, mul_mv_id_f16_f32, ctx->support_simdgroup_reduction); @@ -489,7 +526,11 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32, mul_mv_id_iq2_xxs_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32, mul_mv_id_iq2_xs_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32, mul_mv_id_iq3_xxs_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_S_F32, mul_mv_id_iq3_s_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_S_F32, mul_mv_id_iq2_s_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32, mul_mv_id_iq1_s_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32, mul_mv_id_iq4_nl_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32, mul_mv_id_iq4_xs_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32, mul_mm_f32_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32, mul_mm_f16_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32, mul_mm_q4_0_f32, ctx->support_simdgroup_mm); @@ -505,7 +546,11 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32, mul_mm_iq2_xxs_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32, mul_mm_iq2_xs_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32, mul_mm_iq3_xxs_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32, mul_mm_iq3_s_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32, mul_mm_iq2_s_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32, mul_mm_iq1_s_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32, mul_mm_iq4_nl_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32, mul_mm_iq4_xs_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32, mul_mm_id_f32_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32, mul_mm_id_f16_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32, mul_mm_id_q4_0_f32, ctx->support_simdgroup_mm); @@ -521,7 +566,11 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32, mul_mm_id_iq2_xxs_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32, mul_mm_id_iq2_xs_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32, mul_mm_id_iq3_xxs_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32, mul_mm_id_iq3_s_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32, mul_mm_id_iq2_s_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32, mul_mm_id_iq1_s_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32, mul_mm_id_iq4_nl_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32, mul_mm_id_iq4_xs_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F32, rope_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F16, rope_f16, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ALIBI_F32, alibi_f32, true); @@ -1346,7 +1395,11 @@ static bool ggml_metal_graph_compute( case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32].pipeline; break; case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32 ].pipeline; break; case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32].pipeline; break; + case GGML_TYPE_IQ3_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32 ].pipeline; break; + case GGML_TYPE_IQ2_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32 ].pipeline; break; case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32 ].pipeline; break; + case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32 ].pipeline; break; + case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32 ].pipeline; break; default: GGML_ASSERT(false && "MUL MAT-MAT not implemented"); } @@ -1481,12 +1534,36 @@ static bool ggml_metal_graph_compute( nth1 = 16; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32].pipeline; } break; + case GGML_TYPE_IQ3_S: + { + nth0 = 4; + nth1 = 16; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_S_F32].pipeline; + } break; + case GGML_TYPE_IQ2_S: + { + nth0 = 4; + nth1 = 16; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_S_F32].pipeline; + } break; case GGML_TYPE_IQ1_S: { nth0 = 4; nth1 = 16; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32].pipeline; } break; + case GGML_TYPE_IQ4_NL: + { + nth0 = 4; + nth1 = 16; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32].pipeline; + } break; + case GGML_TYPE_IQ4_XS: + { + nth0 = 4; + nth1 = 16; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32].pipeline; + } break; default: { GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src0t); @@ -1519,9 +1596,9 @@ static bool ggml_metal_graph_compute( [encoder setBytes:&r2 length:sizeof(r2) atIndex:17]; [encoder setBytes:&r3 length:sizeof(r3) atIndex:18]; - if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || - src0t == GGML_TYPE_Q5_0 || src0t == GGML_TYPE_Q5_1 || src0t == GGML_TYPE_Q8_0 || - src0t == GGML_TYPE_Q2_K || src0t == GGML_TYPE_IQ1_S) { // || src0t == GGML_TYPE_Q4_K) { + if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || + src0t == GGML_TYPE_Q5_0 || src0t == GGML_TYPE_Q5_1 || src0t == GGML_TYPE_Q8_0 || + src0t == GGML_TYPE_Q2_K || src0t == GGML_TYPE_IQ1_S || src0t == GGML_TYPE_IQ2_S) { [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } else if (src0t == GGML_TYPE_IQ2_XXS || src0t == GGML_TYPE_IQ2_XS) { @@ -1529,11 +1606,16 @@ static bool ggml_metal_graph_compute( [encoder setThreadgroupMemoryLength:mem_size atIndex:0]; [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } - else if (src0t == GGML_TYPE_IQ3_XXS) { - const int mem_size = 256*4+128; + else if (src0t == GGML_TYPE_IQ3_XXS || src0t == GGML_TYPE_IQ3_S) { + const int mem_size = src0t == GGML_TYPE_IQ3_XXS ? 256*4+128 : 512*4; [encoder setThreadgroupMemoryLength:mem_size atIndex:0]; [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } + else if (src0t == GGML_TYPE_IQ4_NL || src0t == GGML_TYPE_IQ4_XS) { + const int mem_size = 32*sizeof(float); + [encoder setThreadgroupMemoryLength:mem_size atIndex:0]; + [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + } else if (src0t == GGML_TYPE_Q4_K) { [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } @@ -1627,7 +1709,11 @@ static bool ggml_metal_graph_compute( case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32].pipeline; break; case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32 ].pipeline; break; case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32].pipeline; break; + case GGML_TYPE_IQ3_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32 ].pipeline; break; + case GGML_TYPE_IQ2_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32 ].pipeline; break; case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32 ].pipeline; break; + case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32 ].pipeline; break; + case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32 ].pipeline; break; default: GGML_ASSERT(false && "MUL_MAT_ID not implemented"); } @@ -1765,12 +1851,36 @@ static bool ggml_metal_graph_compute( nth1 = 16; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32].pipeline; } break; + case GGML_TYPE_IQ3_S: + { + nth0 = 4; + nth1 = 16; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_S_F32].pipeline; + } break; + case GGML_TYPE_IQ2_S: + { + nth0 = 4; + nth1 = 16; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_S_F32].pipeline; + } break; case GGML_TYPE_IQ1_S: { nth0 = 4; nth1 = 16; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32].pipeline; } break; + case GGML_TYPE_IQ4_NL: + { + nth0 = 4; + nth1 = 16; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32].pipeline; + } break; + case GGML_TYPE_IQ4_XS: + { + nth0 = 4; + nth1 = 16; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32].pipeline; + } break; default: { GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src2t); @@ -1819,9 +1929,9 @@ static bool ggml_metal_graph_compute( [encoder setBuffer:id_src_cur offset:offs_src_cur atIndex:23 + j]; } - if (src2t == GGML_TYPE_Q4_0 || src2t == GGML_TYPE_Q4_1 || - src2t == GGML_TYPE_Q5_0 || src2t == GGML_TYPE_Q5_1 || src2t == GGML_TYPE_Q8_0 || - src2t == GGML_TYPE_Q2_K || src2t == GGML_TYPE_IQ1_S) { // || src2t == GGML_TYPE_Q4_K) { + if (src2t == GGML_TYPE_Q4_0 || src2t == GGML_TYPE_Q4_1 || + src2t == GGML_TYPE_Q5_0 || src2t == GGML_TYPE_Q5_1 || src2t == GGML_TYPE_Q8_0 || + src2t == GGML_TYPE_Q2_K || src2t == GGML_TYPE_IQ1_S || src2t == GGML_TYPE_IQ2_S) { [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 7)/8, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } else if (src2t == GGML_TYPE_IQ2_XXS || src2t == GGML_TYPE_IQ2_XS) { @@ -1829,11 +1939,16 @@ static bool ggml_metal_graph_compute( [encoder setThreadgroupMemoryLength:mem_size atIndex:0]; [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 7)/8, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } - else if (src2t == GGML_TYPE_IQ3_XXS) { - const int mem_size = 256*4+128; + else if (src2t == GGML_TYPE_IQ3_XXS || src2t == GGML_TYPE_IQ3_S) { + const int mem_size = src2t == GGML_TYPE_IQ3_XXS ? 256*4+128 : 512*4; [encoder setThreadgroupMemoryLength:mem_size atIndex:0]; [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 7)/8, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } + else if (src2t == GGML_TYPE_IQ4_NL || src2t == GGML_TYPE_IQ4_XS) { + const int mem_size = 32*sizeof(float); + [encoder setThreadgroupMemoryLength:mem_size atIndex:0]; + [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 3)/4, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + } else if (src2t == GGML_TYPE_Q4_K) { [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 3)/4, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } @@ -1875,7 +1990,11 @@ static bool ggml_metal_graph_compute( case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS].pipeline; break; case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS ].pipeline; break; case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS].pipeline; break; + case GGML_TYPE_IQ3_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_S ].pipeline; break; + case GGML_TYPE_IQ2_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_S ].pipeline; break; case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S ].pipeline; break; + case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL ].pipeline; break; + case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS ].pipeline; break; case GGML_TYPE_I32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_I32 ].pipeline; break; default: GGML_ASSERT(false && "not implemented"); } @@ -2211,8 +2330,8 @@ static bool ggml_metal_graph_compute( id pipeline = nil; switch (order) { - case GGML_SORT_ASC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC].pipeline; break; - case GGML_SORT_DESC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC].pipeline; break; + case GGML_SORT_ORDER_ASC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC].pipeline; break; + case GGML_SORT_ORDER_DESC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC].pipeline; break; default: GGML_ASSERT(false); }; @@ -2776,6 +2895,11 @@ void ggml_backend_metal_log_set_callback(ggml_log_callback log_callback, void * ggml_metal_log_user_data = user_data; } +static ggml_guid_t ggml_backend_metal_guid(void) { + static ggml_guid guid = { 0x81, 0xa1, 0x8b, 0x1e, 0x71, 0xec, 0x79, 0xed, 0x2b, 0x85, 0xdc, 0x8a, 0x61, 0x98, 0x30, 0xe6 }; + return &guid; +} + ggml_backend_t ggml_backend_metal_init(void) { struct ggml_metal_context * ctx = ggml_metal_init(GGML_DEFAULT_N_THREADS); @@ -2786,6 +2910,7 @@ ggml_backend_t ggml_backend_metal_init(void) { ggml_backend_t metal_backend = malloc(sizeof(struct ggml_backend)); *metal_backend = (struct ggml_backend) { + /* .guid = */ ggml_backend_metal_guid(), /* .interface = */ ggml_backend_metal_i, /* .context = */ ctx, }; @@ -2794,7 +2919,7 @@ ggml_backend_t ggml_backend_metal_init(void) { } bool ggml_backend_is_metal(ggml_backend_t backend) { - return backend && backend->iface.get_name == ggml_backend_metal_name; + return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_metal_guid()); } void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb) { diff --git a/ggml-metal.metal b/ggml-metal.metal index 75aeb3e5d..d388116e6 100644 --- a/ggml-metal.metal +++ b/ggml-metal.metal @@ -2924,18 +2924,57 @@ typedef struct { } block_iq2_xs; // 74 bytes / block for QK_K = 256, so 2.3125 bpw +// 2.5625 bpw quants +typedef struct { + half d; + uint8_t qs[QK_K/4]; + uint8_t qh[QK_K/32]; + uint8_t scales[QK_K/32]; +} block_iq2_s; + typedef struct { half d; uint8_t qs[3*QK_K/8]; } block_iq3_xxs; // 98 bytes / block for QK_K = 256, so 3.0625 bpw +// 3.4375 bpw +#if QK_K == 64 +#define IQ3S_N_SCALE 2 +#else +#define IQ3S_N_SCALE QK_K/64 +#endif +typedef struct { + half d; + uint8_t qs[QK_K/4]; + uint8_t qh[QK_K/32]; + uint8_t signs[QK_K/8]; + uint8_t scales[IQ3S_N_SCALE]; +} block_iq3_s; + typedef struct { half d; uint8_t qs[QK_K/8]; uint8_t scales[QK_K/16]; } block_iq1_s; +// Non-linear quants +#define QK4_NL 32 +typedef struct { + half d; + uint8_t qs[QK4_NL/2]; +} block_iq4_nl; + +#if QK_K == 64 +#define block_iq4_xs block_iq4_nl +#else +typedef struct { + half d; + uint16_t scales_h; + uint8_t scales_l[QK_K/64]; + uint8_t qs[QK_K/2]; +} block_iq4_xs; +#endif //====================================== dot products ========================= @@ -4159,6 +4198,265 @@ constexpr constant static uint64_t iq2xs_grid[512] = { 0x2b2b2b2b082b2b08, 0x2b2b2b2b082b2b2b, 0x2b2b2b2b2b190819, 0x2b2b2b2b2b2b2b2b, }; +constexpr constant static uint64_t iq2s_grid[1024] = { + 0x0808080808080808, 0x080808080808082b, 0x0808080808081919, 0x0808080808082b08, + 0x0808080808082b2b, 0x0808080808190819, 0x0808080808191908, 0x080808080819192b, + 0x0808080808192b19, 0x08080808082b0808, 0x08080808082b082b, 0x08080808082b1919, + 0x08080808082b2b08, 0x0808080819080819, 0x0808080819081908, 0x080808081908192b, + 0x0808080819082b19, 0x0808080819190808, 0x080808081919082b, 0x0808080819191919, + 0x0808080819192b08, 0x08080808192b0819, 0x08080808192b1908, 0x08080808192b192b, + 0x08080808192b2b19, 0x080808082b080808, 0x080808082b08082b, 0x080808082b081919, + 0x080808082b082b08, 0x080808082b190819, 0x080808082b191908, 0x080808082b2b0808, + 0x080808082b2b1919, 0x080808082b2b2b2b, 0x0808081908080819, 0x0808081908081908, + 0x080808190808192b, 0x0808081908082b19, 0x0808081908190808, 0x080808190819082b, + 0x0808081908191919, 0x0808081908192b08, 0x08080819082b0819, 0x08080819082b1908, + 0x0808081919080808, 0x080808191908082b, 0x0808081919081919, 0x0808081919082b08, + 0x0808081919190819, 0x0808081919191908, 0x080808191919192b, 0x0808081919192b19, + 0x08080819192b0808, 0x08080819192b1919, 0x08080819192b2b08, 0x080808192b080819, + 0x080808192b081908, 0x080808192b190808, 0x080808192b19082b, 0x080808192b191919, + 0x080808192b2b0819, 0x080808192b2b1908, 0x0808082b08080808, 0x0808082b0808082b, + 0x0808082b08081919, 0x0808082b08082b08, 0x0808082b08190819, 0x0808082b08191908, + 0x0808082b082b0808, 0x0808082b082b2b2b, 0x0808082b19080819, 0x0808082b19081908, + 0x0808082b1908192b, 0x0808082b19082b19, 0x0808082b19190808, 0x0808082b19191919, + 0x0808082b2b080808, 0x0808082b2b081919, 0x0808082b2b082b2b, 0x0808082b2b191908, + 0x0808082b2b2b082b, 0x0808190808080819, 0x0808190808081908, 0x080819080808192b, + 0x0808190808082b19, 0x0808190808190808, 0x080819080819082b, 0x0808190808191919, + 0x0808190808192b08, 0x08081908082b0819, 0x08081908082b1908, 0x08081908082b192b, + 0x08081908082b2b19, 0x0808190819080808, 0x080819081908082b, 0x0808190819081919, + 0x0808190819082b08, 0x0808190819082b2b, 0x0808190819190819, 0x0808190819191908, + 0x080819081919192b, 0x0808190819192b19, 0x08081908192b0808, 0x08081908192b082b, + 0x08081908192b1919, 0x080819082b080819, 0x080819082b081908, 0x080819082b08192b, + 0x080819082b082b19, 0x080819082b190808, 0x080819082b191919, 0x080819082b192b08, + 0x080819082b2b0819, 0x080819082b2b1908, 0x0808191908080808, 0x080819190808082b, + 0x0808191908081919, 0x0808191908082b08, 0x0808191908082b2b, 0x0808191908190819, + 0x0808191908191908, 0x080819190819192b, 0x0808191908192b19, 0x08081919082b0808, + 0x08081919082b1919, 0x08081919082b2b08, 0x0808191919080819, 0x0808191919081908, + 0x080819191908192b, 0x0808191919082b19, 0x0808191919190808, 0x080819191919082b, + 0x0808191919191919, 0x0808191919192b08, 0x08081919192b0819, 0x08081919192b1908, + 0x080819192b080808, 0x080819192b08082b, 0x080819192b081919, 0x080819192b082b08, + 0x080819192b190819, 0x080819192b191908, 0x080819192b2b0808, 0x0808192b08080819, + 0x0808192b08081908, 0x0808192b0808192b, 0x0808192b08082b19, 0x0808192b08190808, + 0x0808192b08191919, 0x0808192b19080808, 0x0808192b19081919, 0x0808192b19082b08, + 0x0808192b19190819, 0x0808192b19191908, 0x0808192b192b0808, 0x0808192b2b080819, + 0x0808192b2b081908, 0x0808192b2b190808, 0x08082b0808080808, 0x08082b080808082b, + 0x08082b0808081919, 0x08082b0808082b08, 0x08082b0808190819, 0x08082b0808191908, + 0x08082b080819192b, 0x08082b0808192b19, 0x08082b08082b0808, 0x08082b08082b1919, + 0x08082b08082b2b2b, 0x08082b0819080819, 0x08082b0819081908, 0x08082b081908192b, + 0x08082b0819082b19, 0x08082b0819190808, 0x08082b081919082b, 0x08082b0819191919, + 0x08082b0819192b08, 0x08082b08192b0819, 0x08082b08192b1908, 0x08082b082b080808, + 0x08082b082b081919, 0x08082b082b191908, 0x08082b082b2b2b2b, 0x08082b1908080819, + 0x08082b1908081908, 0x08082b1908190808, 0x08082b190819082b, 0x08082b1908191919, + 0x08082b1908192b08, 0x08082b19082b0819, 0x08082b1919080808, 0x08082b1919081919, + 0x08082b1919082b08, 0x08082b1919190819, 0x08082b1919191908, 0x08082b19192b0808, + 0x08082b192b080819, 0x08082b192b190808, 0x08082b2b08080808, 0x08082b2b08190819, + 0x08082b2b08191908, 0x08082b2b082b082b, 0x08082b2b082b2b08, 0x08082b2b082b2b2b, + 0x08082b2b19190808, 0x08082b2b2b192b19, 0x0819080808080819, 0x0819080808081908, + 0x081908080808192b, 0x0819080808082b19, 0x0819080808190808, 0x081908080819082b, + 0x0819080808191919, 0x0819080808192b08, 0x08190808082b0819, 0x08190808082b1908, + 0x08190808082b192b, 0x0819080819080808, 0x081908081908082b, 0x0819080819081919, + 0x0819080819082b08, 0x0819080819190819, 0x0819080819191908, 0x081908081919192b, + 0x0819080819192b19, 0x08190808192b0808, 0x08190808192b082b, 0x08190808192b1919, + 0x08190808192b2b08, 0x081908082b080819, 0x081908082b081908, 0x081908082b08192b, + 0x081908082b190808, 0x081908082b191919, 0x081908082b192b08, 0x081908082b2b0819, + 0x081908082b2b1908, 0x0819081908080808, 0x081908190808082b, 0x0819081908081919, + 0x0819081908082b08, 0x0819081908082b2b, 0x0819081908190819, 0x0819081908191908, + 0x081908190819192b, 0x0819081908192b19, 0x08190819082b0808, 0x08190819082b082b, + 0x08190819082b1919, 0x08190819082b2b08, 0x0819081919080819, 0x0819081919081908, + 0x081908191908192b, 0x0819081919082b19, 0x0819081919190808, 0x081908191919082b, + 0x0819081919191919, 0x0819081919192b08, 0x08190819192b0819, 0x08190819192b1908, + 0x081908192b080808, 0x081908192b08082b, 0x081908192b081919, 0x081908192b082b08, + 0x081908192b190819, 0x081908192b191908, 0x0819082b08080819, 0x0819082b08081908, + 0x0819082b08082b19, 0x0819082b08190808, 0x0819082b08191919, 0x0819082b082b0819, + 0x0819082b082b1908, 0x0819082b19080808, 0x0819082b19081919, 0x0819082b19190819, + 0x0819082b19191908, 0x0819082b2b080819, 0x0819082b2b081908, 0x0819082b2b190808, + 0x0819190808080808, 0x081919080808082b, 0x0819190808081919, 0x0819190808082b08, + 0x0819190808190819, 0x0819190808191908, 0x081919080819192b, 0x0819190808192b19, + 0x08191908082b0808, 0x08191908082b1919, 0x08191908082b2b08, 0x0819190819080819, + 0x0819190819081908, 0x081919081908192b, 0x0819190819082b19, 0x0819190819190808, + 0x081919081919082b, 0x0819190819191919, 0x0819190819192b08, 0x08191908192b0819, + 0x08191908192b1908, 0x081919082b080808, 0x081919082b08082b, 0x081919082b081919, + 0x081919082b082b08, 0x081919082b190819, 0x081919082b191908, 0x081919082b2b0808, + 0x0819191908080819, 0x0819191908081908, 0x081919190808192b, 0x0819191908082b19, + 0x0819191908190808, 0x081919190819082b, 0x0819191908191919, 0x0819191908192b08, + 0x08191919082b0819, 0x08191919082b1908, 0x0819191919080808, 0x081919191908082b, + 0x0819191919081919, 0x0819191919082b08, 0x0819191919190819, 0x0819191919191908, + 0x08191919192b0808, 0x081919192b080819, 0x081919192b081908, 0x081919192b190808, + 0x0819192b08080808, 0x0819192b08081919, 0x0819192b08082b08, 0x0819192b08190819, + 0x0819192b08191908, 0x0819192b082b0808, 0x0819192b19080819, 0x0819192b19081908, + 0x0819192b19190808, 0x0819192b2b080808, 0x0819192b2b2b2b2b, 0x08192b0808080819, + 0x08192b0808081908, 0x08192b080808192b, 0x08192b0808082b19, 0x08192b0808190808, + 0x08192b0808191919, 0x08192b0808192b08, 0x08192b08082b0819, 0x08192b0819080808, + 0x08192b081908082b, 0x08192b0819081919, 0x08192b0819082b08, 0x08192b0819190819, + 0x08192b0819191908, 0x08192b08192b0808, 0x08192b082b080819, 0x08192b082b081908, + 0x08192b1908080808, 0x08192b190808082b, 0x08192b1908081919, 0x08192b1908082b08, + 0x08192b1908190819, 0x08192b1908191908, 0x08192b19082b0808, 0x08192b1919080819, + 0x08192b1919081908, 0x08192b1919190808, 0x08192b19192b2b19, 0x08192b192b2b082b, + 0x08192b2b08081908, 0x08192b2b08190808, 0x08192b2b19080808, 0x08192b2b1919192b, + 0x082b080808080808, 0x082b08080808082b, 0x082b080808081919, 0x082b080808082b08, + 0x082b080808190819, 0x082b080808191908, 0x082b08080819192b, 0x082b080808192b19, + 0x082b0808082b0808, 0x082b0808082b1919, 0x082b0808082b2b2b, 0x082b080819080819, + 0x082b080819081908, 0x082b080819190808, 0x082b08081919082b, 0x082b080819191919, + 0x082b0808192b1908, 0x082b08082b080808, 0x082b08082b082b2b, 0x082b08082b191908, + 0x082b08082b2b2b2b, 0x082b081908080819, 0x082b081908081908, 0x082b081908190808, + 0x082b08190819082b, 0x082b081908191919, 0x082b0819082b0819, 0x082b081919080808, + 0x082b08191908082b, 0x082b081919081919, 0x082b081919190819, 0x082b081919191908, + 0x082b0819192b0808, 0x082b08192b080819, 0x082b08192b081908, 0x082b08192b190808, + 0x082b082b08080808, 0x082b082b08082b2b, 0x082b082b082b082b, 0x082b082b082b2b08, + 0x082b082b082b2b2b, 0x082b082b19081908, 0x082b082b19190808, 0x082b082b2b082b08, + 0x082b082b2b082b2b, 0x082b082b2b2b2b08, 0x082b190808080819, 0x082b190808081908, + 0x082b19080808192b, 0x082b190808082b19, 0x082b190808190808, 0x082b190808191919, + 0x082b190808192b08, 0x082b1908082b0819, 0x082b1908082b1908, 0x082b190819080808, + 0x082b19081908082b, 0x082b190819081919, 0x082b190819082b08, 0x082b190819190819, + 0x082b190819191908, 0x082b1908192b0808, 0x082b19082b080819, 0x082b19082b081908, + 0x082b19082b190808, 0x082b191908080808, 0x082b191908081919, 0x082b191908082b08, + 0x082b191908190819, 0x082b191908191908, 0x082b1919082b0808, 0x082b191919080819, + 0x082b191919081908, 0x082b191919190808, 0x082b1919192b192b, 0x082b19192b080808, + 0x082b192b08080819, 0x082b192b08081908, 0x082b192b08190808, 0x082b192b19080808, + 0x082b192b19192b19, 0x082b2b0808080808, 0x082b2b0808081919, 0x082b2b0808190819, + 0x082b2b0808191908, 0x082b2b0819080819, 0x082b2b0819081908, 0x082b2b0819190808, + 0x082b2b082b082b2b, 0x082b2b082b2b2b2b, 0x082b2b1908080819, 0x082b2b1908081908, + 0x082b2b1908190808, 0x082b2b192b191919, 0x082b2b2b08082b2b, 0x082b2b2b082b082b, + 0x082b2b2b192b1908, 0x082b2b2b2b082b08, 0x082b2b2b2b082b2b, 0x1908080808080819, + 0x1908080808081908, 0x190808080808192b, 0x1908080808082b19, 0x1908080808190808, + 0x190808080819082b, 0x1908080808191919, 0x1908080808192b08, 0x1908080808192b2b, + 0x19080808082b0819, 0x19080808082b1908, 0x19080808082b192b, 0x1908080819080808, + 0x190808081908082b, 0x1908080819081919, 0x1908080819082b08, 0x1908080819082b2b, + 0x1908080819190819, 0x1908080819191908, 0x190808081919192b, 0x1908080819192b19, + 0x19080808192b0808, 0x19080808192b082b, 0x19080808192b1919, 0x190808082b080819, + 0x190808082b081908, 0x190808082b190808, 0x190808082b191919, 0x190808082b192b08, + 0x190808082b2b0819, 0x190808082b2b1908, 0x1908081908080808, 0x190808190808082b, + 0x1908081908081919, 0x1908081908082b08, 0x1908081908190819, 0x1908081908191908, + 0x190808190819192b, 0x1908081908192b19, 0x19080819082b0808, 0x19080819082b082b, + 0x19080819082b1919, 0x1908081919080819, 0x1908081919081908, 0x190808191908192b, + 0x1908081919082b19, 0x1908081919190808, 0x190808191919082b, 0x1908081919191919, + 0x1908081919192b08, 0x19080819192b0819, 0x19080819192b1908, 0x190808192b080808, + 0x190808192b08082b, 0x190808192b081919, 0x190808192b082b08, 0x190808192b190819, + 0x190808192b191908, 0x190808192b2b0808, 0x1908082b08080819, 0x1908082b08081908, + 0x1908082b08190808, 0x1908082b0819082b, 0x1908082b08191919, 0x1908082b08192b08, + 0x1908082b082b1908, 0x1908082b19080808, 0x1908082b19081919, 0x1908082b19082b08, + 0x1908082b19190819, 0x1908082b19191908, 0x1908082b192b0808, 0x1908082b2b080819, + 0x1908082b2b081908, 0x1908190808080808, 0x190819080808082b, 0x1908190808081919, + 0x1908190808082b08, 0x1908190808082b2b, 0x1908190808190819, 0x1908190808191908, + 0x190819080819192b, 0x1908190808192b19, 0x19081908082b0808, 0x19081908082b082b, + 0x19081908082b1919, 0x19081908082b2b08, 0x1908190819080819, 0x1908190819081908, + 0x190819081908192b, 0x1908190819082b19, 0x1908190819190808, 0x190819081919082b, + 0x1908190819191919, 0x1908190819192b08, 0x19081908192b0819, 0x19081908192b1908, + 0x190819082b080808, 0x190819082b08082b, 0x190819082b081919, 0x190819082b082b08, + 0x190819082b190819, 0x190819082b191908, 0x190819082b2b0808, 0x1908191908080819, + 0x1908191908081908, 0x190819190808192b, 0x1908191908082b19, 0x1908191908190808, + 0x190819190819082b, 0x1908191908191919, 0x1908191908192b08, 0x19081919082b0819, + 0x19081919082b1908, 0x1908191919080808, 0x190819191908082b, 0x1908191919081919, + 0x1908191919082b08, 0x1908191919190819, 0x1908191919191908, 0x19081919192b0808, + 0x19081919192b2b2b, 0x190819192b080819, 0x190819192b081908, 0x190819192b190808, + 0x1908192b08080808, 0x1908192b0808082b, 0x1908192b08081919, 0x1908192b08082b08, + 0x1908192b08190819, 0x1908192b08191908, 0x1908192b082b0808, 0x1908192b19080819, + 0x1908192b19081908, 0x1908192b19190808, 0x1908192b2b080808, 0x1908192b2b2b1919, + 0x19082b0808080819, 0x19082b0808081908, 0x19082b0808082b19, 0x19082b0808190808, + 0x19082b080819082b, 0x19082b0808191919, 0x19082b0808192b08, 0x19082b08082b0819, + 0x19082b08082b1908, 0x19082b0819080808, 0x19082b081908082b, 0x19082b0819081919, + 0x19082b0819082b08, 0x19082b0819190819, 0x19082b0819191908, 0x19082b08192b0808, + 0x19082b082b081908, 0x19082b082b190808, 0x19082b1908080808, 0x19082b190808082b, + 0x19082b1908081919, 0x19082b1908082b08, 0x19082b1908190819, 0x19082b1908191908, + 0x19082b19082b0808, 0x19082b1919080819, 0x19082b1919081908, 0x19082b1919190808, + 0x19082b192b080808, 0x19082b192b19192b, 0x19082b2b08080819, 0x19082b2b08081908, + 0x19082b2b08190808, 0x19082b2b19080808, 0x1919080808080808, 0x191908080808082b, + 0x1919080808081919, 0x1919080808082b08, 0x1919080808190819, 0x1919080808191908, + 0x191908080819192b, 0x1919080808192b19, 0x19190808082b0808, 0x19190808082b082b, + 0x19190808082b1919, 0x19190808082b2b08, 0x1919080819080819, 0x1919080819081908, + 0x191908081908192b, 0x1919080819082b19, 0x1919080819190808, 0x191908081919082b, + 0x1919080819191919, 0x1919080819192b08, 0x19190808192b0819, 0x19190808192b1908, + 0x191908082b080808, 0x191908082b08082b, 0x191908082b081919, 0x191908082b082b08, + 0x191908082b190819, 0x191908082b191908, 0x1919081908080819, 0x1919081908081908, + 0x191908190808192b, 0x1919081908082b19, 0x1919081908190808, 0x191908190819082b, + 0x1919081908191919, 0x1919081908192b08, 0x19190819082b0819, 0x19190819082b1908, + 0x1919081919080808, 0x191908191908082b, 0x1919081919081919, 0x1919081919082b08, + 0x1919081919190819, 0x1919081919191908, 0x19190819192b0808, 0x191908192b080819, + 0x191908192b081908, 0x191908192b190808, 0x1919082b08080808, 0x1919082b08081919, + 0x1919082b08082b08, 0x1919082b08190819, 0x1919082b08191908, 0x1919082b082b0808, + 0x1919082b19080819, 0x1919082b19081908, 0x1919082b19190808, 0x1919082b192b2b19, + 0x1919082b2b080808, 0x1919190808080819, 0x1919190808081908, 0x191919080808192b, + 0x1919190808082b19, 0x1919190808190808, 0x191919080819082b, 0x1919190808191919, + 0x1919190808192b08, 0x19191908082b0819, 0x19191908082b1908, 0x1919190819080808, + 0x191919081908082b, 0x1919190819081919, 0x1919190819082b08, 0x1919190819190819, + 0x1919190819191908, 0x19191908192b0808, 0x191919082b080819, 0x191919082b081908, + 0x191919082b190808, 0x1919191908080808, 0x191919190808082b, 0x1919191908081919, + 0x1919191908082b08, 0x1919191908190819, 0x1919191908191908, 0x19191919082b0808, + 0x1919191919080819, 0x1919191919081908, 0x1919191919190808, 0x191919192b080808, + 0x1919192b08080819, 0x1919192b08081908, 0x1919192b08190808, 0x1919192b082b192b, + 0x1919192b19080808, 0x19192b0808080808, 0x19192b080808082b, 0x19192b0808081919, + 0x19192b0808082b08, 0x19192b0808190819, 0x19192b0808191908, 0x19192b08082b0808, + 0x19192b0819080819, 0x19192b0819081908, 0x19192b0819190808, 0x19192b0819192b2b, + 0x19192b082b080808, 0x19192b1908080819, 0x19192b1908081908, 0x19192b1908190808, + 0x19192b1919080808, 0x19192b2b08080808, 0x19192b2b08192b19, 0x19192b2b2b081919, + 0x19192b2b2b2b2b08, 0x192b080808080819, 0x192b080808081908, 0x192b08080808192b, + 0x192b080808190808, 0x192b08080819082b, 0x192b080808191919, 0x192b080808192b08, + 0x192b0808082b0819, 0x192b0808082b1908, 0x192b080819080808, 0x192b080819081919, + 0x192b080819082b08, 0x192b080819190819, 0x192b080819191908, 0x192b0808192b0808, + 0x192b08082b081908, 0x192b08082b190808, 0x192b081908080808, 0x192b08190808082b, + 0x192b081908081919, 0x192b081908082b08, 0x192b081908190819, 0x192b081908191908, + 0x192b0819082b0808, 0x192b081919080819, 0x192b081919081908, 0x192b081919190808, + 0x192b08192b080808, 0x192b08192b192b19, 0x192b082b08081908, 0x192b082b08190808, + 0x192b082b19080808, 0x192b082b1919192b, 0x192b082b2b2b0819, 0x192b190808080808, + 0x192b190808081919, 0x192b190808082b08, 0x192b190808190819, 0x192b190808191908, + 0x192b1908082b0808, 0x192b190819080819, 0x192b190819081908, 0x192b190819190808, + 0x192b19082b080808, 0x192b191908080819, 0x192b191908081908, 0x192b191908190808, + 0x192b191919080808, 0x192b191919082b2b, 0x192b1919192b2b08, 0x192b19192b19082b, + 0x192b192b08080808, 0x192b192b2b191908, 0x192b2b0808080819, 0x192b2b0808081908, + 0x192b2b0808190808, 0x192b2b08192b1919, 0x192b2b082b192b08, 0x192b2b1908080808, + 0x192b2b19082b2b2b, 0x192b2b2b1908082b, 0x192b2b2b2b2b0819, 0x2b08080808080808, + 0x2b0808080808082b, 0x2b08080808081919, 0x2b08080808082b08, 0x2b08080808190819, + 0x2b08080808191908, 0x2b08080808192b19, 0x2b080808082b0808, 0x2b080808082b1919, + 0x2b08080819080819, 0x2b08080819081908, 0x2b08080819190808, 0x2b0808081919082b, + 0x2b08080819191919, 0x2b08080819192b08, 0x2b080808192b0819, 0x2b0808082b080808, + 0x2b0808082b081919, 0x2b0808082b190819, 0x2b0808082b191908, 0x2b08081908080819, + 0x2b08081908081908, 0x2b08081908082b19, 0x2b08081908190808, 0x2b0808190819082b, + 0x2b08081908191919, 0x2b08081908192b08, 0x2b080819082b0819, 0x2b080819082b1908, + 0x2b08081919080808, 0x2b0808191908082b, 0x2b08081919081919, 0x2b08081919082b08, + 0x2b08081919190819, 0x2b08081919191908, 0x2b0808192b080819, 0x2b0808192b081908, + 0x2b0808192b190808, 0x2b0808192b2b2b19, 0x2b08082b08080808, 0x2b08082b08081919, + 0x2b08082b08082b2b, 0x2b08082b08190819, 0x2b08082b08191908, 0x2b08082b19080819, + 0x2b08082b19081908, 0x2b08082b19190808, 0x2b08190808080819, 0x2b08190808081908, + 0x2b0819080808192b, 0x2b08190808082b19, 0x2b08190808190808, 0x2b0819080819082b, + 0x2b08190808191919, 0x2b08190808192b08, 0x2b081908082b0819, 0x2b08190819080808, + 0x2b0819081908082b, 0x2b08190819081919, 0x2b08190819082b08, 0x2b08190819190819, + 0x2b08190819191908, 0x2b081908192b0808, 0x2b0819082b080819, 0x2b0819082b081908, + 0x2b0819082b190808, 0x2b08191908080808, 0x2b0819190808082b, 0x2b08191908081919, + 0x2b08191908082b08, 0x2b08191908190819, 0x2b08191908191908, 0x2b081919082b0808, + 0x2b08191919080819, 0x2b08191919081908, 0x2b08191919190808, 0x2b0819192b080808, + 0x2b0819192b082b2b, 0x2b08192b08080819, 0x2b08192b08081908, 0x2b08192b08190808, + 0x2b08192b082b2b19, 0x2b08192b19080808, 0x2b082b0808080808, 0x2b082b0808081919, + 0x2b082b0808190819, 0x2b082b0808191908, 0x2b082b0819080819, 0x2b082b0819081908, + 0x2b082b0819190808, 0x2b082b082b2b082b, 0x2b082b1908080819, 0x2b082b1908081908, + 0x2b082b1919080808, 0x2b082b19192b1919, 0x2b082b2b082b082b, 0x2b082b2b19192b08, + 0x2b082b2b19192b2b, 0x2b082b2b2b08082b, 0x2b082b2b2b2b082b, 0x2b19080808080819, + 0x2b19080808081908, 0x2b19080808082b19, 0x2b19080808190808, 0x2b1908080819082b, + 0x2b19080808191919, 0x2b19080808192b08, 0x2b190808082b1908, 0x2b19080819080808, + 0x2b1908081908082b, 0x2b19080819081919, 0x2b19080819082b08, 0x2b19080819190819, + 0x2b19080819191908, 0x2b190808192b0808, 0x2b1908082b080819, 0x2b1908082b081908, + 0x2b1908082b190808, 0x2b19081908080808, 0x2b19081908081919, 0x2b19081908190819, + 0x2b19081908191908, 0x2b19081919080819, 0x2b19081919081908, 0x2b19081919190808, + 0x2b19081919192b2b, 0x2b19082b08080819, 0x2b19082b08081908, 0x2b19082b08190808, + 0x2b19082b19080808, 0x2b19082b2b2b192b, 0x2b19190808080808, 0x2b1919080808082b, + 0x2b19190808081919, 0x2b19190808082b08, 0x2b19190808190819, 0x2b19190808191908, + 0x2b191908082b0808, 0x2b19190819080819, 0x2b19190819081908, 0x2b19190819190808, + 0x2b1919082b080808, 0x2b1919082b19192b, 0x2b19191908080819, 0x2b19191908081908, + 0x2b19191908190808, 0x2b19191919080808, 0x2b1919192b192b08, 0x2b1919192b2b0819, + 0x2b19192b08080808, 0x2b19192b1908192b, 0x2b19192b192b1908, 0x2b192b0808080819, + 0x2b192b0808081908, 0x2b192b0808190808, 0x2b192b08082b192b, 0x2b192b0819080808, + 0x2b192b082b2b2b19, 0x2b192b1908080808, 0x2b192b1919082b19, 0x2b192b191919082b, + 0x2b192b2b2b190808, 0x2b2b080808080808, 0x2b2b080808081919, 0x2b2b080808082b2b, + 0x2b2b080808191908, 0x2b2b0808082b082b, 0x2b2b0808082b2b2b, 0x2b2b080819080819, + 0x2b2b080819081908, 0x2b2b080819190808, 0x2b2b08082b2b082b, 0x2b2b08082b2b2b2b, + 0x2b2b081919080808, 0x2b2b0819192b1919, 0x2b2b082b0808082b, 0x2b2b082b08082b2b, + 0x2b2b082b082b082b, 0x2b2b082b082b2b08, 0x2b2b082b082b2b2b, 0x2b2b082b2b08082b, + 0x2b2b082b2b082b08, 0x2b2b082b2b082b2b, 0x2b2b082b2b2b2b08, 0x2b2b190808080819, + 0x2b2b190808081908, 0x2b2b190808190808, 0x2b2b190819080808, 0x2b2b19082b082b19, + 0x2b2b19082b2b1908, 0x2b2b191908080808, 0x2b2b191908192b19, 0x2b2b192b19190819, + 0x2b2b2b0808082b2b, 0x2b2b2b08082b2b08, 0x2b2b2b082b2b082b, 0x2b2b2b1919191908, + 0x2b2b2b192b08192b, 0x2b2b2b2b08082b08, 0x2b2b2b2b08082b2b, 0x2b2b2b2b082b0808, + 0x2b2b2b2b082b082b, 0x2b2b2b2b082b2b08, 0x2b2b2b2b2b082b08, 0x2b2b2b2b2b2b2b2b, +}; + constexpr constant static uint32_t iq3xxs_grid[256] = { 0x04040404, 0x04040414, 0x04040424, 0x04040c0c, 0x04040c1c, 0x04040c3e, 0x04041404, 0x04041414, 0x04041c0c, 0x04042414, 0x04043e1c, 0x04043e2c, 0x040c040c, 0x040c041c, 0x040c0c04, 0x040c0c14, @@ -4194,6 +4492,73 @@ constexpr constant static uint32_t iq3xxs_grid[256] = { 0x3e1c1c1c, 0x3e1c3404, 0x3e24140c, 0x3e24240c, 0x3e2c0404, 0x3e2c0414, 0x3e2c1424, 0x3e341c04, }; +constexpr constant static uint32_t iq3s_grid[512] = { + 0x01010101, 0x01010103, 0x01010105, 0x0101010b, 0x0101010f, 0x01010301, 0x01010303, 0x01010305, + 0x01010309, 0x0101030d, 0x01010501, 0x01010503, 0x0101050b, 0x01010707, 0x01010901, 0x01010905, + 0x0101090b, 0x0101090f, 0x01010b03, 0x01010b07, 0x01010d01, 0x01010d05, 0x01010f03, 0x01010f09, + 0x01010f0f, 0x01030101, 0x01030103, 0x01030105, 0x01030109, 0x01030301, 0x01030303, 0x0103030b, + 0x01030501, 0x01030507, 0x0103050f, 0x01030703, 0x0103070b, 0x01030909, 0x01030d03, 0x01030d0b, + 0x01030f05, 0x01050101, 0x01050103, 0x0105010b, 0x0105010f, 0x01050301, 0x01050307, 0x0105030d, + 0x01050503, 0x0105050b, 0x01050701, 0x01050709, 0x01050905, 0x0105090b, 0x0105090f, 0x01050b03, + 0x01050b07, 0x01050f01, 0x01050f07, 0x01070107, 0x01070303, 0x0107030b, 0x01070501, 0x01070505, + 0x01070703, 0x01070707, 0x0107070d, 0x01070909, 0x01070b01, 0x01070b05, 0x01070d0f, 0x01070f03, + 0x01070f0b, 0x01090101, 0x01090307, 0x0109030f, 0x01090503, 0x01090509, 0x01090705, 0x01090901, + 0x01090907, 0x01090b03, 0x01090f01, 0x010b0105, 0x010b0109, 0x010b0501, 0x010b0505, 0x010b050d, + 0x010b0707, 0x010b0903, 0x010b090b, 0x010b090f, 0x010b0d0d, 0x010b0f07, 0x010d010d, 0x010d0303, + 0x010d0307, 0x010d0703, 0x010d0b05, 0x010d0f03, 0x010f0101, 0x010f0105, 0x010f0109, 0x010f0501, + 0x010f0505, 0x010f050d, 0x010f0707, 0x010f0b01, 0x010f0b09, 0x03010101, 0x03010103, 0x03010105, + 0x03010109, 0x03010301, 0x03010303, 0x03010307, 0x0301030b, 0x0301030f, 0x03010501, 0x03010505, + 0x03010703, 0x03010709, 0x0301070d, 0x03010b09, 0x03010b0d, 0x03010d03, 0x03010f05, 0x03030101, + 0x03030103, 0x03030107, 0x0303010d, 0x03030301, 0x03030309, 0x03030503, 0x03030701, 0x03030707, + 0x03030903, 0x03030b01, 0x03030b05, 0x03030f01, 0x03030f0d, 0x03050101, 0x03050305, 0x0305030b, + 0x0305030f, 0x03050501, 0x03050509, 0x03050705, 0x03050901, 0x03050907, 0x03050b0b, 0x03050d01, + 0x03050f05, 0x03070103, 0x03070109, 0x0307010f, 0x03070301, 0x03070307, 0x03070503, 0x0307050f, + 0x03070701, 0x03070709, 0x03070903, 0x03070d05, 0x03070f01, 0x03090107, 0x0309010b, 0x03090305, + 0x03090309, 0x03090703, 0x03090707, 0x03090905, 0x0309090d, 0x03090b01, 0x03090b09, 0x030b0103, + 0x030b0301, 0x030b0307, 0x030b0503, 0x030b0701, 0x030b0705, 0x030b0b03, 0x030d0501, 0x030d0509, + 0x030d050f, 0x030d0909, 0x030d090d, 0x030f0103, 0x030f0107, 0x030f0301, 0x030f0305, 0x030f0503, + 0x030f070b, 0x030f0903, 0x030f0d05, 0x030f0f01, 0x05010101, 0x05010103, 0x05010107, 0x0501010b, + 0x0501010f, 0x05010301, 0x05010305, 0x05010309, 0x0501030d, 0x05010503, 0x05010507, 0x0501050f, + 0x05010701, 0x05010705, 0x05010903, 0x05010907, 0x0501090b, 0x05010b01, 0x05010b05, 0x05010d0f, + 0x05010f01, 0x05010f07, 0x05010f0b, 0x05030101, 0x05030105, 0x05030301, 0x05030307, 0x0503030f, + 0x05030505, 0x0503050b, 0x05030703, 0x05030709, 0x05030905, 0x05030b03, 0x05050103, 0x05050109, + 0x0505010f, 0x05050503, 0x05050507, 0x05050701, 0x0505070f, 0x05050903, 0x05050b07, 0x05050b0f, + 0x05050f03, 0x05050f09, 0x05070101, 0x05070105, 0x0507010b, 0x05070303, 0x05070505, 0x05070509, + 0x05070703, 0x05070707, 0x05070905, 0x05070b01, 0x05070d0d, 0x05090103, 0x0509010f, 0x05090501, + 0x05090507, 0x05090705, 0x0509070b, 0x05090903, 0x05090f05, 0x05090f0b, 0x050b0109, 0x050b0303, + 0x050b0505, 0x050b070f, 0x050b0901, 0x050b0b07, 0x050b0f01, 0x050d0101, 0x050d0105, 0x050d010f, + 0x050d0503, 0x050d0b0b, 0x050d0d03, 0x050f010b, 0x050f0303, 0x050f050d, 0x050f0701, 0x050f0907, + 0x050f0b01, 0x07010105, 0x07010303, 0x07010307, 0x0701030b, 0x0701030f, 0x07010505, 0x07010703, + 0x07010707, 0x0701070b, 0x07010905, 0x07010909, 0x0701090f, 0x07010b03, 0x07010d07, 0x07010f03, + 0x07030103, 0x07030107, 0x0703010b, 0x07030309, 0x07030503, 0x07030507, 0x07030901, 0x07030d01, + 0x07030f05, 0x07030f0d, 0x07050101, 0x07050305, 0x07050501, 0x07050705, 0x07050709, 0x07050b01, + 0x07070103, 0x07070301, 0x07070309, 0x07070503, 0x07070507, 0x0707050f, 0x07070701, 0x07070903, + 0x07070907, 0x0707090f, 0x07070b0b, 0x07070f07, 0x07090107, 0x07090303, 0x0709030d, 0x07090505, + 0x07090703, 0x07090b05, 0x07090d01, 0x07090d09, 0x070b0103, 0x070b0301, 0x070b0305, 0x070b050b, + 0x070b0705, 0x070b0909, 0x070b0b0d, 0x070b0f07, 0x070d030d, 0x070d0903, 0x070f0103, 0x070f0107, + 0x070f0501, 0x070f0505, 0x070f070b, 0x09010101, 0x09010109, 0x09010305, 0x09010501, 0x09010509, + 0x0901050f, 0x09010705, 0x09010903, 0x09010b01, 0x09010f01, 0x09030105, 0x0903010f, 0x09030303, + 0x09030307, 0x09030505, 0x09030701, 0x0903070b, 0x09030907, 0x09030b03, 0x09030b0b, 0x09050103, + 0x09050107, 0x09050301, 0x0905030b, 0x09050503, 0x09050707, 0x09050901, 0x09050b0f, 0x09050d05, + 0x09050f01, 0x09070109, 0x09070303, 0x09070307, 0x09070501, 0x09070505, 0x09070703, 0x0907070b, + 0x09090101, 0x09090105, 0x09090509, 0x0909070f, 0x09090901, 0x09090f03, 0x090b010b, 0x090b010f, + 0x090b0503, 0x090b0d05, 0x090d0307, 0x090d0709, 0x090d0d01, 0x090f0301, 0x090f030b, 0x090f0701, + 0x090f0907, 0x090f0b03, 0x0b010105, 0x0b010301, 0x0b010309, 0x0b010505, 0x0b010901, 0x0b010909, + 0x0b01090f, 0x0b010b05, 0x0b010d0d, 0x0b010f09, 0x0b030103, 0x0b030107, 0x0b03010b, 0x0b030305, + 0x0b030503, 0x0b030705, 0x0b030f05, 0x0b050101, 0x0b050303, 0x0b050507, 0x0b050701, 0x0b05070d, + 0x0b050b07, 0x0b070105, 0x0b07010f, 0x0b070301, 0x0b07050f, 0x0b070909, 0x0b070b03, 0x0b070d0b, + 0x0b070f07, 0x0b090103, 0x0b090109, 0x0b090501, 0x0b090705, 0x0b09090d, 0x0b0b0305, 0x0b0b050d, + 0x0b0b0b03, 0x0b0b0b07, 0x0b0d0905, 0x0b0f0105, 0x0b0f0109, 0x0b0f0505, 0x0d010303, 0x0d010307, + 0x0d01030b, 0x0d010703, 0x0d010707, 0x0d010d01, 0x0d030101, 0x0d030501, 0x0d03050f, 0x0d030d09, + 0x0d050305, 0x0d050709, 0x0d050905, 0x0d050b0b, 0x0d050d05, 0x0d050f01, 0x0d070101, 0x0d070309, + 0x0d070503, 0x0d070901, 0x0d09050b, 0x0d090907, 0x0d090d05, 0x0d0b0101, 0x0d0b0107, 0x0d0b0709, + 0x0d0b0d01, 0x0d0d010b, 0x0d0d0901, 0x0d0f0303, 0x0d0f0307, 0x0f010101, 0x0f010109, 0x0f01010f, + 0x0f010501, 0x0f010505, 0x0f01070d, 0x0f010901, 0x0f010b09, 0x0f010d05, 0x0f030105, 0x0f030303, + 0x0f030509, 0x0f030907, 0x0f03090b, 0x0f050103, 0x0f050109, 0x0f050301, 0x0f05030d, 0x0f050503, + 0x0f050701, 0x0f050b03, 0x0f070105, 0x0f070705, 0x0f07070b, 0x0f070b07, 0x0f090103, 0x0f09010b, + 0x0f090307, 0x0f090501, 0x0f090b01, 0x0f0b0505, 0x0f0b0905, 0x0f0d0105, 0x0f0d0703, 0x0f0f0101, +}; + #define NGRID_IQ1S 512 constexpr constant static uint64_t iq1s_grid[NGRID_IQ1S] = { 0xffffffffffff0101, 0xffffffffff01ff00, 0xffffffffff010100, 0xffffffff00000000, @@ -4390,7 +4755,6 @@ void kernel_mul_mv_iq2_xxs_f32_impl( threadgroup_barrier(mem_flags::mem_threadgroup); } -#if QK_K == 256 const int ix = tiisg; device const float * y4 = y + 32 * ix; @@ -4431,12 +4795,6 @@ void kernel_mul_mv_iq2_xxs_f32_impl( y4 += 32 * 32; } -#else - (void) x; - (void) y; - (void) yl; - (void) nb32; -#endif for (int row = 0; row < N_DST; ++row) { all_sum = simd_sum(sumf[row]); @@ -4526,7 +4884,6 @@ void kernel_mul_mv_iq2_xs_f32_impl( threadgroup_barrier(mem_flags::mem_threadgroup); } -#if QK_K == 256 const int ix = tiisg; device const float * y4 = y + 32 * ix; @@ -4577,12 +4934,6 @@ void kernel_mul_mv_iq2_xs_f32_impl( y4 += 32 * 32; } -#else - (void) x; - (void) y; - (void) yl; - (void) nb32; -#endif for (int row = 0; row < N_DST; ++row) { all_sum = simd_sum(sumf[row]); @@ -4672,7 +5023,6 @@ void kernel_mul_mv_iq3_xxs_f32_impl( threadgroup_barrier(mem_flags::mem_threadgroup); } -#if QK_K == 256 const int ix = tiisg; device const float * y4 = y + 32 * ix; @@ -4716,12 +5066,6 @@ void kernel_mul_mv_iq3_xxs_f32_impl( y4 += 32 * 32; } -#else - (void) x; - (void) y; - (void) yl; - (void) nb32; -#endif for (int row = 0; row < N_DST; ++row) { all_sum = simd_sum(sumf[row]); @@ -4760,6 +5104,271 @@ kernel void kernel_mul_mv_iq3_xxs_f32( kernel_mul_mv_iq3_xxs_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg); } +void kernel_mul_mv_iq3_s_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne10, + constant int64_t & ne12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + threadgroup int8_t * shared_values [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + const int nb = ne00/QK_K; + const int r0 = tgpig.x; + const int r1 = tgpig.y; + const int im = tgpig.z; + + const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST; + const int ib_row = first_row * nb; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + + device const block_iq3_s * x = (device const block_iq3_s *) src0 + ib_row + offset0; + device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + float yl[32]; + float sumf[N_DST]={0.f}, all_sum; + + const int nb32 = nb * (QK_K / 32); + + threadgroup uint32_t * values = (threadgroup uint32_t *)shared_values; + { + int nval = 8; + int pos = (32*sgitg + tiisg)*nval; + for (int i = 0; i < nval; ++i) values[pos + i] = iq3s_grid[pos + i]; + threadgroup_barrier(mem_flags::mem_threadgroup); + } + + const int ix = tiisg; + + device const float * y4 = y + 32 * ix; + + for (int ib32 = ix; ib32 < nb32; ib32 += 32) { + + for (int i = 0; i < 32; ++i) { + yl[i] = y4[i]; + } + + const int ibl = ib32 / (QK_K / 32); + const int ib = ib32 % (QK_K / 32); + + device const block_iq3_s * xr = x + ibl; + device const uint8_t * qs = xr->qs + 8 * ib; + device const uint8_t * qh = xr->qh + ib; + device const uint8_t * sc = xr->scales + (ib/2); + device const uint8_t * signs = xr->signs + 4 * ib; + device const half * dh = &xr->d; + + for (int row = 0; row < N_DST; row++) { + + const float db = dh[0]; + const float d = db * (1 + 2*((sc[0] >> 4*(ib%2)) & 0xf)); + + float2 sum = {0}; + for (int l = 0; l < 4; ++l) { + const threadgroup uint32_t * table1 = qh[0] & kmask_iq2xs[2*l+0] ? values + 256 : values; + const threadgroup uint32_t * table2 = qh[0] & kmask_iq2xs[2*l+1] ? values + 256 : values; + const threadgroup uint8_t * grid1 = (const threadgroup uint8_t *)(table1 + qs[2*l+0]); + const threadgroup uint8_t * grid2 = (const threadgroup uint8_t *)(table2 + qs[2*l+1]); + for (int j = 0; j < 4; ++j) { + sum[0] += yl[8*l + j + 0] * grid1[j] * select(1, -1, signs[l] & kmask_iq2xs[j+0]); + sum[1] += yl[8*l + j + 4] * grid2[j] * select(1, -1, signs[l] & kmask_iq2xs[j+4]); + } + } + sumf[row] += d * (sum[0] + sum[1]); + + dh += nb*sizeof(block_iq3_s)/2; + qs += nb*sizeof(block_iq3_s); + qh += nb*sizeof(block_iq3_s); + sc += nb*sizeof(block_iq3_s); + signs += nb*sizeof(block_iq3_s); + } + + y4 += 32 * 32; + } + + for (int row = 0; row < N_DST; ++row) { + all_sum = simd_sum(sumf[row]); + if (tiisg == 0) { + dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum; + } + } +} + +[[host_name("kernel_mul_mv_iq3_s_f32")]] +kernel void kernel_mul_mv_iq3_s_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + threadgroup int8_t * shared_values [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + kernel_mul_mv_iq3_s_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg); +} + +void kernel_mul_mv_iq2_s_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne10, + constant int64_t & ne12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + threadgroup int8_t * shared_values [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + const int nb = ne00/QK_K; + const int r0 = tgpig.x; + const int r1 = tgpig.y; + const int im = tgpig.z; + + const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST; + const int ib_row = first_row * nb; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + + device const block_iq2_s * x = (device const block_iq2_s *) src0 + ib_row + offset0; + device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + float yl[32]; + float sumf[N_DST]={0.f}, all_sum; + + const int nb32 = nb * (QK_K / 32); + + //threadgroup uint64_t * values = (threadgroup uint64_t *)shared_values; + //{ + // int nval = 32; + // int pos = (32*sgitg + tiisg)*nval; + // for (int i = 0; i < nval; ++i) values[pos + i] = iq2s_grid[pos + i]; + // threadgroup_barrier(mem_flags::mem_threadgroup); + //} + + const int ix = tiisg; + + device const float * y4 = y + 32 * ix; + + for (int ib32 = ix; ib32 < nb32; ib32 += 32) { + + for (int i = 0; i < 32; ++i) { + yl[i] = y4[i]; + } + + const int ibl = ib32 / (QK_K / 32); + const int ib = ib32 % (QK_K / 32); + + device const block_iq2_s * xr = x + ibl; + device const uint8_t * qs = xr->qs + 4 * ib; + device const uint8_t * qh = xr->qh + ib; + device const uint8_t * sc = xr->scales + ib; + device const uint8_t * signs = qs + QK_K/8; + device const half * dh = &xr->d; + + for (int row = 0; row < N_DST; row++) { + + const float db = dh[0]; + const float d1 = db * (0.5f + (sc[0] & 0xf)); + const float d2 = db * (0.5f + (sc[0] >> 4)); + + float2 sum = {0}; + for (int l = 0; l < 2; ++l) { + //const threadgroup uint8_t * grid1 = (const threadgroup uint8_t *)(values + (qs[l+0] | ((qh[0] << (8-2*l)) & 0x300))); + //const threadgroup uint8_t * grid2 = (const threadgroup uint8_t *)(values + (qs[l+2] | ((qh[0] << (4-2*l)) & 0x300))); + constant uint8_t * grid1 = (constant uint8_t *)(iq2s_grid + (qs[l+0] | ((qh[0] << (8-2*l)) & 0x300))); + constant uint8_t * grid2 = (constant uint8_t *)(iq2s_grid + (qs[l+2] | ((qh[0] << (4-2*l)) & 0x300))); + for (int j = 0; j < 8; ++j) { + sum[0] += yl[8*l + j + 0] * grid1[j] * select(1, -1, signs[l+0] & kmask_iq2xs[j]); + sum[1] += yl[8*l + j + 16] * grid2[j] * select(1, -1, signs[l+2] & kmask_iq2xs[j]); + } + } + sumf[row] += d1 * sum[0] + d2 * sum[1]; + + dh += nb*sizeof(block_iq2_s)/2; + qs += nb*sizeof(block_iq2_s); + qh += nb*sizeof(block_iq2_s); + sc += nb*sizeof(block_iq2_s); + signs += nb*sizeof(block_iq2_s); + } + + y4 += 32 * 32; + } + + for (int row = 0; row < N_DST; ++row) { + all_sum = simd_sum(sumf[row]); + if (tiisg == 0) { + dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum * 0.25f; + } + } +} + +[[host_name("kernel_mul_mv_iq2_s_f32")]] +kernel void kernel_mul_mv_iq2_s_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + threadgroup int8_t * shared_values [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + kernel_mul_mv_iq2_s_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg); +} + void kernel_mul_mv_iq1_s_f32_impl( device const void * src0, device const float * src1, @@ -4789,7 +5398,6 @@ void kernel_mul_mv_iq1_s_f32_impl( const uint i13 = im/ne12; const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); - device const block_iq1_s * x = (device const block_iq1_s *) src0 + ib_row + offset0; device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1; @@ -4798,7 +5406,6 @@ void kernel_mul_mv_iq1_s_f32_impl( const int nb32 = nb * (QK_K / 32); -#if QK_K == 256 const int ix = tiisg/2; const int il = tiisg%2; @@ -4837,12 +5444,6 @@ void kernel_mul_mv_iq1_s_f32_impl( y4 += 16 * 32; } -#else - (void) x; - (void) y; - (void) yl; - (void) nb32; -#endif for (int row = 0; row < N_DST; ++row) { all_sum = simd_sum(sumf[row]); @@ -4852,6 +5453,199 @@ void kernel_mul_mv_iq1_s_f32_impl( } } +constexpr constant static float kvalues_iq4nl_f[16] = { + -127.f, -104.f, -83.f, -65.f, -49.f, -35.f, -22.f, -10.f, 1.f, 13.f, 25.f, 38.f, 53.f, 69.f, 89.f, 113.f +}; + +void kernel_mul_mv_iq4_nl_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne10, + constant int64_t & ne12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + threadgroup float * shared_values [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + const int nb = ne00/QK4_NL; + const int r0 = tgpig.x; + const int r1 = tgpig.y; + const int im = tgpig.z; + const int first_row = (r0 * 2 + sgitg) * 2; + const int ib_row = first_row * nb; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + device const block_iq4_nl * x = (device const block_iq4_nl *) src0 + ib_row + offset0; + device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + const int ix = tiisg/2; // 0...15 + const int it = tiisg%2; // 0 or 1 + + shared_values[tiisg] = kvalues_iq4nl_f[tiisg%16]; + threadgroup_barrier(mem_flags::mem_threadgroup); + + float4 yl[4]; + float sumf[2]={0.f}, all_sum; + + device const float * yb = y + ix * QK4_NL + it * 8; + + uint32_t aux32[2]; + thread const uint8_t * q8 = (thread const uint8_t *)aux32; + + float4 qf1, qf2; + + for (int ib = ix; ib < nb; ib += 16) { + + device const float4 * y4 = (device const float4 *)yb; + yl[0] = y4[0]; yl[1] = y4[4]; yl[2] = y4[1]; yl[3] = y4[5]; + + for (int row = 0; row < 2; ++row) { + + device const block_iq4_nl & xb = x[row*nb + ib]; + device const uint16_t * q4 = (device const uint16_t *)(xb.qs + 8*it); + + float4 acc1 = {0.f}, acc2 = {0.f}; + + aux32[0] = q4[0] | (q4[1] << 16); + aux32[1] = (aux32[0] >> 4) & 0x0f0f0f0f; + aux32[0] &= 0x0f0f0f0f; + qf1 = {shared_values[q8[0]], shared_values[q8[1]], shared_values[q8[2]], shared_values[q8[3]]}; + qf2 = {shared_values[q8[4]], shared_values[q8[5]], shared_values[q8[6]], shared_values[q8[7]]}; + acc1 += yl[0] * qf1; + acc2 += yl[1] * qf2; + + aux32[0] = q4[2] | (q4[3] << 16); + aux32[1] = (aux32[0] >> 4) & 0x0f0f0f0f; + aux32[0] &= 0x0f0f0f0f; + qf1 = {shared_values[q8[0]], shared_values[q8[1]], shared_values[q8[2]], shared_values[q8[3]]}; + qf2 = {shared_values[q8[4]], shared_values[q8[5]], shared_values[q8[6]], shared_values[q8[7]]}; + acc1 += yl[2] * qf1; + acc2 += yl[3] * qf2; + + acc1 += acc2; + + sumf[row] += (float)xb.d * (acc1[0] + acc1[1] + acc1[2] + acc1[3]); + + } + + yb += 16 * QK4_NL; + } + + for (int row = 0; row < 2; ++row) { + all_sum = simd_sum(sumf[row]); + if (tiisg == 0) { + dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum; + } + } +} + +#if QK_K != 64 +void kernel_mul_mv_iq4_xs_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne10, + constant int64_t & ne12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + threadgroup float * shared_values [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + const int nb = ne00/QK_K; + const int r0 = tgpig.x; + const int r1 = tgpig.y; + const int im = tgpig.z; + const int first_row = (r0 * 2 + sgitg) * 2; + const int ib_row = first_row * nb; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + device const block_iq4_xs * x = (device const block_iq4_xs *) src0 + ib_row + offset0; + device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + const int ix = tiisg/16; // 0 or 1 + const int it = tiisg%16; // 0...15 + const int ib = it/2; + const int il = it%2; + + shared_values[tiisg] = kvalues_iq4nl_f[tiisg%16]; + threadgroup_barrier(mem_flags::mem_threadgroup); + + float4 yl[4]; + float sumf[2]={0.f}, all_sum; + + device const float * yb = y + ix * QK_K + ib * 32 + il * 8; + + uint32_t aux32[2]; + thread const uint8_t * q8 = (thread const uint8_t *)aux32; + + float4 qf1, qf2; + + for (int ibl = ix; ibl < nb; ibl += 2) { + + device const float4 * y4 = (device const float4 *)yb; + yl[0] = y4[0]; yl[1] = y4[4]; yl[2] = y4[1]; yl[3] = y4[5]; + + for (int row = 0; row < 2; ++row) { + + device const block_iq4_xs & xb = x[row*nb + ibl]; + device const uint32_t * q4 = (device const uint32_t *)(xb.qs + 16*ib + 8*il); + + float4 acc1 = {0.f}, acc2 = {0.f}; + + aux32[0] = q4[0] & 0x0f0f0f0f; + aux32[1] = (q4[0] >> 4) & 0x0f0f0f0f; + qf1 = {shared_values[q8[0]], shared_values[q8[1]], shared_values[q8[2]], shared_values[q8[3]]}; + qf2 = {shared_values[q8[4]], shared_values[q8[5]], shared_values[q8[6]], shared_values[q8[7]]}; + acc1 += yl[0] * qf1; + acc2 += yl[1] * qf2; + + aux32[0] = q4[1] & 0x0f0f0f0f; + aux32[1] = (q4[1] >> 4) & 0x0f0f0f0f; + qf1 = {shared_values[q8[0]], shared_values[q8[1]], shared_values[q8[2]], shared_values[q8[3]]}; + qf2 = {shared_values[q8[4]], shared_values[q8[5]], shared_values[q8[6]], shared_values[q8[7]]}; + acc1 += yl[2] * qf1; + acc2 += yl[3] * qf2; + + acc1 += acc2; + + const int ls = (((xb.scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((xb.scales_h >> 2*ib) & 3) << 4)) - 32; + sumf[row] += (float)xb.d * ls * (acc1[0] + acc1[1] + acc1[2] + acc1[3]); + + } + + yb += 2 * QK_K; + } + + for (int row = 0; row < 2; ++row) { + all_sum = simd_sum(sumf[row]); + if (tiisg == 0) { + dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum; + } + } +} +#endif + [[host_name("kernel_mul_mv_iq1_s_f32")]] kernel void kernel_mul_mv_iq1_s_f32( device const void * src0, @@ -4880,6 +5674,67 @@ kernel void kernel_mul_mv_iq1_s_f32( kernel_mul_mv_iq1_s_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, tgpig, tiisg, sgitg); } +[[host_name("kernel_mul_mv_iq4_nl_f32")]] +kernel void kernel_mul_mv_iq4_nl_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + threadgroup float * shared_values [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + kernel_mul_mv_iq4_nl_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg); +} + +[[host_name("kernel_mul_mv_iq4_xs_f32")]] +kernel void kernel_mul_mv_iq4_xs_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + threadgroup float * shared_values [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + +#if QK_K == 64 + kernel_mul_mv_iq4_nl_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg); +#else + kernel_mul_mv_iq4_xs_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg); +#endif +} //============================= templates and their specializations ============================= @@ -5227,6 +6082,50 @@ void dequantize_iq3_xxs(device const block_iq3_xxs * xb, short il, thread type4x } } +template +void dequantize_iq3_s(device const block_iq3_s * xb, short il, thread type4x4 & reg) { + // il is 0...15 for QK_K = 256 => index of block of 32 is il/2 + const float d = xb->d; + const int ib32 = il/2; + il = il%2; + // il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16 + device const uint8_t * qs = xb->qs + 8*ib32; + device const uint8_t * signs = xb->signs + 4*ib32 + 2*il; + const uint8_t qh = xb->qh[ib32] >> 4*il; + const float dl = d * (1 + 2*((xb->scales[ib32/2] >> 4*(ib32%2)) & 0xf)); + constant uint8_t * grid1 = (constant uint8_t *)(iq3s_grid + (qs[4*il+0] | ((qh << 8) & 256))); + constant uint8_t * grid2 = (constant uint8_t *)(iq3s_grid + (qs[4*il+1] | ((qh << 7) & 256))); + for (int i = 0; i < 4; ++i) { + reg[0][i] = dl * grid1[i] * select(1, -1, signs[0] & kmask_iq2xs[i+0]); + reg[1][i] = dl * grid2[i] * select(1, -1, signs[0] & kmask_iq2xs[i+4]); + } + grid1 = (constant uint8_t *)(iq3s_grid + (qs[4*il+2] | ((qh << 6) & 256))); + grid2 = (constant uint8_t *)(iq3s_grid + (qs[4*il+3] | ((qh << 5) & 256))); + for (int i = 0; i < 4; ++i) { + reg[2][i] = dl * grid1[i] * select(1, -1, signs[1] & kmask_iq2xs[i+0]); + reg[3][i] = dl * grid2[i] * select(1, -1, signs[1] & kmask_iq2xs[i+4]); + } +} + +template +void dequantize_iq2_s(device const block_iq2_s * xb, short il, thread type4x4 & reg) { + // il is 0...15 for QK_K = 256 => index of block of 32 is il/2 + const float d = xb->d; + const int ib32 = il/2; + il = il%2; + // il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16 + device const uint8_t * qs = xb->qs + 4*ib32 + 2*il; + device const uint8_t * signs = qs + QK_K/8; + const uint8_t qh = xb->qh[ib32] >> 4*il; + const float dl = d * (0.5f + ((xb->scales[ib32] >> 4*il) & 0xf)) * 0.25f; + constant uint8_t * grid1 = (constant uint8_t *)(iq2s_grid + (qs[0] | ((qh << 8) & 0x300))); + constant uint8_t * grid2 = (constant uint8_t *)(iq2s_grid + (qs[1] | ((qh << 6) & 0x300))); + for (int i = 0; i < 8; ++i) { + reg[i/4+0][i%4] = dl * grid1[i] * select(1, -1, signs[0] & kmask_iq2xs[i]); + reg[i/4+2][i%4] = dl * grid2[i] * select(1, -1, signs[1] & kmask_iq2xs[i]); + } +} + template void dequantize_iq1_s(device const block_iq1_s * xb, short il, thread type4x4 & reg) { // il is 0...15 for QK_K = 256 => index of block of 32 is il/2 @@ -5243,6 +6142,45 @@ void dequantize_iq1_s(device const block_iq1_s * xb, short il, thread type4x4 & } } +template +void dequantize_iq4_nl(device const block_iq4_nl * xb, short il, thread type4x4 & reg) { + device const uint16_t * q4 = (device const uint16_t *)xb->qs; + const float d = xb->d; + uint32_t aux32; + thread const uint8_t * q8 = (thread const uint8_t *)&aux32; + for (int i = 0; i < 4; ++i) { + aux32 = ((q4[2*i] | (q4[2*i+1] << 16)) >> 4*il) & 0x0f0f0f0f; + reg[i][0] = d * kvalues_iq4nl_f[q8[0]]; + reg[i][1] = d * kvalues_iq4nl_f[q8[1]]; + reg[i][2] = d * kvalues_iq4nl_f[q8[2]]; + reg[i][3] = d * kvalues_iq4nl_f[q8[3]]; + } +} + +template +void dequantize_iq4_xs(device const block_iq4_xs * xb, short il, thread type4x4 & reg) { +#if QK_K == 64 + dequantize_iq4_nl(xb, il, reg); +#else + // il is 0...15 for QK_K = 256 => index of block of 32 is il/2 + const int ib32 = il/2; + il = il%2; + // il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16 + device const uint32_t * q4 = (device const uint32_t *)xb->qs + 4*ib32; + const int ls = ((xb->scales_l[ib32/2] >> 4*(ib32%2)) & 0xf) | (((xb->scales_h >> 2*ib32) & 3) << 4); + const float d = (float)xb->d * (ls - 32); + uint32_t aux32; + thread const uint8_t * q8 = (thread const uint8_t *)&aux32; + for (int i = 0; i < 4; ++i) { + aux32 = (q4[i] >> 4*il) & 0x0f0f0f0f; + reg[i][0] = d * kvalues_iq4nl_f[q8[0]]; + reg[i][1] = d * kvalues_iq4nl_f[q8[1]]; + reg[i][2] = d * kvalues_iq4nl_f[q8[2]]; + reg[i][3] = d * kvalues_iq4nl_f[q8[3]]; + } +#endif +} + template kernel void kernel_get_rows( device const void * src0, @@ -5785,7 +6723,15 @@ template [[host_name("kernel_get_rows_q6_K")]] kernel get_rows_t kernel_get_rows template [[host_name("kernel_get_rows_iq2_xxs")]] kernel get_rows_t kernel_get_rows; template [[host_name("kernel_get_rows_iq2_xs")]] kernel get_rows_t kernel_get_rows; template [[host_name("kernel_get_rows_iq3_xxs")]] kernel get_rows_t kernel_get_rows; +template [[host_name("kernel_get_rows_iq3_s")]] kernel get_rows_t kernel_get_rows; +template [[host_name("kernel_get_rows_iq2_s")]] kernel get_rows_t kernel_get_rows; template [[host_name("kernel_get_rows_iq1_s")]] kernel get_rows_t kernel_get_rows; +template [[host_name("kernel_get_rows_iq4_nl")]] kernel get_rows_t kernel_get_rows; +#if QK_K == 64 +template [[host_name("kernel_get_rows_iq4_xs")]] kernel get_rows_t kernel_get_rows; +#else +template [[host_name("kernel_get_rows_iq4_xs")]] kernel get_rows_t kernel_get_rows; +#endif // // matrix-matrix multiplication @@ -5825,7 +6771,15 @@ template [[host_name("kernel_mul_mm_q6_K_f32")]] kernel mat_mm_t kernel_mul_mm; template [[host_name("kernel_mul_mm_iq2_xs_f32")]] kernel mat_mm_t kernel_mul_mm; template [[host_name("kernel_mul_mm_iq3_xxs_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_iq3_s_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_iq2_s_f32")]] kernel mat_mm_t kernel_mul_mm; template [[host_name("kernel_mul_mm_iq1_s_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_iq4_nl_f32")]] kernel mat_mm_t kernel_mul_mm; +#if QK_K == 64 +template [[host_name("kernel_mul_mm_iq4_xs_f32")]] kernel mat_mm_t kernel_mul_mm; +#else +template [[host_name("kernel_mul_mm_iq4_xs_f32")]] kernel mat_mm_t kernel_mul_mm; +#endif // // indirect matrix-matrix multiplication @@ -5877,7 +6831,15 @@ template [[host_name("kernel_mul_mm_id_q6_K_f32")]] kernel mat_mm_id_t kernel_mu template [[host_name("kernel_mul_mm_id_iq2_xxs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; template [[host_name("kernel_mul_mm_id_iq2_xs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; template [[host_name("kernel_mul_mm_id_iq3_xxs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +template [[host_name("kernel_mul_mm_id_iq3_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +template [[host_name("kernel_mul_mm_id_iq2_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; template [[host_name("kernel_mul_mm_id_iq1_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +template [[host_name("kernel_mul_mm_id_iq4_nl_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +#if QK_K == 64 +template [[host_name("kernel_mul_mm_id_iq4_xs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +#else +template [[host_name("kernel_mul_mm_id_iq4_xs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +#endif // // matrix-vector multiplication @@ -6846,6 +7808,136 @@ kernel void kernel_mul_mv_id_iq3_xxs_f32( sgitg); } +[[host_name("kernel_mul_mv_id_iq3_s_f32")]] +kernel void kernel_mul_mv_id_iq3_s_f32( + device const char * ids, + device const char * src1, + device float * dst, + constant uint64_t & nbi1, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant int64_t & ne13, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint64_t & nb1, + constant uint & r2, + constant uint & r3, + constant int & idx, + device const char * src00, + device const char * src01, + device const char * src02, + device const char * src03, + device const char * src04, + device const char * src05, + device const char * src06, + device const char * src07, + threadgroup int8_t * shared_values [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiitg[[thread_index_in_threadgroup]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07}; + + const int64_t bid = tgpig.z/(ne12*ne13); + + tgpig.z = tgpig.z%(ne12*ne13); + + const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx]; + + kernel_mul_mv_iq3_s_f32_impl( + src0[id], + (device const float *) (src1 + bid*nb11), + dst + bid*ne0, + ne00, + ne01, + ne02, + ne10, + ne12, + ne0, + ne1, + r2, + r3, + shared_values, + tgpig, + tiisg, + sgitg); +} + +[[host_name("kernel_mul_mv_id_iq2_s_f32")]] +kernel void kernel_mul_mv_id_iq2_s_f32( + device const char * ids, + device const char * src1, + device float * dst, + constant uint64_t & nbi1, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant int64_t & ne13, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint64_t & nb1, + constant uint & r2, + constant uint & r3, + constant int & idx, + device const char * src00, + device const char * src01, + device const char * src02, + device const char * src03, + device const char * src04, + device const char * src05, + device const char * src06, + device const char * src07, + threadgroup int8_t * shared_values [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiitg[[thread_index_in_threadgroup]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07}; + + const int64_t bid = tgpig.z/(ne12*ne13); + + tgpig.z = tgpig.z%(ne12*ne13); + + const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx]; + + kernel_mul_mv_iq2_s_f32_impl( + src0[id], + (device const float *) (src1 + bid*nb11), + dst + bid*ne0, + ne00, + ne01, + ne02, + ne10, + ne12, + ne0, + ne1, + r2, + r3, + shared_values, + tgpig, + tiisg, + sgitg); +} + [[host_name("kernel_mul_mv_id_iq1_s_f32")]] kernel void kernel_mul_mv_id_iq1_s_f32( device const char * ids, @@ -6908,3 +8000,137 @@ kernel void kernel_mul_mv_id_iq1_s_f32( tiisg, sgitg); } + +[[host_name("kernel_mul_mv_id_iq4_nl_f32")]] +kernel void kernel_mul_mv_id_iq4_nl_f32( + device const char * ids, + device const char * src1, + device float * dst, + constant uint64_t & nbi1, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant int64_t & ne13, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint64_t & nb1, + constant uint & r2, + constant uint & r3, + constant int & idx, + device const char * src00, + device const char * src01, + device const char * src02, + device const char * src03, + device const char * src04, + device const char * src05, + device const char * src06, + device const char * src07, + threadgroup float * shared_values [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiitg[[thread_index_in_threadgroup]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07}; + + const int64_t bid = tgpig.z/(ne12*ne13); + + tgpig.z = tgpig.z%(ne12*ne13); + + const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx]; + + kernel_mul_mv_iq4_nl_f32_impl( + src0[id], + (device const float *) (src1 + bid*nb11), + dst + bid*ne0, + ne00, + ne01, + ne02, + ne10, + ne12, + ne0, + ne1, + r2, + r3, + shared_values, + tgpig, + tiisg, + sgitg); +} + +[[host_name("kernel_mul_mv_id_iq4_xs_f32")]] +kernel void kernel_mul_mv_id_iq4_xs_f32( + device const char * ids, + device const char * src1, + device float * dst, + constant uint64_t & nbi1, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant int64_t & ne13, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint64_t & nb1, + constant uint & r2, + constant uint & r3, + constant int & idx, + device const char * src00, + device const char * src01, + device const char * src02, + device const char * src03, + device const char * src04, + device const char * src05, + device const char * src06, + device const char * src07, + threadgroup float * shared_values [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiitg[[thread_index_in_threadgroup]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07}; + + const int64_t bid = tgpig.z/(ne12*ne13); + + tgpig.z = tgpig.z%(ne12*ne13); + + const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx]; + +#if QK_K == 64 + kernel_mul_mv_iq4_nl_f32_impl( +#else + kernel_mul_mv_iq4_xs_f32_impl( +#endif + src0[id], + (device const float *) (src1 + bid*nb11), + dst + bid*ne0, + ne00, + ne01, + ne02, + ne10, + ne12, + ne0, + ne1, + r2, + r3, + shared_values, + tgpig, + tiisg, + sgitg); +} diff --git a/ggml-opencl.cpp b/ggml-opencl.cpp index 797bee667..df619a884 100644 --- a/ggml-opencl.cpp +++ b/ggml-opencl.cpp @@ -1354,7 +1354,7 @@ static void ggml_cl_pool_free(cl_mem mem, size_t size) { } void ggml_cl_free_data(const struct ggml_tensor* tensor) { - if (tensor->backend != GGML_BACKEND_GPU) { + if (tensor->backend != GGML_BACKEND_TYPE_GPU) { return; } @@ -1412,7 +1412,7 @@ static cl_int ggml_cl_h2d_tensor_2d(cl_command_queue queue, cl_mem dst, size_t o } static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - GGML_ASSERT(src1->backend == GGML_BACKEND_GPU); + GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU); const int64_t ne00 = src0->ne[0]; const int64_t ne01 = src0->ne[1]; const int64_t ne02 = src0->ne[2]; @@ -1476,7 +1476,7 @@ void ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src } static void ggml_cl_add_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - GGML_ASSERT(src1->backend == GGML_BACKEND_GPU); + GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU); const int64_t ne00 = src0->ne[0]; const int64_t ne01 = src0->ne[1]; const int64_t ne02 = src0->ne[2]; @@ -1566,13 +1566,13 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr size_t y_size; size_t d_size; cl_mem d_X; - if (src0->backend == GGML_BACKEND_GPU) { // NOLINT + if (src0->backend == GGML_BACKEND_TYPE_GPU) { // NOLINT d_X = (cl_mem) src0->extra; } else { d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size); } - cl_mem d_Y = src1->backend == GGML_BACKEND_GPU ? (cl_mem) src1->extra : ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size); - cl_mem d_D = dst->backend == GGML_BACKEND_GPU ? (cl_mem) dst->extra : ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size); + cl_mem d_Y = src1->backend == GGML_BACKEND_TYPE_GPU ? (cl_mem) src1->extra : ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size); + cl_mem d_D = dst->backend == GGML_BACKEND_TYPE_GPU ? (cl_mem) dst->extra : ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size); size_t x_offset = 0; @@ -1580,7 +1580,7 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr // TODO: copy src0 here when r3>1 for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) { for (int64_t i02 = 0; i02 < ne02; i02++) { - if (src0->backend == GGML_BACKEND_GPU) { + if (src0->backend == GGML_BACKEND_TYPE_GPU) { x_offset = (i03 * ne02 + i02) * x_ne; } else { // copy src0 to device @@ -1589,7 +1589,7 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) { // copy src1 to device - if (src1->backend == GGML_BACKEND_CPU) { + if (src1->backend == GGML_BACKEND_TYPE_CPU) { CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL)); } @@ -1612,7 +1612,7 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr } // copy dst to host - if (dst->backend == GGML_BACKEND_CPU) { + if (dst->backend == GGML_BACKEND_TYPE_CPU) { float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3); CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL)); } @@ -1621,13 +1621,13 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr } } - if (src0->backend != GGML_BACKEND_GPU) { + if (src0->backend != GGML_BACKEND_TYPE_GPU) { ggml_cl_pool_free(d_X, x_size); } - if (src1->backend != GGML_BACKEND_GPU) { + if (src1->backend != GGML_BACKEND_TYPE_GPU) { ggml_cl_pool_free(d_Y, y_size); } - if (dst->backend != GGML_BACKEND_GPU) { + if (dst->backend != GGML_BACKEND_TYPE_GPU) { ggml_cl_pool_free(d_D, d_size); } } @@ -1670,7 +1670,7 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr size_t y_size; size_t d_size; cl_mem d_X; - if (src0->backend == GGML_BACKEND_GPU) { // NOLINT + if (src0->backend == GGML_BACKEND_TYPE_GPU) { // NOLINT d_X = (cl_mem) src0->extra; } else { d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size); @@ -1687,7 +1687,7 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr // TODO: copy src0 here when r3>1 for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) { for (int64_t i02 = 0; i02 < ne02; i02++) { - if (src0->backend == GGML_BACKEND_GPU) { + if (src0->backend == GGML_BACKEND_TYPE_GPU) { x_offset = (i03 * ne02 + i02) * x_ne; } else { // copy src0 to device @@ -1741,7 +1741,7 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr } // copy dst to host, then convert to float - if (dst->backend == GGML_BACKEND_CPU) { + if (dst->backend == GGML_BACKEND_TYPE_CPU) { CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL)); float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3); ggml_fp16_to_fp32_row(tmp, d, d_ne); @@ -1753,7 +1753,7 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr } } - if (src0->backend != GGML_BACKEND_GPU) { + if (src0->backend != GGML_BACKEND_TYPE_GPU) { ggml_cl_pool_free(d_X, x_size); } ggml_cl_pool_free(d_Y, y_size); @@ -1798,7 +1798,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size); cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size); cl_mem d_Q; - if (src0->backend == GGML_BACKEND_CPU) { + if (src0->backend == GGML_BACKEND_TYPE_CPU) { d_Q = ggml_cl_pool_malloc(q_sz, &q_size); } @@ -1817,10 +1817,10 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) { for (int64_t i02 = 0; i02 < ne02; i02++) { // copy src0 to device if necessary - if (src0->backend == GGML_BACKEND_CPU) { + if (src0->backend == GGML_BACKEND_TYPE_CPU) { events.emplace_back(); CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++)); - } else if (src0->backend == GGML_BACKEND_GPU) { + } else if (src0->backend == GGML_BACKEND_TYPE_GPU) { d_Q = (cl_mem) src0->extra; } else { GGML_ASSERT(false); @@ -1829,7 +1829,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * if (!mul_mat_vec) { // convert src0 to fp32 on device const size_t global = x_ne / global_denom; - const size_t offset = src0->backend == GGML_BACKEND_GPU ? (i03 * ne02 + i02) * x_bps : 0; + const size_t offset = src0->backend == GGML_BACKEND_TYPE_GPU ? (i03 * ne02 + i02) * x_bps : 0; CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q)); CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X)); CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, &offset, &global, local > 0 ? &local : NULL, events.size(), !events.empty() ? events.data() : NULL, NULL)); @@ -1843,7 +1843,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * // compute const size_t global = ne01 * local; - const size_t offset = src0->backend == GGML_BACKEND_GPU ? (i03 * ne02 + i02) * x_bps : 0; + const size_t offset = src0->backend == GGML_BACKEND_TYPE_GPU ? (i03 * ne02 + i02) * x_bps : 0; const cl_int ncols = ne00; events.emplace_back(); CL_CHECK(clSetKernelArg(*dmmv, 0, sizeof(cl_mem), &d_Q)); @@ -1895,7 +1895,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * } ggml_cl_pool_free(d_Y, y_size); ggml_cl_pool_free(d_D, d_size); - if (src0->backend == GGML_BACKEND_CPU) { + if (src0->backend == GGML_BACKEND_TYPE_CPU) { ggml_cl_pool_free(d_Q, q_size); } } @@ -1911,7 +1911,7 @@ bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tens if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 && - ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_GPU)) { + ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_TYPE_GPU)) { return true; } @@ -1993,7 +1993,7 @@ void ggml_cl_transform_tensor(void * data, ggml_tensor * tensor) { CL_CHECK(clFinish(queue)); tensor->extra = dst; - GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); + GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU); } // ggml-backend @@ -2045,7 +2045,7 @@ static void ggml_backend_opencl_buffer_init_tensor(ggml_backend_buffer_t buffer, ctx->sub_buffers.push_back(sub_buffer); tensor->extra = sub_buffer; } - tensor->backend = GGML_BACKEND_GPU; + tensor->backend = GGML_BACKEND_TYPE_GPU; } static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { diff --git a/ggml-quants.c b/ggml-quants.c index 3319d2ccf..2a8881d73 100644 --- a/ggml-quants.c +++ b/ggml-quants.c @@ -438,6 +438,54 @@ inline static ggml_int8x16x4_t ggml_vld1q_s8_x4(const int8_t * ptr) { return res; } +// NOTE: not tested +inline static int8x16_t ggml_vqtbl1q_s8(int8x16_t a, uint8x16_t b) { + int8x16_t res; + + res[ 0] = a[b[ 0]]; + res[ 1] = a[b[ 1]]; + res[ 2] = a[b[ 2]]; + res[ 3] = a[b[ 3]]; + res[ 4] = a[b[ 4]]; + res[ 5] = a[b[ 5]]; + res[ 6] = a[b[ 6]]; + res[ 7] = a[b[ 7]]; + res[ 8] = a[b[ 8]]; + res[ 9] = a[b[ 9]]; + res[10] = a[b[10]]; + res[11] = a[b[11]]; + res[12] = a[b[12]]; + res[13] = a[b[13]]; + res[14] = a[b[14]]; + res[15] = a[b[15]]; + + return res; +} + +// NOTE: not tested +inline static int8x16_t ggml_vqtbl1q_u8(uint8x16_t a, uint8x16_t b) { + int8x16_t res; + + res[ 0] = a[b[ 0]]; + res[ 1] = a[b[ 1]]; + res[ 2] = a[b[ 2]]; + res[ 3] = a[b[ 3]]; + res[ 4] = a[b[ 4]]; + res[ 5] = a[b[ 5]]; + res[ 6] = a[b[ 6]]; + res[ 7] = a[b[ 7]]; + res[ 8] = a[b[ 8]]; + res[ 9] = a[b[ 9]]; + res[10] = a[b[10]]; + res[11] = a[b[11]]; + res[12] = a[b[12]]; + res[13] = a[b[13]]; + res[14] = a[b[14]]; + res[15] = a[b[15]]; + + return res; +} + #else #define ggml_int16x8x2_t int16x8x2_t @@ -451,6 +499,8 @@ inline static ggml_int8x16x4_t ggml_vld1q_s8_x4(const int8_t * ptr) { #define ggml_vld1q_u8_x4 vld1q_u8_x4 #define ggml_vld1q_s8_x2 vld1q_s8_x2 #define ggml_vld1q_s8_x4 vld1q_s8_x4 +#define ggml_vqtbl1q_s8 vqtbl1q_s8 +#define ggml_vqtbl1q_u8 vqtbl1q_u8 #endif @@ -1827,7 +1877,7 @@ static void quantize_row_q2_K_impl(const float * restrict x, block_q2_K * restri float mins[QK_K/16]; float scales[QK_K/16]; float sw[QK_K/16]; - float weight[QK_K/16]; + float weight[16]; uint8_t Ls[QK_K/16], Lm[QK_K/16]; for (int i = 0; i < nb; i++) { @@ -1837,13 +1887,42 @@ static void quantize_row_q2_K_impl(const float * restrict x, block_q2_K * restri float sigma2 = sumx2/QK_K; for (int j = 0; j < QK_K/16; ++j) { const float * restrict qw = quant_weights + QK_K * i + 16*j; - for (int l = 0; l < QK_K/16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j + l]*x[16*j + l]); + for (int l = 0; l < 16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j + l]*x[16*j + l]); for (int l = 0; l < QK_K/16; ++l) sw[j] += weight[l]; - scales[j] = make_qkx3_quants(QK_K/16, 3, x + 16*j, weight, L + 16*j, &mins[j], Laux, -0.9f, 0.05f, 36, false); + scales[j] = make_qkx3_quants(16, 3, x + 16*j, weight, L + 16*j, &mins[j], Laux, -0.9f, 0.05f, 36, false); } - float dm = make_qp_quants(QK_K/16, 15, scales, Ls, sw); - float mm = make_qp_quants(QK_K/16, 15, mins, Lm, sw); + float dm, mm; +#if QK_K == 64 + float max_scale = 0, max_min = 0; + for (int j = 0; j < QK_K/16; ++j) { + max_scale = MAX(max_scale, scales[j]); + max_min = MAX(max_min, mins[j]); + } + dm = max_scale/15; + mm = max_min/15; + if (max_scale) { + float id = 1/dm; + for (int j = 0; j < QK_K/16; ++j) { + int l = nearest_int(id*scales[j]); + Ls[j] = MAX(0, MIN(15, l)); + } + } else { + memset(Ls, 0, QK_K/16); + } + if (max_min) { + float id = 1/mm; + for (int j = 0; j < QK_K/16; ++j) { + int l = nearest_int(id*mins[j]); + Lm[j] = MAX(0, MIN(15, l)); + } + } else { + memset(Lm, 0, QK_K/16); + } +#else + dm = make_qp_quants(QK_K/16, 15, scales, Ls, sw); + mm = make_qp_quants(QK_K/16, 15, mins, Lm, sw); +#endif y[i].d = GGML_FP32_TO_FP16(dm); y[i].dmin = GGML_FP32_TO_FP16(mm); dm = GGML_FP16_TO_FP32(y[i].d); @@ -3445,6 +3524,265 @@ static const uint64_t iq2xs_grid[512] = { 0x2b2b2b2b082b2b08, 0x2b2b2b2b082b2b2b, 0x2b2b2b2b2b190819, 0x2b2b2b2b2b2b2b2b, }; +static const uint64_t iq2s_grid[1024] = { + 0x0808080808080808, 0x080808080808082b, 0x0808080808081919, 0x0808080808082b08, + 0x0808080808082b2b, 0x0808080808190819, 0x0808080808191908, 0x080808080819192b, + 0x0808080808192b19, 0x08080808082b0808, 0x08080808082b082b, 0x08080808082b1919, + 0x08080808082b2b08, 0x0808080819080819, 0x0808080819081908, 0x080808081908192b, + 0x0808080819082b19, 0x0808080819190808, 0x080808081919082b, 0x0808080819191919, + 0x0808080819192b08, 0x08080808192b0819, 0x08080808192b1908, 0x08080808192b192b, + 0x08080808192b2b19, 0x080808082b080808, 0x080808082b08082b, 0x080808082b081919, + 0x080808082b082b08, 0x080808082b190819, 0x080808082b191908, 0x080808082b2b0808, + 0x080808082b2b1919, 0x080808082b2b2b2b, 0x0808081908080819, 0x0808081908081908, + 0x080808190808192b, 0x0808081908082b19, 0x0808081908190808, 0x080808190819082b, + 0x0808081908191919, 0x0808081908192b08, 0x08080819082b0819, 0x08080819082b1908, + 0x0808081919080808, 0x080808191908082b, 0x0808081919081919, 0x0808081919082b08, + 0x0808081919190819, 0x0808081919191908, 0x080808191919192b, 0x0808081919192b19, + 0x08080819192b0808, 0x08080819192b1919, 0x08080819192b2b08, 0x080808192b080819, + 0x080808192b081908, 0x080808192b190808, 0x080808192b19082b, 0x080808192b191919, + 0x080808192b2b0819, 0x080808192b2b1908, 0x0808082b08080808, 0x0808082b0808082b, + 0x0808082b08081919, 0x0808082b08082b08, 0x0808082b08190819, 0x0808082b08191908, + 0x0808082b082b0808, 0x0808082b082b2b2b, 0x0808082b19080819, 0x0808082b19081908, + 0x0808082b1908192b, 0x0808082b19082b19, 0x0808082b19190808, 0x0808082b19191919, + 0x0808082b2b080808, 0x0808082b2b081919, 0x0808082b2b082b2b, 0x0808082b2b191908, + 0x0808082b2b2b082b, 0x0808190808080819, 0x0808190808081908, 0x080819080808192b, + 0x0808190808082b19, 0x0808190808190808, 0x080819080819082b, 0x0808190808191919, + 0x0808190808192b08, 0x08081908082b0819, 0x08081908082b1908, 0x08081908082b192b, + 0x08081908082b2b19, 0x0808190819080808, 0x080819081908082b, 0x0808190819081919, + 0x0808190819082b08, 0x0808190819082b2b, 0x0808190819190819, 0x0808190819191908, + 0x080819081919192b, 0x0808190819192b19, 0x08081908192b0808, 0x08081908192b082b, + 0x08081908192b1919, 0x080819082b080819, 0x080819082b081908, 0x080819082b08192b, + 0x080819082b082b19, 0x080819082b190808, 0x080819082b191919, 0x080819082b192b08, + 0x080819082b2b0819, 0x080819082b2b1908, 0x0808191908080808, 0x080819190808082b, + 0x0808191908081919, 0x0808191908082b08, 0x0808191908082b2b, 0x0808191908190819, + 0x0808191908191908, 0x080819190819192b, 0x0808191908192b19, 0x08081919082b0808, + 0x08081919082b1919, 0x08081919082b2b08, 0x0808191919080819, 0x0808191919081908, + 0x080819191908192b, 0x0808191919082b19, 0x0808191919190808, 0x080819191919082b, + 0x0808191919191919, 0x0808191919192b08, 0x08081919192b0819, 0x08081919192b1908, + 0x080819192b080808, 0x080819192b08082b, 0x080819192b081919, 0x080819192b082b08, + 0x080819192b190819, 0x080819192b191908, 0x080819192b2b0808, 0x0808192b08080819, + 0x0808192b08081908, 0x0808192b0808192b, 0x0808192b08082b19, 0x0808192b08190808, + 0x0808192b08191919, 0x0808192b19080808, 0x0808192b19081919, 0x0808192b19082b08, + 0x0808192b19190819, 0x0808192b19191908, 0x0808192b192b0808, 0x0808192b2b080819, + 0x0808192b2b081908, 0x0808192b2b190808, 0x08082b0808080808, 0x08082b080808082b, + 0x08082b0808081919, 0x08082b0808082b08, 0x08082b0808190819, 0x08082b0808191908, + 0x08082b080819192b, 0x08082b0808192b19, 0x08082b08082b0808, 0x08082b08082b1919, + 0x08082b08082b2b2b, 0x08082b0819080819, 0x08082b0819081908, 0x08082b081908192b, + 0x08082b0819082b19, 0x08082b0819190808, 0x08082b081919082b, 0x08082b0819191919, + 0x08082b0819192b08, 0x08082b08192b0819, 0x08082b08192b1908, 0x08082b082b080808, + 0x08082b082b081919, 0x08082b082b191908, 0x08082b082b2b2b2b, 0x08082b1908080819, + 0x08082b1908081908, 0x08082b1908190808, 0x08082b190819082b, 0x08082b1908191919, + 0x08082b1908192b08, 0x08082b19082b0819, 0x08082b1919080808, 0x08082b1919081919, + 0x08082b1919082b08, 0x08082b1919190819, 0x08082b1919191908, 0x08082b19192b0808, + 0x08082b192b080819, 0x08082b192b190808, 0x08082b2b08080808, 0x08082b2b08190819, + 0x08082b2b08191908, 0x08082b2b082b082b, 0x08082b2b082b2b08, 0x08082b2b082b2b2b, + 0x08082b2b19190808, 0x08082b2b2b192b19, 0x0819080808080819, 0x0819080808081908, + 0x081908080808192b, 0x0819080808082b19, 0x0819080808190808, 0x081908080819082b, + 0x0819080808191919, 0x0819080808192b08, 0x08190808082b0819, 0x08190808082b1908, + 0x08190808082b192b, 0x0819080819080808, 0x081908081908082b, 0x0819080819081919, + 0x0819080819082b08, 0x0819080819190819, 0x0819080819191908, 0x081908081919192b, + 0x0819080819192b19, 0x08190808192b0808, 0x08190808192b082b, 0x08190808192b1919, + 0x08190808192b2b08, 0x081908082b080819, 0x081908082b081908, 0x081908082b08192b, + 0x081908082b190808, 0x081908082b191919, 0x081908082b192b08, 0x081908082b2b0819, + 0x081908082b2b1908, 0x0819081908080808, 0x081908190808082b, 0x0819081908081919, + 0x0819081908082b08, 0x0819081908082b2b, 0x0819081908190819, 0x0819081908191908, + 0x081908190819192b, 0x0819081908192b19, 0x08190819082b0808, 0x08190819082b082b, + 0x08190819082b1919, 0x08190819082b2b08, 0x0819081919080819, 0x0819081919081908, + 0x081908191908192b, 0x0819081919082b19, 0x0819081919190808, 0x081908191919082b, + 0x0819081919191919, 0x0819081919192b08, 0x08190819192b0819, 0x08190819192b1908, + 0x081908192b080808, 0x081908192b08082b, 0x081908192b081919, 0x081908192b082b08, + 0x081908192b190819, 0x081908192b191908, 0x0819082b08080819, 0x0819082b08081908, + 0x0819082b08082b19, 0x0819082b08190808, 0x0819082b08191919, 0x0819082b082b0819, + 0x0819082b082b1908, 0x0819082b19080808, 0x0819082b19081919, 0x0819082b19190819, + 0x0819082b19191908, 0x0819082b2b080819, 0x0819082b2b081908, 0x0819082b2b190808, + 0x0819190808080808, 0x081919080808082b, 0x0819190808081919, 0x0819190808082b08, + 0x0819190808190819, 0x0819190808191908, 0x081919080819192b, 0x0819190808192b19, + 0x08191908082b0808, 0x08191908082b1919, 0x08191908082b2b08, 0x0819190819080819, + 0x0819190819081908, 0x081919081908192b, 0x0819190819082b19, 0x0819190819190808, + 0x081919081919082b, 0x0819190819191919, 0x0819190819192b08, 0x08191908192b0819, + 0x08191908192b1908, 0x081919082b080808, 0x081919082b08082b, 0x081919082b081919, + 0x081919082b082b08, 0x081919082b190819, 0x081919082b191908, 0x081919082b2b0808, + 0x0819191908080819, 0x0819191908081908, 0x081919190808192b, 0x0819191908082b19, + 0x0819191908190808, 0x081919190819082b, 0x0819191908191919, 0x0819191908192b08, + 0x08191919082b0819, 0x08191919082b1908, 0x0819191919080808, 0x081919191908082b, + 0x0819191919081919, 0x0819191919082b08, 0x0819191919190819, 0x0819191919191908, + 0x08191919192b0808, 0x081919192b080819, 0x081919192b081908, 0x081919192b190808, + 0x0819192b08080808, 0x0819192b08081919, 0x0819192b08082b08, 0x0819192b08190819, + 0x0819192b08191908, 0x0819192b082b0808, 0x0819192b19080819, 0x0819192b19081908, + 0x0819192b19190808, 0x0819192b2b080808, 0x0819192b2b2b2b2b, 0x08192b0808080819, + 0x08192b0808081908, 0x08192b080808192b, 0x08192b0808082b19, 0x08192b0808190808, + 0x08192b0808191919, 0x08192b0808192b08, 0x08192b08082b0819, 0x08192b0819080808, + 0x08192b081908082b, 0x08192b0819081919, 0x08192b0819082b08, 0x08192b0819190819, + 0x08192b0819191908, 0x08192b08192b0808, 0x08192b082b080819, 0x08192b082b081908, + 0x08192b1908080808, 0x08192b190808082b, 0x08192b1908081919, 0x08192b1908082b08, + 0x08192b1908190819, 0x08192b1908191908, 0x08192b19082b0808, 0x08192b1919080819, + 0x08192b1919081908, 0x08192b1919190808, 0x08192b19192b2b19, 0x08192b192b2b082b, + 0x08192b2b08081908, 0x08192b2b08190808, 0x08192b2b19080808, 0x08192b2b1919192b, + 0x082b080808080808, 0x082b08080808082b, 0x082b080808081919, 0x082b080808082b08, + 0x082b080808190819, 0x082b080808191908, 0x082b08080819192b, 0x082b080808192b19, + 0x082b0808082b0808, 0x082b0808082b1919, 0x082b0808082b2b2b, 0x082b080819080819, + 0x082b080819081908, 0x082b080819190808, 0x082b08081919082b, 0x082b080819191919, + 0x082b0808192b1908, 0x082b08082b080808, 0x082b08082b082b2b, 0x082b08082b191908, + 0x082b08082b2b2b2b, 0x082b081908080819, 0x082b081908081908, 0x082b081908190808, + 0x082b08190819082b, 0x082b081908191919, 0x082b0819082b0819, 0x082b081919080808, + 0x082b08191908082b, 0x082b081919081919, 0x082b081919190819, 0x082b081919191908, + 0x082b0819192b0808, 0x082b08192b080819, 0x082b08192b081908, 0x082b08192b190808, + 0x082b082b08080808, 0x082b082b08082b2b, 0x082b082b082b082b, 0x082b082b082b2b08, + 0x082b082b082b2b2b, 0x082b082b19081908, 0x082b082b19190808, 0x082b082b2b082b08, + 0x082b082b2b082b2b, 0x082b082b2b2b2b08, 0x082b190808080819, 0x082b190808081908, + 0x082b19080808192b, 0x082b190808082b19, 0x082b190808190808, 0x082b190808191919, + 0x082b190808192b08, 0x082b1908082b0819, 0x082b1908082b1908, 0x082b190819080808, + 0x082b19081908082b, 0x082b190819081919, 0x082b190819082b08, 0x082b190819190819, + 0x082b190819191908, 0x082b1908192b0808, 0x082b19082b080819, 0x082b19082b081908, + 0x082b19082b190808, 0x082b191908080808, 0x082b191908081919, 0x082b191908082b08, + 0x082b191908190819, 0x082b191908191908, 0x082b1919082b0808, 0x082b191919080819, + 0x082b191919081908, 0x082b191919190808, 0x082b1919192b192b, 0x082b19192b080808, + 0x082b192b08080819, 0x082b192b08081908, 0x082b192b08190808, 0x082b192b19080808, + 0x082b192b19192b19, 0x082b2b0808080808, 0x082b2b0808081919, 0x082b2b0808190819, + 0x082b2b0808191908, 0x082b2b0819080819, 0x082b2b0819081908, 0x082b2b0819190808, + 0x082b2b082b082b2b, 0x082b2b082b2b2b2b, 0x082b2b1908080819, 0x082b2b1908081908, + 0x082b2b1908190808, 0x082b2b192b191919, 0x082b2b2b08082b2b, 0x082b2b2b082b082b, + 0x082b2b2b192b1908, 0x082b2b2b2b082b08, 0x082b2b2b2b082b2b, 0x1908080808080819, + 0x1908080808081908, 0x190808080808192b, 0x1908080808082b19, 0x1908080808190808, + 0x190808080819082b, 0x1908080808191919, 0x1908080808192b08, 0x1908080808192b2b, + 0x19080808082b0819, 0x19080808082b1908, 0x19080808082b192b, 0x1908080819080808, + 0x190808081908082b, 0x1908080819081919, 0x1908080819082b08, 0x1908080819082b2b, + 0x1908080819190819, 0x1908080819191908, 0x190808081919192b, 0x1908080819192b19, + 0x19080808192b0808, 0x19080808192b082b, 0x19080808192b1919, 0x190808082b080819, + 0x190808082b081908, 0x190808082b190808, 0x190808082b191919, 0x190808082b192b08, + 0x190808082b2b0819, 0x190808082b2b1908, 0x1908081908080808, 0x190808190808082b, + 0x1908081908081919, 0x1908081908082b08, 0x1908081908190819, 0x1908081908191908, + 0x190808190819192b, 0x1908081908192b19, 0x19080819082b0808, 0x19080819082b082b, + 0x19080819082b1919, 0x1908081919080819, 0x1908081919081908, 0x190808191908192b, + 0x1908081919082b19, 0x1908081919190808, 0x190808191919082b, 0x1908081919191919, + 0x1908081919192b08, 0x19080819192b0819, 0x19080819192b1908, 0x190808192b080808, + 0x190808192b08082b, 0x190808192b081919, 0x190808192b082b08, 0x190808192b190819, + 0x190808192b191908, 0x190808192b2b0808, 0x1908082b08080819, 0x1908082b08081908, + 0x1908082b08190808, 0x1908082b0819082b, 0x1908082b08191919, 0x1908082b08192b08, + 0x1908082b082b1908, 0x1908082b19080808, 0x1908082b19081919, 0x1908082b19082b08, + 0x1908082b19190819, 0x1908082b19191908, 0x1908082b192b0808, 0x1908082b2b080819, + 0x1908082b2b081908, 0x1908190808080808, 0x190819080808082b, 0x1908190808081919, + 0x1908190808082b08, 0x1908190808082b2b, 0x1908190808190819, 0x1908190808191908, + 0x190819080819192b, 0x1908190808192b19, 0x19081908082b0808, 0x19081908082b082b, + 0x19081908082b1919, 0x19081908082b2b08, 0x1908190819080819, 0x1908190819081908, + 0x190819081908192b, 0x1908190819082b19, 0x1908190819190808, 0x190819081919082b, + 0x1908190819191919, 0x1908190819192b08, 0x19081908192b0819, 0x19081908192b1908, + 0x190819082b080808, 0x190819082b08082b, 0x190819082b081919, 0x190819082b082b08, + 0x190819082b190819, 0x190819082b191908, 0x190819082b2b0808, 0x1908191908080819, + 0x1908191908081908, 0x190819190808192b, 0x1908191908082b19, 0x1908191908190808, + 0x190819190819082b, 0x1908191908191919, 0x1908191908192b08, 0x19081919082b0819, + 0x19081919082b1908, 0x1908191919080808, 0x190819191908082b, 0x1908191919081919, + 0x1908191919082b08, 0x1908191919190819, 0x1908191919191908, 0x19081919192b0808, + 0x19081919192b2b2b, 0x190819192b080819, 0x190819192b081908, 0x190819192b190808, + 0x1908192b08080808, 0x1908192b0808082b, 0x1908192b08081919, 0x1908192b08082b08, + 0x1908192b08190819, 0x1908192b08191908, 0x1908192b082b0808, 0x1908192b19080819, + 0x1908192b19081908, 0x1908192b19190808, 0x1908192b2b080808, 0x1908192b2b2b1919, + 0x19082b0808080819, 0x19082b0808081908, 0x19082b0808082b19, 0x19082b0808190808, + 0x19082b080819082b, 0x19082b0808191919, 0x19082b0808192b08, 0x19082b08082b0819, + 0x19082b08082b1908, 0x19082b0819080808, 0x19082b081908082b, 0x19082b0819081919, + 0x19082b0819082b08, 0x19082b0819190819, 0x19082b0819191908, 0x19082b08192b0808, + 0x19082b082b081908, 0x19082b082b190808, 0x19082b1908080808, 0x19082b190808082b, + 0x19082b1908081919, 0x19082b1908082b08, 0x19082b1908190819, 0x19082b1908191908, + 0x19082b19082b0808, 0x19082b1919080819, 0x19082b1919081908, 0x19082b1919190808, + 0x19082b192b080808, 0x19082b192b19192b, 0x19082b2b08080819, 0x19082b2b08081908, + 0x19082b2b08190808, 0x19082b2b19080808, 0x1919080808080808, 0x191908080808082b, + 0x1919080808081919, 0x1919080808082b08, 0x1919080808190819, 0x1919080808191908, + 0x191908080819192b, 0x1919080808192b19, 0x19190808082b0808, 0x19190808082b082b, + 0x19190808082b1919, 0x19190808082b2b08, 0x1919080819080819, 0x1919080819081908, + 0x191908081908192b, 0x1919080819082b19, 0x1919080819190808, 0x191908081919082b, + 0x1919080819191919, 0x1919080819192b08, 0x19190808192b0819, 0x19190808192b1908, + 0x191908082b080808, 0x191908082b08082b, 0x191908082b081919, 0x191908082b082b08, + 0x191908082b190819, 0x191908082b191908, 0x1919081908080819, 0x1919081908081908, + 0x191908190808192b, 0x1919081908082b19, 0x1919081908190808, 0x191908190819082b, + 0x1919081908191919, 0x1919081908192b08, 0x19190819082b0819, 0x19190819082b1908, + 0x1919081919080808, 0x191908191908082b, 0x1919081919081919, 0x1919081919082b08, + 0x1919081919190819, 0x1919081919191908, 0x19190819192b0808, 0x191908192b080819, + 0x191908192b081908, 0x191908192b190808, 0x1919082b08080808, 0x1919082b08081919, + 0x1919082b08082b08, 0x1919082b08190819, 0x1919082b08191908, 0x1919082b082b0808, + 0x1919082b19080819, 0x1919082b19081908, 0x1919082b19190808, 0x1919082b192b2b19, + 0x1919082b2b080808, 0x1919190808080819, 0x1919190808081908, 0x191919080808192b, + 0x1919190808082b19, 0x1919190808190808, 0x191919080819082b, 0x1919190808191919, + 0x1919190808192b08, 0x19191908082b0819, 0x19191908082b1908, 0x1919190819080808, + 0x191919081908082b, 0x1919190819081919, 0x1919190819082b08, 0x1919190819190819, + 0x1919190819191908, 0x19191908192b0808, 0x191919082b080819, 0x191919082b081908, + 0x191919082b190808, 0x1919191908080808, 0x191919190808082b, 0x1919191908081919, + 0x1919191908082b08, 0x1919191908190819, 0x1919191908191908, 0x19191919082b0808, + 0x1919191919080819, 0x1919191919081908, 0x1919191919190808, 0x191919192b080808, + 0x1919192b08080819, 0x1919192b08081908, 0x1919192b08190808, 0x1919192b082b192b, + 0x1919192b19080808, 0x19192b0808080808, 0x19192b080808082b, 0x19192b0808081919, + 0x19192b0808082b08, 0x19192b0808190819, 0x19192b0808191908, 0x19192b08082b0808, + 0x19192b0819080819, 0x19192b0819081908, 0x19192b0819190808, 0x19192b0819192b2b, + 0x19192b082b080808, 0x19192b1908080819, 0x19192b1908081908, 0x19192b1908190808, + 0x19192b1919080808, 0x19192b2b08080808, 0x19192b2b08192b19, 0x19192b2b2b081919, + 0x19192b2b2b2b2b08, 0x192b080808080819, 0x192b080808081908, 0x192b08080808192b, + 0x192b080808190808, 0x192b08080819082b, 0x192b080808191919, 0x192b080808192b08, + 0x192b0808082b0819, 0x192b0808082b1908, 0x192b080819080808, 0x192b080819081919, + 0x192b080819082b08, 0x192b080819190819, 0x192b080819191908, 0x192b0808192b0808, + 0x192b08082b081908, 0x192b08082b190808, 0x192b081908080808, 0x192b08190808082b, + 0x192b081908081919, 0x192b081908082b08, 0x192b081908190819, 0x192b081908191908, + 0x192b0819082b0808, 0x192b081919080819, 0x192b081919081908, 0x192b081919190808, + 0x192b08192b080808, 0x192b08192b192b19, 0x192b082b08081908, 0x192b082b08190808, + 0x192b082b19080808, 0x192b082b1919192b, 0x192b082b2b2b0819, 0x192b190808080808, + 0x192b190808081919, 0x192b190808082b08, 0x192b190808190819, 0x192b190808191908, + 0x192b1908082b0808, 0x192b190819080819, 0x192b190819081908, 0x192b190819190808, + 0x192b19082b080808, 0x192b191908080819, 0x192b191908081908, 0x192b191908190808, + 0x192b191919080808, 0x192b191919082b2b, 0x192b1919192b2b08, 0x192b19192b19082b, + 0x192b192b08080808, 0x192b192b2b191908, 0x192b2b0808080819, 0x192b2b0808081908, + 0x192b2b0808190808, 0x192b2b08192b1919, 0x192b2b082b192b08, 0x192b2b1908080808, + 0x192b2b19082b2b2b, 0x192b2b2b1908082b, 0x192b2b2b2b2b0819, 0x2b08080808080808, + 0x2b0808080808082b, 0x2b08080808081919, 0x2b08080808082b08, 0x2b08080808190819, + 0x2b08080808191908, 0x2b08080808192b19, 0x2b080808082b0808, 0x2b080808082b1919, + 0x2b08080819080819, 0x2b08080819081908, 0x2b08080819190808, 0x2b0808081919082b, + 0x2b08080819191919, 0x2b08080819192b08, 0x2b080808192b0819, 0x2b0808082b080808, + 0x2b0808082b081919, 0x2b0808082b190819, 0x2b0808082b191908, 0x2b08081908080819, + 0x2b08081908081908, 0x2b08081908082b19, 0x2b08081908190808, 0x2b0808190819082b, + 0x2b08081908191919, 0x2b08081908192b08, 0x2b080819082b0819, 0x2b080819082b1908, + 0x2b08081919080808, 0x2b0808191908082b, 0x2b08081919081919, 0x2b08081919082b08, + 0x2b08081919190819, 0x2b08081919191908, 0x2b0808192b080819, 0x2b0808192b081908, + 0x2b0808192b190808, 0x2b0808192b2b2b19, 0x2b08082b08080808, 0x2b08082b08081919, + 0x2b08082b08082b2b, 0x2b08082b08190819, 0x2b08082b08191908, 0x2b08082b19080819, + 0x2b08082b19081908, 0x2b08082b19190808, 0x2b08190808080819, 0x2b08190808081908, + 0x2b0819080808192b, 0x2b08190808082b19, 0x2b08190808190808, 0x2b0819080819082b, + 0x2b08190808191919, 0x2b08190808192b08, 0x2b081908082b0819, 0x2b08190819080808, + 0x2b0819081908082b, 0x2b08190819081919, 0x2b08190819082b08, 0x2b08190819190819, + 0x2b08190819191908, 0x2b081908192b0808, 0x2b0819082b080819, 0x2b0819082b081908, + 0x2b0819082b190808, 0x2b08191908080808, 0x2b0819190808082b, 0x2b08191908081919, + 0x2b08191908082b08, 0x2b08191908190819, 0x2b08191908191908, 0x2b081919082b0808, + 0x2b08191919080819, 0x2b08191919081908, 0x2b08191919190808, 0x2b0819192b080808, + 0x2b0819192b082b2b, 0x2b08192b08080819, 0x2b08192b08081908, 0x2b08192b08190808, + 0x2b08192b082b2b19, 0x2b08192b19080808, 0x2b082b0808080808, 0x2b082b0808081919, + 0x2b082b0808190819, 0x2b082b0808191908, 0x2b082b0819080819, 0x2b082b0819081908, + 0x2b082b0819190808, 0x2b082b082b2b082b, 0x2b082b1908080819, 0x2b082b1908081908, + 0x2b082b1919080808, 0x2b082b19192b1919, 0x2b082b2b082b082b, 0x2b082b2b19192b08, + 0x2b082b2b19192b2b, 0x2b082b2b2b08082b, 0x2b082b2b2b2b082b, 0x2b19080808080819, + 0x2b19080808081908, 0x2b19080808082b19, 0x2b19080808190808, 0x2b1908080819082b, + 0x2b19080808191919, 0x2b19080808192b08, 0x2b190808082b1908, 0x2b19080819080808, + 0x2b1908081908082b, 0x2b19080819081919, 0x2b19080819082b08, 0x2b19080819190819, + 0x2b19080819191908, 0x2b190808192b0808, 0x2b1908082b080819, 0x2b1908082b081908, + 0x2b1908082b190808, 0x2b19081908080808, 0x2b19081908081919, 0x2b19081908190819, + 0x2b19081908191908, 0x2b19081919080819, 0x2b19081919081908, 0x2b19081919190808, + 0x2b19081919192b2b, 0x2b19082b08080819, 0x2b19082b08081908, 0x2b19082b08190808, + 0x2b19082b19080808, 0x2b19082b2b2b192b, 0x2b19190808080808, 0x2b1919080808082b, + 0x2b19190808081919, 0x2b19190808082b08, 0x2b19190808190819, 0x2b19190808191908, + 0x2b191908082b0808, 0x2b19190819080819, 0x2b19190819081908, 0x2b19190819190808, + 0x2b1919082b080808, 0x2b1919082b19192b, 0x2b19191908080819, 0x2b19191908081908, + 0x2b19191908190808, 0x2b19191919080808, 0x2b1919192b192b08, 0x2b1919192b2b0819, + 0x2b19192b08080808, 0x2b19192b1908192b, 0x2b19192b192b1908, 0x2b192b0808080819, + 0x2b192b0808081908, 0x2b192b0808190808, 0x2b192b08082b192b, 0x2b192b0819080808, + 0x2b192b082b2b2b19, 0x2b192b1908080808, 0x2b192b1919082b19, 0x2b192b191919082b, + 0x2b192b2b2b190808, 0x2b2b080808080808, 0x2b2b080808081919, 0x2b2b080808082b2b, + 0x2b2b080808191908, 0x2b2b0808082b082b, 0x2b2b0808082b2b2b, 0x2b2b080819080819, + 0x2b2b080819081908, 0x2b2b080819190808, 0x2b2b08082b2b082b, 0x2b2b08082b2b2b2b, + 0x2b2b081919080808, 0x2b2b0819192b1919, 0x2b2b082b0808082b, 0x2b2b082b08082b2b, + 0x2b2b082b082b082b, 0x2b2b082b082b2b08, 0x2b2b082b082b2b2b, 0x2b2b082b2b08082b, + 0x2b2b082b2b082b08, 0x2b2b082b2b082b2b, 0x2b2b082b2b2b2b08, 0x2b2b190808080819, + 0x2b2b190808081908, 0x2b2b190808190808, 0x2b2b190819080808, 0x2b2b19082b082b19, + 0x2b2b19082b2b1908, 0x2b2b191908080808, 0x2b2b191908192b19, 0x2b2b192b19190819, + 0x2b2b2b0808082b2b, 0x2b2b2b08082b2b08, 0x2b2b2b082b2b082b, 0x2b2b2b1919191908, + 0x2b2b2b192b08192b, 0x2b2b2b2b08082b08, 0x2b2b2b2b08082b2b, 0x2b2b2b2b082b0808, + 0x2b2b2b2b082b082b, 0x2b2b2b2b082b2b08, 0x2b2b2b2b2b082b08, 0x2b2b2b2b2b2b2b2b, +}; + static const uint32_t iq3xxs_grid[256] = { 0x04040404, 0x04040414, 0x04040424, 0x04040c0c, 0x04040c1c, 0x04040c3e, 0x04041404, 0x04041414, 0x04041c0c, 0x04042414, 0x04043e1c, 0x04043e2c, 0x040c040c, 0x040c041c, 0x040c0c04, 0x040c0c14, @@ -3480,6 +3818,73 @@ static const uint32_t iq3xxs_grid[256] = { 0x3e1c1c1c, 0x3e1c3404, 0x3e24140c, 0x3e24240c, 0x3e2c0404, 0x3e2c0414, 0x3e2c1424, 0x3e341c04, }; +static const uint32_t iq3s_grid[512] = { + 0x01010101, 0x01010103, 0x01010105, 0x0101010b, 0x0101010f, 0x01010301, 0x01010303, 0x01010305, + 0x01010309, 0x0101030d, 0x01010501, 0x01010503, 0x0101050b, 0x01010707, 0x01010901, 0x01010905, + 0x0101090b, 0x0101090f, 0x01010b03, 0x01010b07, 0x01010d01, 0x01010d05, 0x01010f03, 0x01010f09, + 0x01010f0f, 0x01030101, 0x01030103, 0x01030105, 0x01030109, 0x01030301, 0x01030303, 0x0103030b, + 0x01030501, 0x01030507, 0x0103050f, 0x01030703, 0x0103070b, 0x01030909, 0x01030d03, 0x01030d0b, + 0x01030f05, 0x01050101, 0x01050103, 0x0105010b, 0x0105010f, 0x01050301, 0x01050307, 0x0105030d, + 0x01050503, 0x0105050b, 0x01050701, 0x01050709, 0x01050905, 0x0105090b, 0x0105090f, 0x01050b03, + 0x01050b07, 0x01050f01, 0x01050f07, 0x01070107, 0x01070303, 0x0107030b, 0x01070501, 0x01070505, + 0x01070703, 0x01070707, 0x0107070d, 0x01070909, 0x01070b01, 0x01070b05, 0x01070d0f, 0x01070f03, + 0x01070f0b, 0x01090101, 0x01090307, 0x0109030f, 0x01090503, 0x01090509, 0x01090705, 0x01090901, + 0x01090907, 0x01090b03, 0x01090f01, 0x010b0105, 0x010b0109, 0x010b0501, 0x010b0505, 0x010b050d, + 0x010b0707, 0x010b0903, 0x010b090b, 0x010b090f, 0x010b0d0d, 0x010b0f07, 0x010d010d, 0x010d0303, + 0x010d0307, 0x010d0703, 0x010d0b05, 0x010d0f03, 0x010f0101, 0x010f0105, 0x010f0109, 0x010f0501, + 0x010f0505, 0x010f050d, 0x010f0707, 0x010f0b01, 0x010f0b09, 0x03010101, 0x03010103, 0x03010105, + 0x03010109, 0x03010301, 0x03010303, 0x03010307, 0x0301030b, 0x0301030f, 0x03010501, 0x03010505, + 0x03010703, 0x03010709, 0x0301070d, 0x03010b09, 0x03010b0d, 0x03010d03, 0x03010f05, 0x03030101, + 0x03030103, 0x03030107, 0x0303010d, 0x03030301, 0x03030309, 0x03030503, 0x03030701, 0x03030707, + 0x03030903, 0x03030b01, 0x03030b05, 0x03030f01, 0x03030f0d, 0x03050101, 0x03050305, 0x0305030b, + 0x0305030f, 0x03050501, 0x03050509, 0x03050705, 0x03050901, 0x03050907, 0x03050b0b, 0x03050d01, + 0x03050f05, 0x03070103, 0x03070109, 0x0307010f, 0x03070301, 0x03070307, 0x03070503, 0x0307050f, + 0x03070701, 0x03070709, 0x03070903, 0x03070d05, 0x03070f01, 0x03090107, 0x0309010b, 0x03090305, + 0x03090309, 0x03090703, 0x03090707, 0x03090905, 0x0309090d, 0x03090b01, 0x03090b09, 0x030b0103, + 0x030b0301, 0x030b0307, 0x030b0503, 0x030b0701, 0x030b0705, 0x030b0b03, 0x030d0501, 0x030d0509, + 0x030d050f, 0x030d0909, 0x030d090d, 0x030f0103, 0x030f0107, 0x030f0301, 0x030f0305, 0x030f0503, + 0x030f070b, 0x030f0903, 0x030f0d05, 0x030f0f01, 0x05010101, 0x05010103, 0x05010107, 0x0501010b, + 0x0501010f, 0x05010301, 0x05010305, 0x05010309, 0x0501030d, 0x05010503, 0x05010507, 0x0501050f, + 0x05010701, 0x05010705, 0x05010903, 0x05010907, 0x0501090b, 0x05010b01, 0x05010b05, 0x05010d0f, + 0x05010f01, 0x05010f07, 0x05010f0b, 0x05030101, 0x05030105, 0x05030301, 0x05030307, 0x0503030f, + 0x05030505, 0x0503050b, 0x05030703, 0x05030709, 0x05030905, 0x05030b03, 0x05050103, 0x05050109, + 0x0505010f, 0x05050503, 0x05050507, 0x05050701, 0x0505070f, 0x05050903, 0x05050b07, 0x05050b0f, + 0x05050f03, 0x05050f09, 0x05070101, 0x05070105, 0x0507010b, 0x05070303, 0x05070505, 0x05070509, + 0x05070703, 0x05070707, 0x05070905, 0x05070b01, 0x05070d0d, 0x05090103, 0x0509010f, 0x05090501, + 0x05090507, 0x05090705, 0x0509070b, 0x05090903, 0x05090f05, 0x05090f0b, 0x050b0109, 0x050b0303, + 0x050b0505, 0x050b070f, 0x050b0901, 0x050b0b07, 0x050b0f01, 0x050d0101, 0x050d0105, 0x050d010f, + 0x050d0503, 0x050d0b0b, 0x050d0d03, 0x050f010b, 0x050f0303, 0x050f050d, 0x050f0701, 0x050f0907, + 0x050f0b01, 0x07010105, 0x07010303, 0x07010307, 0x0701030b, 0x0701030f, 0x07010505, 0x07010703, + 0x07010707, 0x0701070b, 0x07010905, 0x07010909, 0x0701090f, 0x07010b03, 0x07010d07, 0x07010f03, + 0x07030103, 0x07030107, 0x0703010b, 0x07030309, 0x07030503, 0x07030507, 0x07030901, 0x07030d01, + 0x07030f05, 0x07030f0d, 0x07050101, 0x07050305, 0x07050501, 0x07050705, 0x07050709, 0x07050b01, + 0x07070103, 0x07070301, 0x07070309, 0x07070503, 0x07070507, 0x0707050f, 0x07070701, 0x07070903, + 0x07070907, 0x0707090f, 0x07070b0b, 0x07070f07, 0x07090107, 0x07090303, 0x0709030d, 0x07090505, + 0x07090703, 0x07090b05, 0x07090d01, 0x07090d09, 0x070b0103, 0x070b0301, 0x070b0305, 0x070b050b, + 0x070b0705, 0x070b0909, 0x070b0b0d, 0x070b0f07, 0x070d030d, 0x070d0903, 0x070f0103, 0x070f0107, + 0x070f0501, 0x070f0505, 0x070f070b, 0x09010101, 0x09010109, 0x09010305, 0x09010501, 0x09010509, + 0x0901050f, 0x09010705, 0x09010903, 0x09010b01, 0x09010f01, 0x09030105, 0x0903010f, 0x09030303, + 0x09030307, 0x09030505, 0x09030701, 0x0903070b, 0x09030907, 0x09030b03, 0x09030b0b, 0x09050103, + 0x09050107, 0x09050301, 0x0905030b, 0x09050503, 0x09050707, 0x09050901, 0x09050b0f, 0x09050d05, + 0x09050f01, 0x09070109, 0x09070303, 0x09070307, 0x09070501, 0x09070505, 0x09070703, 0x0907070b, + 0x09090101, 0x09090105, 0x09090509, 0x0909070f, 0x09090901, 0x09090f03, 0x090b010b, 0x090b010f, + 0x090b0503, 0x090b0d05, 0x090d0307, 0x090d0709, 0x090d0d01, 0x090f0301, 0x090f030b, 0x090f0701, + 0x090f0907, 0x090f0b03, 0x0b010105, 0x0b010301, 0x0b010309, 0x0b010505, 0x0b010901, 0x0b010909, + 0x0b01090f, 0x0b010b05, 0x0b010d0d, 0x0b010f09, 0x0b030103, 0x0b030107, 0x0b03010b, 0x0b030305, + 0x0b030503, 0x0b030705, 0x0b030f05, 0x0b050101, 0x0b050303, 0x0b050507, 0x0b050701, 0x0b05070d, + 0x0b050b07, 0x0b070105, 0x0b07010f, 0x0b070301, 0x0b07050f, 0x0b070909, 0x0b070b03, 0x0b070d0b, + 0x0b070f07, 0x0b090103, 0x0b090109, 0x0b090501, 0x0b090705, 0x0b09090d, 0x0b0b0305, 0x0b0b050d, + 0x0b0b0b03, 0x0b0b0b07, 0x0b0d0905, 0x0b0f0105, 0x0b0f0109, 0x0b0f0505, 0x0d010303, 0x0d010307, + 0x0d01030b, 0x0d010703, 0x0d010707, 0x0d010d01, 0x0d030101, 0x0d030501, 0x0d03050f, 0x0d030d09, + 0x0d050305, 0x0d050709, 0x0d050905, 0x0d050b0b, 0x0d050d05, 0x0d050f01, 0x0d070101, 0x0d070309, + 0x0d070503, 0x0d070901, 0x0d09050b, 0x0d090907, 0x0d090d05, 0x0d0b0101, 0x0d0b0107, 0x0d0b0709, + 0x0d0b0d01, 0x0d0d010b, 0x0d0d0901, 0x0d0f0303, 0x0d0f0307, 0x0f010101, 0x0f010109, 0x0f01010f, + 0x0f010501, 0x0f010505, 0x0f01070d, 0x0f010901, 0x0f010b09, 0x0f010d05, 0x0f030105, 0x0f030303, + 0x0f030509, 0x0f030907, 0x0f03090b, 0x0f050103, 0x0f050109, 0x0f050301, 0x0f05030d, 0x0f050503, + 0x0f050701, 0x0f050b03, 0x0f070105, 0x0f070705, 0x0f07070b, 0x0f070b07, 0x0f090103, 0x0f09010b, + 0x0f090307, 0x0f090501, 0x0f090b01, 0x0f0b0505, 0x0f0b0905, 0x0f0d0105, 0x0f0d0703, 0x0f0f0101, +}; + #define NGRID_IQ2XXS 512 static const uint64_t iq1s_grid[NGRID_IQ2XXS] = { 0xffffffffffff0101, 0xffffffffff01ff00, 0xffffffffff010100, 0xffffffff00000000, @@ -3679,6 +4084,38 @@ void dequantize_row_iq2_xs(const block_iq2_xs * restrict x, float * restrict y, } } +// ====================== 2.5625 bpw (de)-quantization + +void dequantize_row_iq2_s(const block_iq2_s * restrict x, float * restrict y, int k) { + assert(k % QK_K == 0); + const int nb = k / QK_K; + + float db[2]; + + for (int i = 0; i < nb; i++) { + + const float d = GGML_FP16_TO_FP32(x[i].d); + const uint8_t * qs = x[i].qs; + const uint8_t * qh = x[i].qh; + const uint8_t * signs = qs + QK_K/8; + + for (int ib32 = 0; ib32 < QK_K/32; ++ib32) { + db[0] = d * (0.5f + (x[i].scales[ib32] & 0xf)) * 0.25f; + db[1] = d * (0.5f + (x[i].scales[ib32] >> 4)) * 0.25f; + for (int l = 0; l < 4; ++l) { + const float dl = db[l/2]; + const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300))); + for (int j = 0; j < 8; ++j) { + y[j] = dl * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1.f : 1.f); + } + y += 8; + } + qs += 4; + signs += 4; + } + } +} + // ====================== 3.0625 bpw (de)-quantization void dequantize_row_iq3_xxs(const block_iq3_xxs * restrict x, float * restrict y, int k) { @@ -3711,6 +4148,49 @@ void dequantize_row_iq3_xxs(const block_iq3_xxs * restrict x, float * restrict y } } +// ====================== 3.3125 bpw (de)-quantization + +void dequantize_row_iq3_s(const block_iq3_s * restrict x, float * restrict y, int k) { + assert(k % QK_K == 0); + const int nb = k / QK_K; + + for (int i = 0; i < nb; i++) { + + const float d = GGML_FP16_TO_FP32(x[i].d); + const uint8_t * qs = x[i].qs; + const uint8_t * qh = x[i].qh; + const uint8_t * signs = x[i].signs; + + for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) { + const float db1 = d * (1 + 2*(x[i].scales[ib32/2] & 0xf)); + const float db2 = d * (1 + 2*(x[i].scales[ib32/2] >> 4)); + for (int l = 0; l < 4; ++l) { + const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[0] << (8-2*l)) & 256))); + const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[0] << (7-2*l)) & 256))); + for (int j = 0; j < 4; ++j) { + y[j+0] = db1 * grid1[j] * (signs[l] & kmask_iq2xs[j+0] ? -1.f : 1.f); + y[j+4] = db1 * grid2[j] * (signs[l] & kmask_iq2xs[j+4] ? -1.f : 1.f); + } + y += 8; + } + qs += 8; + signs += 4; + for (int l = 0; l < 4; ++l) { + const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[1] << (8-2*l)) & 256))); + const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[1] << (7-2*l)) & 256))); + for (int j = 0; j < 4; ++j) { + y[j+0] = db2 * grid1[j] * (signs[l] & kmask_iq2xs[j+0] ? -1.f : 1.f); + y[j+4] = db2 * grid2[j] * (signs[l] & kmask_iq2xs[j+4] ? -1.f : 1.f); + } + y += 8; + } + qh += 2; + qs += 8; + signs += 4; + } + } +} + // ====================== 1.5625 bpw (de)-quantization void dequantize_row_iq1_s(const block_iq1_s * restrict x, float * restrict y, int k) { @@ -3754,6 +4234,53 @@ void dequantize_row_iq1_s(const block_iq1_s * restrict x, float * restrict y, in } } +static const int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113}; + +void dequantize_row_iq4_nl(const block_iq4_nl * restrict x, float * restrict y, int k) { + assert(k % QK4_NL == 0); + const int nb = k / QK4_NL; + + for (int i = 0; i < nb; i++) { + + const uint8_t * qs = x[i].qs; + + const float d = GGML_FP16_TO_FP32(x[i].d); + for (int j = 0; j < QK4_NL/2; ++j) { + y[j+ 0] = d * kvalues_iq4nl[qs[j] & 0xf]; + y[j+QK4_NL/2] = d * kvalues_iq4nl[qs[j] >> 4]; + } + y += QK4_NL; + qs += QK4_NL/2; + } +} + +void dequantize_row_iq4_xs(const block_iq4_xs * restrict x, float * restrict y, int k) { + assert(k % QK_K == 0); +#if QK_K == 64 + dequantize_row_iq4_nl((const block_iq4_nl *)x, y, k); +#else + const int nb = k / QK_K; + + for (int i = 0; i < nb; i++) { + + const uint8_t * qs = x[i].qs; + + const float d = GGML_FP16_TO_FP32(x[i].d); + + for (int ib = 0; ib < QK_K/32; ++ib) { + const int ls = ((x[i].scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((x[i].scales_h >> 2*ib) & 3) << 4); + const float dl = d * (ls - 32); + for (int j = 0; j < 16; ++j) { + y[j+ 0] = dl * kvalues_iq4nl[qs[j] & 0xf]; + y[j+16] = dl * kvalues_iq4nl[qs[j] >> 4]; + } + y += 32; + qs += 16; + } + } +#endif +} + //===================================== Q8_K ============================================== void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k) { @@ -5609,8 +6136,8 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * r for (int i = 0; i < nb; ++i) { - const float d = y[i].d * (float)x[i].d; - const float dmin = -y[i].d * (float)x[i].dmin; + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); const uint8_t * restrict q2 = x[i].qs; const int8_t * restrict q8 = y[i].qs; @@ -5759,8 +6286,8 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * r for (int i = 0; i < nb; ++i) { - const float d = y[i].d * (float)x[i].d; - const float dmin = -y[i].d * (float)x[i].dmin; + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); const uint8_t * restrict q2 = x[i].qs; const int8_t * restrict q8 = y[i].qs; @@ -5812,7 +6339,7 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * r float sumf = 0; - int isum[4]; + int isum[QK_K/16]; for (int i = 0; i < nb; ++i) { @@ -5828,14 +6355,14 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * r const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d); const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin); - isum[0] = isum[1] = isum[2] = isum[3] = 0; + memset(isum, 0, (QK_K/16)*sizeof(int)); for (int l = 0; l < 16; ++l) { isum[0] += q8[l+ 0] * ((q2[l] >> 0) & 3); isum[1] += q8[l+16] * ((q2[l] >> 2) & 3); isum[2] += q8[l+32] * ((q2[l] >> 4) & 3); isum[3] += q8[l+48] * ((q2[l] >> 6) & 3); } - for (int l = 0; l < 4; ++l) { + for (int l = 0; l < QK_K/16; ++l) { isum[l] *= (sc[l] & 0xF); } sumf += dall * (isum[0] + isum[1] + isum[2] + isum[3]) - dmin * summs; @@ -6413,7 +6940,7 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * r int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]); - const float d = y[i].d * (float)x[i].d; + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); const uint8x16_t htmp = vcombine_u8(hbits, vshr_n_u8(hbits, 1)); q3h.val[0] = vandq_u8(mh, vshlq_n_u8(htmp, 2)); @@ -6615,7 +7142,7 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * r int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]); - const float d = y[i].d * (float)x[i].d; + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1); @@ -7118,9 +7645,9 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * r aux16[1] = (a[0] >> 4) & 0x0f0f; const int32_t summi = scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]); - sum_mins += y[i].d * (float)x[i].d[1] * summi; + sum_mins += y[i].d * GGML_FP16_TO_FP32(x[i].d[1]) * summi; - const float d = y[i].d * (float)x[i].d[0]; + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d[0]); const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4); @@ -7778,7 +8305,7 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * r for (int i = 0; i < nb; ++i) { - const float d = y[i].d * (float)x[i].d; + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); const int8_t * sc = x[i].scales; const uint8_t * restrict q5 = x[i].qs; @@ -7920,7 +8447,7 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * r for (int i = 0; i < nb; ++i) { - const float d = y[i].d * (float)x[i].d; + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); const int8_t * sc = x[i].scales; const uint8_t * restrict q5 = x[i].qs; @@ -8488,7 +9015,7 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * r for (int i = 0; i < nb; ++i) { - const float d_all = (float)x[i].d; + const float d_all = GGML_FP16_TO_FP32(x[i].d); const uint8_t * restrict q6 = x[i].ql; const uint8_t * restrict qh = x[i].qh; @@ -8659,7 +9186,7 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * r for (int i = 0; i < nb; ++i) { - const float d_all = (float)x[i].d; + const float d_all = GGML_FP16_TO_FP32(x[i].d); const uint8_t * restrict q6 = x[i].ql; const uint8_t * restrict qh = x[i].qh; @@ -8761,6 +9288,7 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * r #endif +#if defined (__AVX2__) || defined (__ARM_NEON) static const int8_t keven_signs_q2xs[1024] = { 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, @@ -8795,6 +9323,7 @@ static const int8_t keven_signs_q2xs[1024] = { 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, }; +#endif void ggml_vec_dot_iq2_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { assert(n % QK_K == 0); @@ -8992,15 +9521,7 @@ void ggml_vec_dot_iq2_xs_q8_K(int n, float * restrict s, size_t bs, const void * #elif defined(__AVX2__) - const __m128i m4 = _mm_set1_epi8(0xf); - const __m128i m1 = _mm_set1_epi8(1); - const __m256i m511 = _mm256_set1_epi16(511); const __m256i mone = _mm256_set1_epi8(1); - - static const uint8_t k_bit_helper[32] = { - 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00, - 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00, - }; static const char block_sign_shuffle_mask_1[32] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, @@ -9014,11 +9535,77 @@ void ggml_vec_dot_iq2_xs_q8_K(int n, float * restrict s, size_t bs, const void * 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, }; - const __m256i bit_helper = _mm256_loadu_si256((const __m256i*)k_bit_helper); const __m256i bit_selector_mask = _mm256_loadu_si256((const __m256i*)bit_selector_mask_bytes); const __m256i block_sign_shuffle_1 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_1); const __m256i block_sign_shuffle_2 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_2); +#if QK_K == 64 + static const uint8_t k_bit_helper[16] = { + 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00, + }; + const __m128i bit_helper = _mm_loadu_si128((const __m128i*)k_bit_helper); + const __m128i m511 = _mm_set1_epi16(511); + typedef union { + __m128i vec_index; + uint16_t index[8]; + } index_t; + + index_t idx; + __m256 accumf = _mm256_setzero_ps(); + for (int i = 0; i < nb; ++i) { + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + const __m128i q2_data = _mm_loadu_si128((const __m128i*)x[i].qs); + idx.vec_index = _mm_and_si128(q2_data, m511); + + const __m128i partial_sign_bits = _mm_srli_epi16(q2_data, 9); + const __m128i partial_sign_bits_upper = _mm_srli_epi16(q2_data, 13); + const __m128i partial_sign_bits_for_counting = _mm_xor_si128(partial_sign_bits, partial_sign_bits_upper); + + const __m128i odd_bits = _mm_shuffle_epi8(bit_helper, partial_sign_bits_for_counting); + const __m128i full_sign_bits = _mm_or_si128(partial_sign_bits, odd_bits); + const __m256i full_signs = _mm256_set_m128i(full_sign_bits, full_sign_bits); + + const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)y[i].qs); + const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)(y[i].qs+32)); + + const __m256i q2_1 = _mm256_set_epi64x(iq2xs_grid[idx.index[3]], iq2xs_grid[idx.index[2]], + iq2xs_grid[idx.index[1]], iq2xs_grid[idx.index[0]]); + const __m256i q2_2 = _mm256_set_epi64x(iq2xs_grid[idx.index[7]], iq2xs_grid[idx.index[6]], + iq2xs_grid[idx.index[5]], iq2xs_grid[idx.index[4]]); + + __m256i signs; + signs = _mm256_shuffle_epi8(full_signs, block_sign_shuffle_1); + signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask); + const __m256i q8s_1 = _mm256_sign_epi8(q8_1, _mm256_or_si256(signs, mone)); + + signs = _mm256_shuffle_epi8(full_signs, block_sign_shuffle_2); + signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask); + const __m256i q8s_2 = _mm256_sign_epi8(q8_2, _mm256_or_si256(signs, mone)); + + const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1); + const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2); + + const __m256i sc1 = _mm256_set_m128i(_mm_set1_epi16(2*(x[i].scales[0] >> 4)+1), _mm_set1_epi16(2*(x[i].scales[0] & 0xf)+1)); + const __m256i sc2 = _mm256_set_m128i(_mm_set1_epi16(2*(x[i].scales[1] >> 4)+1), _mm_set1_epi16(2*(x[i].scales[1] & 0xf)+1)); + + const __m256i sum = _mm256_add_epi32(_mm256_madd_epi16(sc1, dot1), _mm256_madd_epi16(sc2, dot2)); + + accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(sum), accumf); + + } + + *s = 0.125f * hsum_float_8(accumf); +#else + + static const uint8_t k_bit_helper[32] = { + 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00, + 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00, + }; + const __m256i bit_helper = _mm256_loadu_si256((const __m256i*)k_bit_helper); + const __m256i m511 = _mm256_set1_epi16(511); + const __m128i m4 = _mm_set1_epi8(0xf); + const __m128i m1 = _mm_set1_epi8(1); + uint64_t aux64; // somewhat hacky, but gives a significant boost in performance @@ -9107,6 +9694,7 @@ void ggml_vec_dot_iq2_xs_q8_K(int n, float * restrict s, size_t bs, const void * } *s = 0.125f * hsum_float_8(accumf); +#endif #else @@ -9148,7 +9736,210 @@ void ggml_vec_dot_iq2_xs_q8_K(int n, float * restrict s, size_t bs, const void * #endif } -// TODO +void ggml_vec_dot_iq2_s_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { + assert(n % QK_K == 0); + assert(nrc == 1); + UNUSED(nrc); + UNUSED(bx); + UNUSED(by); + UNUSED(bs); + + const block_iq2_s * restrict x = vx; + const block_q8_K * restrict y = vy; + + const int nb = n / QK_K; + +#if defined(__ARM_NEON) + + static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, + 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03 + }; + + static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,}; + + const uint8x16x2_t mask1 = vld1q_u8_x2(k_mask1); + const uint8x16_t mask2 = vld1q_u8(k_mask2); + const uint8x16_t m1 = vdupq_n_u8(1); + const int32x4_t vzero = vdupq_n_s32(0); + + uint8x16x2_t vs; + ggml_int8x16x4_t q2s; + ggml_int8x16x4_t q8b; + + float sumf = 0; + for (int i = 0; i < nb; ++i) { + + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + + const uint8_t * restrict qs = x[i].qs; + const uint8_t * restrict qh = x[i].qh; + const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8); + const int8_t * restrict q8 = y[i].qs; + + int sumi1 = 0, sumi2 = 0; + for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) { + q8b = ggml_vld1q_s8_x4(q8); q8 += 64; + q2s.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[0] | ((qh[ib32+0] << 8) & 0x300)))), + vld1_s8((const int8_t *)(iq2s_grid + (qs[1] | ((qh[ib32+0] << 6) & 0x300))))); + q2s.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[2] | ((qh[ib32+0] << 4) & 0x300)))), + vld1_s8((const int8_t *)(iq2s_grid + (qs[3] | ((qh[ib32+0] << 2) & 0x300))))); + q2s.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[4] | ((qh[ib32+1] << 8) & 0x300)))), + vld1_s8((const int8_t *)(iq2s_grid + (qs[5] | ((qh[ib32+1] << 6) & 0x300))))); + q2s.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[6] | ((qh[ib32+1] << 4) & 0x300)))), + vld1_s8((const int8_t *)(iq2s_grid + (qs[7] | ((qh[ib32+1] << 2) & 0x300))))); + qs += 8; + + vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[0] | (signs[1] << 16))); + vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2); + vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2); + vs.val[0] = vceqq_u8(vs.val[0], mask2); + vs.val[1] = vceqq_u8(vs.val[1], mask2); + + q2s.val[0] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[0], m1)), q2s.val[0]); + q2s.val[1] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[1], m1)), q2s.val[1]); + + vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[2] | (signs[3] << 16))); + vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2); + vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2); + vs.val[0] = vceqq_u8(vs.val[0], mask2); + vs.val[1] = vceqq_u8(vs.val[1], mask2); + + signs += 4; + + q2s.val[2] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[0], m1)), q2s.val[2]); + q2s.val[3] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[1], m1)), q2s.val[3]); + + const int32x4_t p1 = ggml_vdotq_s32(vzero, q2s.val[0], q8b.val[0]); + const int32x4_t p2 = ggml_vdotq_s32(vzero, q2s.val[1], q8b.val[1]); + const int32x4_t p3 = ggml_vdotq_s32(vzero, q2s.val[2], q8b.val[2]); + const int32x4_t p4 = ggml_vdotq_s32(vzero, q2s.val[3], q8b.val[3]); + + sumi1 += vaddvq_s32(p1) * (1 + 2*(x[i].scales[ib32+0] & 0xf)); + sumi2 += vaddvq_s32(p2) * (1 + 2*(x[i].scales[ib32+0] >> 4)); + sumi1 += vaddvq_s32(p3) * (1 + 2*(x[i].scales[ib32+1] & 0xf)); + sumi2 += vaddvq_s32(p4) * (1 + 2*(x[i].scales[ib32+1] >> 4)); + } + sumf += d*(sumi1 + sumi2); + } + + *s = 0.125f * sumf; + +#elif defined(__AVX2__) + + static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, + 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03 + }; + + static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, + 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, + }; + + const __m128i m4 = _mm_set1_epi8(0xf); + const __m128i m1 = _mm_set1_epi8(1); + + const __m256i mask1 = _mm256_loadu_si256((const __m256i*)k_mask1); + const __m256i mask2 = _mm256_loadu_si256((const __m256i*)k_mask2); + + uint64_t aux64; + + __m256 accumf = _mm256_setzero_ps(); + for (int i = 0; i < nb; ++i) { + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + const uint8_t * restrict qs = x[i].qs; + const uint8_t * restrict qh = x[i].qh; + const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8); + const int8_t * restrict q8 = y[i].qs; + + memcpy(&aux64, x[i].scales, 8); + const __m128i scales8 = _mm_add_epi8(_mm_slli_epi16(_mm_and_si128(_mm_set_epi64x(aux64 >> 4, aux64), m4), 1), m1); + const __m256i scales16 = _mm256_cvtepi8_epi16(scales8); // 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15 + + __m256i sumi1 = _mm256_setzero_si256(); + __m256i sumi2 = _mm256_setzero_si256(); + for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) { + const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32; + const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32; + const __m256i q2_1 = _mm256_set_epi64x(iq2s_grid[qs[3] | ((qh[ib32+0] << 2) & 0x300)], + iq2s_grid[qs[2] | ((qh[ib32+0] << 4) & 0x300)], + iq2s_grid[qs[1] | ((qh[ib32+0] << 6) & 0x300)], + iq2s_grid[qs[0] | ((qh[ib32+0] << 8) & 0x300)]); + const __m256i q2_2 = _mm256_set_epi64x(iq2s_grid[qs[7] | ((qh[ib32+1] << 2) & 0x300)], + iq2s_grid[qs[6] | ((qh[ib32+1] << 4) & 0x300)], + iq2s_grid[qs[5] | ((qh[ib32+1] << 6) & 0x300)], + iq2s_grid[qs[4] | ((qh[ib32+1] << 8) & 0x300)]); + qs += 8; + + __m256i aux256 = _mm256_set1_epi32(signs[0] | (signs[1] << 16)); + aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2); + const __m256i s2_1 = _mm256_cmpeq_epi8(aux256, mask2); + const __m256i q8s_1 = _mm256_sub_epi8(_mm256_xor_si256(s2_1, q8_1), s2_1); + + aux256 = _mm256_set1_epi32(signs[2] | (signs[3] << 16)); + aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2); + const __m256i s2_2 = _mm256_cmpeq_epi8(aux256, mask2); + const __m256i q8s_2 = _mm256_sub_epi8(_mm256_xor_si256(s2_2, q8_2), s2_2); + + signs += 4; + + const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1); // blocks 2*ib32+0, 2*ib32+1 + const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2); // blocks 2*ib32+2, 2*ib32+3 + + const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_shuffle_epi8(scales16, get_scale_shuffle_k4(ib32+0))); + const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_shuffle_epi8(scales16, get_scale_shuffle_k4(ib32+1))); + sumi1 = _mm256_add_epi32(sumi1, p1); + sumi2 = _mm256_add_epi32(sumi2, p2); + } + + accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf); + + } + + *s = 0.125f * hsum_float_8(accumf); + +#else + + float sumf = 0; + for (int i = 0; i < nb; i++) { + + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + const int8_t * q8 = y[i].qs; + const uint8_t * qs = x[i].qs; + const uint8_t * qh = x[i].qh; + const uint8_t * signs = qs + QK_K/8; + + int bsum = 0; + for (int ib32 = 0; ib32 < QK_K/32; ++ib32) { + int ls1 = 1 + 2*(x[i].scales[ib32] & 0xf); + int ls2 = 1 + 2*(x[i].scales[ib32] >> 4); + int sumi1 = 0, sumi2 = 0; + for (int l = 0; l < 2; ++l) { + const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300))); + for (int j = 0; j < 8; ++j) { + sumi1 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1); + } + q8 += 8; + } + for (int l = 2; l < 4; ++l) { + const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300))); + for (int j = 0; j < 8; ++j) { + sumi2 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1); + } + q8 += 8; + } + bsum += ls1 * sumi1 + ls2 * sumi2; + qs += 4; + signs += 4; + } + + sumf += d * bsum; + } + + *s = 0.125f * sumf; + +#endif + +} + void ggml_vec_dot_iq3_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { assert(n % QK_K == 0); assert(nrc == 1); @@ -9283,6 +10074,245 @@ void ggml_vec_dot_iq3_xxs_q8_K(int n, float * restrict s, size_t bs, const void #endif } +void ggml_vec_dot_iq3_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) { + assert(n % QK_K == 0); + assert(nrc == 1); + UNUSED(nrc); + UNUSED(bx); + UNUSED(by); + UNUSED(bs); + + const block_iq3_s * restrict x = vx; + const block_q8_K * restrict y = vy; + + const int nb = n / QK_K; + +#if defined(__ARM_NEON) + + typedef union { + uint16x8_t vec_index; + uint16_t index[8]; + } vec_index_t; + + static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, + 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03 + }; + + static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,}; + + static const int16_t k_shift[8] = {8, 7, 6, 5, 4, 3, 2, 1}; + + const uint8x16x2_t mask1 = vld1q_u8_x2(k_mask1); + const uint8x16_t mask2 = vld1q_u8(k_mask2); + const int16x8_t hshift = vld1q_s16(k_shift); + const uint16x8_t m256 = vdupq_n_u16(256); + const uint8x16_t m1 = vdupq_n_u8(1); + + uint8x16x2_t vs; + ggml_int8x16x4_t q3s; + ggml_int8x16x4_t q8b; + vec_index_t idx; + +#if QK_K == 256 + uint32_t scales32[2]; + const uint8_t * scales8 = (const uint8_t *)scales32; +#endif + + float sumf = 0; + for (int i = 0; i < nb; ++i) { + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + const uint8_t * restrict qs = x[i].qs; + const uint8_t * restrict qh = x[i].qh; + const uint16_t * restrict signs = (const uint16_t *)x[i].signs; + const int8_t * restrict q8 = y[i].qs; + +#if QK_K == 256 + memcpy(scales32, x[i].scales, 4); + scales32[1] = (((scales32[0] >> 4) & 0x0f0f0f0f) << 1) | 0x01010101; + scales32[0] = ((scales32[0] & 0x0f0f0f0f) << 1) | 0x01010101; +#endif + + int sumi1 = 0, sumi2 = 0; + for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) { + q8b = ggml_vld1q_s8_x4(q8); q8 += 64; + + const uint8x16_t idx_l = vld1q_u8(qs); qs += 16; + idx.vec_index = vorrq_u16(vmovl_u8(vget_low_u8 (idx_l)), vandq_u16(vshlq_u16(vdupq_n_u16(qh[ib32+0]), hshift), m256)); + const uint32x4_t aux32x4_0 = {iq3s_grid[idx.index[0]], iq3s_grid[idx.index[1]], + iq3s_grid[idx.index[2]], iq3s_grid[idx.index[3]]}; + const uint32x4_t aux32x4_1 = {iq3s_grid[idx.index[4]], iq3s_grid[idx.index[5]], + iq3s_grid[idx.index[6]], iq3s_grid[idx.index[7]]}; + idx.vec_index = vorrq_u16(vmovl_u8(vget_high_u8(idx_l)), vandq_u16(vshlq_u16(vdupq_n_u16(qh[ib32+1]), hshift), m256)); + const uint32x4_t aux32x4_2 = {iq3s_grid[idx.index[0]], iq3s_grid[idx.index[1]], + iq3s_grid[idx.index[2]], iq3s_grid[idx.index[3]]}; + const uint32x4_t aux32x4_3 = {iq3s_grid[idx.index[4]], iq3s_grid[idx.index[5]], + iq3s_grid[idx.index[6]], iq3s_grid[idx.index[7]]}; + + + vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[0] | (signs[1] << 16))); + vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2); + vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2); + vs.val[0] = vorrq_u8(vceqq_u8(vs.val[0], mask2), m1); + vs.val[1] = vorrq_u8(vceqq_u8(vs.val[1], mask2), m1); + + q3s.val[0] = vmulq_s8(vreinterpretq_s8_u8(vs.val[0]), vreinterpretq_s8_u32(aux32x4_0)); + q3s.val[1] = vmulq_s8(vreinterpretq_s8_u8(vs.val[1]), vreinterpretq_s8_u32(aux32x4_1)); + + vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[2] | (signs[3] << 16))); + vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2); + vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2); + vs.val[0] = vorrq_u8(vceqq_u8(vs.val[0], mask2), m1); + vs.val[1] = vorrq_u8(vceqq_u8(vs.val[1], mask2), m1); + + signs += 4; + + q3s.val[2] = vmulq_s8(vreinterpretq_s8_u8(vs.val[0]), vreinterpretq_s8_u32(aux32x4_2)); + q3s.val[3] = vmulq_s8(vreinterpretq_s8_u8(vs.val[1]), vreinterpretq_s8_u32(aux32x4_3)); + + const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]); + const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]); +#if QK_K == 256 + sumi1 += vaddvq_s32(p1) * scales8[ib32/2+0]; + sumi2 += vaddvq_s32(p2) * scales8[ib32/2+4]; +#else + sumi1 += vaddvq_s32(p1) * (1 + 2*(x[i].scales[ib32/2] & 0xf)); + sumi2 += vaddvq_s32(p2) * (1 + 2*(x[i].scales[ib32/2] >> 4)); +#endif + } + sumf += d*(sumi1 + sumi2); + } + *s = sumf; + +#elif defined(__AVX2__) + + static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, + 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03 + }; + + static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, + 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, + }; + + const __m256i mask1 = _mm256_loadu_si256((const __m256i*)k_mask1); + const __m256i mask2 = _mm256_loadu_si256((const __m256i*)k_mask2); + + const __m256i idx_shift = _mm256_set_epi32(1, 2, 3, 4, 5, 6, 7, 8); + const __m256i idx_mask = _mm256_set1_epi32(256); + + typedef union { + __m256i vec[2]; + uint32_t index[16]; + } index_t; + + index_t idx; + + __m256 accumf = _mm256_setzero_ps(); + for (int i = 0; i < nb; ++i) { + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + const uint8_t * restrict qs = x[i].qs; + const uint8_t * restrict qh = x[i].qh; + const uint16_t * restrict signs = (const uint16_t *)x[i].signs; + const int8_t * restrict q8 = y[i].qs; + __m256i sumi1 = _mm256_setzero_si256(); + __m256i sumi2 = _mm256_setzero_si256(); + for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) { + const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32; + const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32; + const __m256i idx_l = _mm256_cvtepu8_epi16(_mm_loadu_si128((const __m128i *)qs)); qs += 16; + idx.vec[0] = _mm256_set1_epi32(qh[ib32+0]); + idx.vec[1] = _mm256_set1_epi32(qh[ib32+1]); + idx.vec[0] = _mm256_and_si256(_mm256_sllv_epi32(idx.vec[0], idx_shift), idx_mask); + idx.vec[1] = _mm256_and_si256(_mm256_sllv_epi32(idx.vec[1], idx_shift), idx_mask); + idx.vec[0] = _mm256_or_si256(idx.vec[0], _mm256_cvtepi16_epi32(_mm256_castsi256_si128(idx_l))); + idx.vec[1] = _mm256_or_si256(idx.vec[1], _mm256_cvtepi16_epi32(_mm256_extractf128_si256(idx_l, 1))); + + // At leat on my CPU (Ryzen 7950X), using _mm256_i32gather_epi32 is slower than _mm256_set_epi32. Strange. + //const __m256i q2_1 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[0], 4); + //const __m256i q2_2 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[1], 4); + const __m256i q2_1 = _mm256_set_epi32( + iq3s_grid[idx.index[7]], iq3s_grid[idx.index[6]], iq3s_grid[idx.index[5]], iq3s_grid[idx.index[4]], + iq3s_grid[idx.index[3]], iq3s_grid[idx.index[2]], iq3s_grid[idx.index[1]], iq3s_grid[idx.index[0]] + ); + const __m256i q2_2 = _mm256_set_epi32( + iq3s_grid[idx.index[15]], iq3s_grid[idx.index[14]], iq3s_grid[idx.index[13]], iq3s_grid[idx.index[12]], + iq3s_grid[idx.index[11]], iq3s_grid[idx.index[10]], iq3s_grid[idx.index[ 9]], iq3s_grid[idx.index[ 8]] + ); + + __m256i aux256 = _mm256_set1_epi32(signs[0] | (signs[1] << 16)); + aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2); + const __m256i s2_1 = _mm256_cmpeq_epi8(aux256, mask2); + const __m256i q8s_1 = _mm256_sub_epi8(_mm256_xor_si256(s2_1, q8_1), s2_1); + + aux256 = _mm256_set1_epi32(signs[2] | (signs[3] << 16)); + aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2); + const __m256i s2_2 = _mm256_cmpeq_epi8(aux256, mask2); + const __m256i q8s_2 = _mm256_sub_epi8(_mm256_xor_si256(s2_2, q8_2), s2_2); + + signs += 4; + + const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1); + const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2); + const uint16_t ls1 = x[i].scales[ib32/2] & 0xf; + const uint16_t ls2 = x[i].scales[ib32/2] >> 4; + const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1)); + const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1)); + sumi1 = _mm256_add_epi32(sumi1, p1); + sumi2 = _mm256_add_epi32(sumi2, p2); + } + + accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf); + + } + + *s = hsum_float_8(accumf); + +#else + + float sumf = 0.f; + for (int i = 0; i < nb; ++i) { + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + const uint8_t * restrict qs = x[i].qs; + const uint8_t * restrict qh = x[i].qh; + const uint8_t * restrict signs = x[i].signs; + const int8_t * restrict q8 = y[i].qs; + int32_t bsum = 0; + for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) { + const uint32_t ls1 = 2*(x[i].scales[ib32/2] & 0xf) + 1; + const uint32_t ls2 = 2*(x[i].scales[ib32/2] >> 4) + 1; + int32_t sumi = 0; + for (int l = 0; l < 4; ++l) { + const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+0] << (8-2*l)) & 256))); + const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+0] << (7-2*l)) & 256))); + for (int j = 0; j < 4; ++j) { + sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1); + sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1); + } + q8 += 8; + } + qs += 8; + signs += 4; + bsum += sumi * ls1; + sumi = 0; + for (int l = 0; l < 4; ++l) { + const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+1] << (8-2*l)) & 256))); + const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+1] << (7-2*l)) & 256))); + for (int j = 0; j < 4; ++j) { + sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1); + sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1); + } + q8 += 8; + } + qs += 8; + signs += 4; + bsum += sumi * ls2; + } + sumf += d * bsum; + } + *s = sumf; +#endif +} + + #ifdef __AVX2__ static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) { const __m256i ax = _mm256_sign_epi8(x, x); @@ -9304,7 +10334,8 @@ void ggml_vec_dot_iq1_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const const int nb = n / QK_K; -#if defined __ARM_NEON + // TODO: implement for QK_K = 64 +#if defined __ARM_NEON && QK_K == 256 const uint8x16_t m8 = vdupq_n_u8(0x08); const uint8x16_t m7 = vdupq_n_u8(0x07); @@ -9314,7 +10345,7 @@ void ggml_vec_dot_iq1_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const uint16_t gindex[8]; uint16x8x2_t vindex; int8x16x4_t q1b; - int8x16x4_t q8b; + ggml_int8x16x4_t q8b; uint16x8x4_t scales; int32x4x2_t sumi; int32x4x2_t dotq; @@ -9361,7 +10392,8 @@ void ggml_vec_dot_iq1_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const *s = sumf; -#elif defined __AVX2__ + // TODO: implement for QK_K = 64 +#elif defined __AVX2__ && QK_K == 256 const __m128i m8 = _mm_set1_epi8(0x08); const __m128i m7 = _mm_set1_epi8(0x07); @@ -9376,8 +10408,12 @@ void ggml_vec_dot_iq1_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const uint64_t aux64; - __m256i v_gindex; - const uint16_t * gindex = (const uint16_t *)&v_gindex; + typedef union m256i_uint16 { + __m256i reg; + uint16_t s[16]; + } m256i_uint16_t; + + m256i_uint16_t v_gindex; __m256 accum = _mm256_setzero_ps(); for (int i = 0; i < nb; ++i) { @@ -9392,13 +10428,13 @@ void ggml_vec_dot_iq1_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const memcpy(&aux64, sc, 8); sc += 8; const __m128i qh = _mm_shuffle_epi8(_mm_set_epi64x(aux64 >> 4, aux64), shuffle_h); const __m256i hbit = _mm256_cvtepu8_epi16(_mm_and_si128(qh, m8)); - v_gindex = _mm256_or_si256(_mm256_cvtepu8_epi16(ql), _mm256_slli_epi16(hbit, 5)); + v_gindex.reg = _mm256_or_si256(_mm256_cvtepu8_epi16(ql), _mm256_slli_epi16(hbit, 5)); const __m128i scales = _mm_or_si128(_mm_slli_epi16(_mm_and_si128(qh, m7), 1), m1); for (int i32 = 0; i32 < 4; ++i32) { const __m256i q8b = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; - const __m256i q1b = _mm256_set_epi64x(iq1s_grid[gindex[4*i32+3]], iq1s_grid[gindex[4*i32+2]], - iq1s_grid[gindex[4*i32+1]], iq1s_grid[gindex[4*i32+0]]); + const __m256i q1b = _mm256_set_epi64x(iq1s_grid[v_gindex.s[4*i32+3]], iq1s_grid[v_gindex.s[4*i32+2]], + iq1s_grid[v_gindex.s[4*i32+1]], iq1s_grid[v_gindex.s[4*i32+0]]); const __m256i dot = mul_add_epi8(q1b, q8b); const __m256i s16 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, shuffle_s[i32])); const __m256i p = _mm256_madd_epi16(s16, dot); @@ -9452,7 +10488,233 @@ void ggml_vec_dot_iq1_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const *s = sumf; #endif +} +void ggml_vec_dot_iq4_nl_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { + assert(nrc == 1); + UNUSED(nrc); + UNUSED(bx); + UNUSED(by); + UNUSED(bs); + assert(n % QK4_NL == 0); + static_assert(QK4_NL == QK8_0, "QK4_NL and QK8_0 must be the same"); + + const block_iq4_nl * restrict x = vx; + const block_q8_0 * restrict y = vy; + + const int nb = n / QK4_NL; + +#if defined __ARM_NEON + const int8x16_t values = vld1q_s8(kvalues_iq4nl); + const uint8x16_t m4b = vdupq_n_u8(0x0f); + uint8x16x2_t q4bits; + int8x16x4_t q4b; + int8x16x4_t q8b; + int32x4_t prod_1, prod_2; + + float sumf = 0; + + for (int ib = 0; ib < nb; ib += 2) { + + q4bits.val[0] = vld1q_u8(x[ib+0].qs); + q4bits.val[1] = vld1q_u8(x[ib+1].qs); + q8b.val[0] = vld1q_s8(y[ib+0].qs); + q8b.val[1] = vld1q_s8(y[ib+0].qs + 16); + q8b.val[2] = vld1q_s8(y[ib+1].qs); + q8b.val[3] = vld1q_s8(y[ib+1].qs + 16); + + q4b.val[0] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[0], m4b)); + q4b.val[1] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4)); + q4b.val[2] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[1], m4b)); + q4b.val[3] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4)); + + prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]); + prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]); + + sumf += + GGML_FP16_TO_FP32(x[ib+0].d) * GGML_FP16_TO_FP32(y[ib+0].d) * vaddvq_s32(prod_1) + + GGML_FP16_TO_FP32(x[ib+1].d) * GGML_FP16_TO_FP32(y[ib+1].d) * vaddvq_s32(prod_2); + } + + *s = sumf; + +#elif defined __AVX2__ + + const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl); + const __m128i m4b = _mm_set1_epi8(0x0f); + const __m256i mone = _mm256_set1_epi16(1); + + __m256 accum1 = _mm256_setzero_ps(); + __m256 accum2 = _mm256_setzero_ps(); + for (int ib = 0; ib < nb; ib += 2) { + const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)x[0].qs); + const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)x[1].qs); + const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)y[0].qs); + const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)y[1].qs); + const __m256i q4b_1 = _mm256_set_m128i(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)), + _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b))); + const __m256i q4b_2 = _mm256_set_m128i(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)), + _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b))); + const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1); + const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2); + const __m256i p_1 = _mm256_madd_epi16(p16_1, mone); + const __m256i p_2 = _mm256_madd_epi16(p16_2, mone); + accum1 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[0].d)*GGML_FP16_TO_FP32(x[0].d)), + _mm256_cvtepi32_ps(p_1), accum1); + accum2 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[1].d)*GGML_FP16_TO_FP32(x[1].d)), + _mm256_cvtepi32_ps(p_2), accum2); + + y += 2; + x += 2; + } + + *s = hsum_float_8(_mm256_add_ps(accum1, accum2)); + +#else + float sumf = 0; + for (int ib = 0; ib < nb; ++ib) { + const float d = GGML_FP16_TO_FP32(y[ib].d)*GGML_FP16_TO_FP32(x[ib].d); + int sumi1 = 0, sumi2 = 0; + for (int j = 0; j < QK4_NL/2; ++j) { + sumi1 += y[ib].qs[j+ 0] * kvalues_iq4nl[x[ib].qs[j] & 0xf]; + sumi2 += y[ib].qs[j+QK4_NL/2] * kvalues_iq4nl[x[ib].qs[j] >> 4]; + } + sumf += d * (sumi1 + sumi2); + } + *s = sumf; +#endif +} + +void ggml_vec_dot_iq4_xs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { + assert(nrc == 1); + UNUSED(nrc); + UNUSED(bx); + UNUSED(by); + UNUSED(bs); + assert(n % QK_K == 0); +#if QK_K == 64 + ggml_vec_dot_iq4_nl_q8_0(n, s, bs, vx, bx, vy, by, nrc); +#else + + const block_iq4_xs * restrict x = vx; + const block_q8_K * restrict y = vy; + + const int nb = n / QK_K; + +#if defined __ARM_NEON + const int8x16_t values = vld1q_s8(kvalues_iq4nl); + const uint8x16_t m4b = vdupq_n_u8(0x0f); + ggml_uint8x16x2_t q4bits; + ggml_int8x16x4_t q4b; + ggml_int8x16x4_t q8b; + int32x4_t prod_1, prod_2; + + float sumf = 0; + + for (int ibl = 0; ibl < nb; ++ibl) { + + const int8_t * q8 = y[ibl].qs; + const uint8_t * q4 = x[ibl].qs; + uint16_t h = x[ibl].scales_h; + + int sumi1 = 0, sumi2 = 0; + for (int ib = 0; ib < QK_K/64; ++ib) { + + q4bits = ggml_vld1q_u8_x2(q4); q4 += 32; + q8b = ggml_vld1q_s8_x4(q8); q8 += 64; + + q4b.val[0] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[0], m4b)); + q4b.val[1] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4)); + q4b.val[2] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[1], m4b)); + q4b.val[3] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4)); + + prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]); + prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]); + + int ls1 = ((x[ibl].scales_l[ib] & 0xf) | ((h << 4) & 0x30)) - 32; + int ls2 = ((x[ibl].scales_l[ib] >> 4) | ((h << 2) & 0x30)) - 32; + h >>= 4; + sumi1 += vaddvq_s32(prod_1) * ls1; + sumi2 += vaddvq_s32(prod_2) * ls2; + + } + + sumf += GGML_FP16_TO_FP32(x[ibl].d) * y[ibl].d * (sumi1 + sumi2); + } + + *s = sumf; + +#elif defined __AVX2__ + + const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl); + const __m128i m4b = _mm_set1_epi8(0x0f); + + __m256 accum = _mm256_setzero_ps(); + for (int ibl = 0; ibl < nb; ++ibl) { + const uint8_t * qs = x[ibl].qs; + const int8_t * q8 = y[ibl].qs; + uint16_t sh = x[ibl].scales_h; + __m256i sumi1 = _mm256_setzero_si256(); + __m256i sumi2 = _mm256_setzero_si256(); + for (int ib = 0; ib < QK_K/32; ib += 2) { + const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)qs); qs += 16; + const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)qs); qs += 16; + const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32; + const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32; + const __m256i q4b_1 = _mm256_set_m128i(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)), + _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b))); + const __m256i q4b_2 = _mm256_set_m128i(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)), + _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b))); + const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1); + const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2); + const int16_t ls1 = ((x[ibl].scales_l[ib/2] & 0xf) | ((sh << 4) & 0x30)) - 32; + const int16_t ls2 = ((x[ibl].scales_l[ib/2] >> 4) | ((sh << 2) & 0x30)) - 32; + sh >>= 4; + const __m256i p_1 = _mm256_madd_epi16(p16_1, _mm256_set1_epi16(ls1)); + const __m256i p_2 = _mm256_madd_epi16(p16_2, _mm256_set1_epi16(ls2)); + sumi1 = _mm256_add_epi32(p_1, sumi1); + sumi2 = _mm256_add_epi32(p_2, sumi2); + } + accum = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[ibl].d)*y[ibl].d), + _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accum); + } + + *s = hsum_float_8(accum); + +#else + float sumf = 0; + for (int ibl = 0; ibl < nb; ++ibl) { + const float d4d8 = GGML_FP16_TO_FP32(x[ibl].d) * y[ibl].d; + uint16_t h = x[ibl].scales_h; + const uint8_t * qs = x[ibl].qs; + const int8_t * q8 = y[ibl].qs; + for (int ib = 0; ib < QK_K/32; ib += 2) { + const uint8_t ls1 = (x[ibl].scales_l[ib/2] & 0xf) | ((h << 4) & 0x30); + const uint8_t ls2 = (x[ibl].scales_l[ib/2] >> 4) | ((h << 2) & 0x30); + h >>= 4; + const float d1 = d4d8*(ls1 - 32); + const float d2 = d4d8*(ls2 - 32); + int sumi1 = 0, sumi2 = 0; + for (int j = 0; j < 16; ++j) { + sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf]; + sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4]; + } + sumf += d1 * (sumi1 + sumi2); + qs += 16; + q8 += 32; + sumi1 = sumi2 = 0; + for (int j = 0; j < 16; ++j) { + sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf]; + sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4]; + } + sumf += d2 * (sumi1 + sumi2); + qs += 16; + q8 += 32; + } + } + *s = sumf; +#endif +#endif } // ================================ IQ2 quantization ============================================= @@ -9463,22 +10725,25 @@ typedef struct { uint16_t * neighbours; } iq2_entry_t; -static iq2_entry_t iq2_data[3] = { +static iq2_entry_t iq2_data[4] = { + {NULL, NULL, NULL}, {NULL, NULL, NULL}, {NULL, NULL, NULL}, {NULL, NULL, NULL}, }; static inline int iq2_data_index(enum ggml_type type) { - GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S); + GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ2_S); return type == GGML_TYPE_IQ2_XXS ? 0 : - type == GGML_TYPE_IQ2_XS ? 1 : 2; + type == GGML_TYPE_IQ2_XS ? 1 : + type == GGML_TYPE_IQ1_S ? 2 : 3; } static inline int iq2_grid_size(enum ggml_type type) { - GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S); + GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ2_S); return type == GGML_TYPE_IQ2_XXS ? 256 : - type == GGML_TYPE_IQ2_XS ? 512 : 512; + type == GGML_TYPE_IQ2_XS ? 512 : + type == GGML_TYPE_IQ1_S ? 512 : 1024; } static int iq2_compare_func(const void * left, const void * right) { @@ -9579,11 +10844,79 @@ void iq2xs_init_impl(enum ggml_type type) { 41557, 41633, 41989, 42021, 42056, 42068, 42074, 42113, 42242, 42265, 42274, 42325, 42340, 42402, 42501, 42512, 42533, 42624, 42632, 42666, 43040, 43093, 43106, 43168, 43176, 43264, 43286, 43345, 43429, 43590, 43618, 43680, }; + static const uint16_t kgrid_2bit_1024[1024] = { + 0, 2, 5, 8, 10, 17, 20, 22, 25, 32, 34, 37, 40, 65, 68, 70, + 73, 80, 82, 85, 88, 97, 100, 102, 105, 128, 130, 133, 136, 145, 148, 160, + 165, 170, 257, 260, 262, 265, 272, 274, 277, 280, 289, 292, 320, 322, 325, 328, + 337, 340, 342, 345, 352, 357, 360, 385, 388, 400, 402, 405, 417, 420, 512, 514, + 517, 520, 529, 532, 544, 554, 577, 580, 582, 585, 592, 597, 640, 645, 650, 660, + 674, 1025, 1028, 1030, 1033, 1040, 1042, 1045, 1048, 1057, 1060, 1062, 1065, 1088, 1090, 1093, + 1096, 1098, 1105, 1108, 1110, 1113, 1120, 1122, 1125, 1153, 1156, 1158, 1161, 1168, 1173, 1176, + 1185, 1188, 1280, 1282, 1285, 1288, 1290, 1297, 1300, 1302, 1305, 1312, 1317, 1320, 1345, 1348, + 1350, 1353, 1360, 1362, 1365, 1368, 1377, 1380, 1408, 1410, 1413, 1416, 1425, 1428, 1440, 1537, + 1540, 1542, 1545, 1552, 1557, 1600, 1605, 1608, 1617, 1620, 1632, 1665, 1668, 1680, 2048, 2050, + 2053, 2056, 2065, 2068, 2070, 2073, 2080, 2085, 2090, 2113, 2116, 2118, 2121, 2128, 2130, 2133, + 2136, 2145, 2148, 2176, 2181, 2196, 2218, 2305, 2308, 2320, 2322, 2325, 2328, 2337, 2368, 2373, + 2376, 2385, 2388, 2400, 2433, 2448, 2560, 2577, 2580, 2594, 2600, 2602, 2640, 2713, 4097, 4100, + 4102, 4105, 4112, 4114, 4117, 4120, 4129, 4132, 4134, 4160, 4162, 4165, 4168, 4177, 4180, 4182, + 4185, 4192, 4194, 4197, 4200, 4225, 4228, 4230, 4240, 4245, 4248, 4257, 4260, 4352, 4354, 4357, + 4360, 4362, 4369, 4372, 4374, 4377, 4384, 4386, 4389, 4392, 4417, 4420, 4422, 4425, 4432, 4434, + 4437, 4440, 4449, 4452, 4480, 4482, 4485, 4488, 4497, 4500, 4609, 4612, 4617, 4624, 4629, 4641, + 4644, 4672, 4677, 4689, 4692, 4737, 4740, 4752, 5120, 5122, 5125, 5128, 5137, 5140, 5142, 5145, + 5152, 5157, 5160, 5185, 5188, 5190, 5193, 5200, 5202, 5205, 5208, 5217, 5220, 5248, 5250, 5253, + 5256, 5265, 5268, 5280, 5377, 5380, 5382, 5385, 5392, 5394, 5397, 5400, 5409, 5412, 5440, 5442, + 5445, 5448, 5457, 5460, 5472, 5505, 5508, 5520, 5632, 5637, 5640, 5649, 5652, 5664, 5697, 5700, + 5712, 5760, 5802, 6145, 6148, 6150, 6153, 6160, 6165, 6168, 6177, 6208, 6210, 6213, 6216, 6225, + 6228, 6240, 6273, 6276, 6400, 6402, 6405, 6408, 6417, 6420, 6432, 6465, 6468, 6480, 6505, 6562, + 6660, 6672, 6720, 6742, 8192, 8194, 8197, 8200, 8209, 8212, 8214, 8217, 8224, 8229, 8234, 8257, + 8260, 8272, 8274, 8277, 8292, 8320, 8330, 8340, 8362, 8449, 8452, 8464, 8466, 8469, 8481, 8512, + 8514, 8517, 8529, 8532, 8544, 8577, 8580, 8592, 8704, 8714, 8738, 8744, 8746, 8772, 8784, 8840, + 8842, 8872, 9217, 9220, 9222, 9225, 9232, 9237, 9240, 9249, 9252, 9280, 9282, 9285, 9288, 9297, + 9300, 9312, 9345, 9348, 9360, 9472, 9477, 9480, 9489, 9492, 9504, 9537, 9540, 9552, 9574, 9600, + 9729, 9732, 9744, 9792, 9817, 10240, 10245, 10257, 10260, 10305, 10308, 10320, 10378, 10410, 10497, 10500, + 10512, 10645, 10762, 10786, 10852, 10888, 10890, 16385, 16388, 16390, 16393, 16400, 16402, 16405, 16408, 16410, + 16417, 16420, 16422, 16448, 16450, 16453, 16456, 16458, 16465, 16468, 16470, 16473, 16480, 16482, 16485, 16513, + 16516, 16528, 16533, 16536, 16545, 16548, 16640, 16642, 16645, 16648, 16657, 16660, 16662, 16665, 16672, 16674, + 16677, 16705, 16708, 16710, 16713, 16720, 16722, 16725, 16728, 16737, 16740, 16768, 16770, 16773, 16776, 16785, + 16788, 16800, 16897, 16900, 16912, 16914, 16917, 16920, 16932, 16960, 16965, 16968, 16977, 16980, 16992, 17025, + 17028, 17408, 17410, 17413, 17416, 17418, 17425, 17428, 17430, 17433, 17440, 17442, 17445, 17448, 17473, 17476, + 17478, 17481, 17488, 17490, 17493, 17496, 17505, 17508, 17536, 17538, 17541, 17544, 17553, 17556, 17568, 17665, + 17668, 17670, 17673, 17680, 17682, 17685, 17688, 17697, 17700, 17728, 17730, 17733, 17736, 17745, 17748, 17760, + 17770, 17793, 17796, 17808, 17920, 17922, 17925, 17928, 17937, 17940, 17952, 17985, 17988, 18000, 18048, 18085, + 18433, 18436, 18441, 18448, 18450, 18453, 18456, 18465, 18468, 18496, 18498, 18501, 18504, 18513, 18516, 18528, + 18564, 18576, 18688, 18690, 18693, 18696, 18705, 18708, 18720, 18753, 18756, 18768, 18816, 18838, 18945, 18948, + 18960, 19008, 20480, 20482, 20485, 20488, 20497, 20500, 20502, 20505, 20512, 20514, 20517, 20520, 20545, 20548, + 20550, 20553, 20560, 20562, 20565, 20568, 20577, 20580, 20608, 20610, 20613, 20616, 20625, 20628, 20737, 20740, + 20742, 20745, 20752, 20754, 20757, 20760, 20769, 20772, 20800, 20802, 20805, 20808, 20817, 20820, 20832, 20865, + 20868, 20880, 20992, 20997, 21000, 21009, 21012, 21024, 21057, 21060, 21072, 21097, 21120, 21505, 21508, 21510, + 21513, 21520, 21522, 21525, 21528, 21537, 21540, 21568, 21570, 21573, 21576, 21585, 21588, 21600, 21633, 21636, + 21648, 21760, 21762, 21765, 21768, 21777, 21780, 21792, 21825, 21828, 21840, 21888, 22017, 22020, 22032, 22054, + 22080, 22528, 22530, 22533, 22536, 22545, 22548, 22560, 22593, 22596, 22608, 22618, 22656, 22785, 22788, 22800, + 22848, 23040, 23065, 23173, 23208, 24577, 24580, 24582, 24592, 24594, 24597, 24600, 24609, 24612, 24640, 24645, + 24648, 24657, 24660, 24672, 24708, 24720, 24832, 24834, 24837, 24840, 24849, 24852, 24864, 24897, 24900, 24912, + 24960, 24985, 25092, 25104, 25152, 25174, 25249, 25600, 25605, 25608, 25617, 25620, 25632, 25665, 25668, 25680, + 25728, 25857, 25860, 25872, 25920, 25930, 25960, 26002, 26112, 26260, 26625, 26628, 26640, 26725, 26776, 26880, + 26922, 27202, 27297, 32768, 32770, 32773, 32776, 32785, 32788, 32793, 32800, 32805, 32833, 32836, 32848, 32850, + 32853, 32856, 32865, 32896, 32901, 32913, 32916, 33025, 33028, 33033, 33040, 33042, 33045, 33048, 33057, 33060, + 33088, 33090, 33093, 33096, 33105, 33108, 33153, 33156, 33168, 33193, 33280, 33285, 33290, 33297, 33300, 33345, + 33348, 33360, 33793, 33796, 33798, 33801, 33808, 33810, 33813, 33816, 33825, 33856, 33858, 33861, 33864, 33873, + 33876, 33888, 33921, 33924, 33936, 34048, 34050, 34053, 34056, 34065, 34068, 34080, 34113, 34116, 34128, 34176, + 34186, 34305, 34308, 34320, 34345, 34368, 34816, 34821, 34833, 34836, 34881, 34884, 34896, 34978, 35073, 35076, + 35136, 35173, 35362, 35416, 35418, 35458, 35490, 36865, 36868, 36873, 36880, 36882, 36885, 36888, 36900, 36928, + 36930, 36933, 36936, 36945, 36948, 36960, 36993, 36996, 37008, 37120, 37125, 37137, 37140, 37185, 37188, 37200, + 37210, 37377, 37380, 37392, 37440, 37542, 37888, 37890, 37893, 37896, 37905, 37908, 37920, 37953, 37956, 37968, + 38016, 38038, 38145, 38148, 38160, 38208, 38296, 38305, 38400, 38470, 38500, 38913, 38916, 38928, 38950, 38976, + 39081, 39168, 39241, 39250, 39568, 40960, 40965, 40970, 40980, 40994, 41002, 41025, 41028, 41040, 41122, 41130, + 41280, 41317, 41474, 41482, 41506, 41512, 41514, 41602, 41608, 41610, 41640, 41985, 41988, 42000, 42048, 42121, + 42148, 42240, 42265, 42577, 43018, 43048, 43170, 43348, 43398, 43528, 43530, 43552, 43554, 43560, 43656, 43690, + }; const int kmap_size = 43692; - const int nwant = type == GGML_TYPE_IQ1_S ? 3 : 2; + //const int nwant = type == GGML_TYPE_IQ1_S ? 3 : 2; + const int nwant = type == GGML_TYPE_IQ1_S ? 3 : type == GGML_TYPE_IQ2_S ? 1 : 2; const uint16_t * kgrid = type == GGML_TYPE_IQ2_XXS ? kgrid_2bit_256 : - type == GGML_TYPE_IQ2_XS ? kgrid_2bit_512 : kgrid_1bit_512; + type == GGML_TYPE_IQ2_XS ? kgrid_2bit_512 : + type == GGML_TYPE_IQ1_S ? kgrid_1bit_512 : kgrid_2bit_1024; uint64_t * kgrid_q2xs; int * kmap_q2xs; uint16_t * kneighbors_q2xs; @@ -9680,7 +11013,7 @@ void iq2xs_init_impl(enum ggml_type type) { } void iq2xs_free_impl(enum ggml_type type) { - GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S); + GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ2_S); const int gindex = iq2_data_index(type); if (iq2_data[gindex].grid) { free(iq2_data[gindex].grid); iq2_data[gindex].grid = NULL; @@ -9729,7 +11062,7 @@ static void quantize_row_iq2_xxs_impl(const float * restrict x, void * restrict const int kMaxQ = 3; - const int nbl = n/256; + const int nbl = n/QK_K; block_iq2_xxs * y = vy; @@ -9902,7 +11235,7 @@ static void quantize_row_iq2_xs_impl(const float * restrict x, void * restrict v const int kMaxQ = 3; - const int nbl = n/256; + const int nbl = n/QK_K; block_iq2_xs * y = vy; @@ -10102,14 +11435,15 @@ typedef struct { uint16_t * neighbours; } iq3_entry_t; -static iq3_entry_t iq3_data[1] = { +static iq3_entry_t iq3_data[2] = { + {NULL, NULL, NULL}, {NULL, NULL, NULL}, }; static inline int iq3_data_index(int grid_size) { (void)grid_size; - GGML_ASSERT(grid_size == 256); - return 0; + GGML_ASSERT(grid_size == 256 || grid_size == 512); + return grid_size == 256 ? 0 : 1; } static int iq3_compare_func(const void * left, const void * right) { @@ -10141,9 +11475,44 @@ void iq3xs_init_impl(int grid_size) { 3185, 3215, 3252, 3288, 3294, 3364, 3397, 3434, 3483, 3523, 3537, 3587, 3589, 3591, 3592, 3610, 3626, 3670, 3680, 3722, 3749, 3754, 3776, 3789, 3803, 3824, 3857, 3873, 3904, 3906, 3924, 3992, }; + static const uint16_t kgrid_512[512] = { + 0, 1, 2, 5, 7, 8, 9, 10, 12, 14, 16, 17, 21, 27, 32, 34, + 37, 39, 41, 43, 48, 50, 57, 60, 63, 64, 65, 66, 68, 72, 73, 77, + 80, 83, 87, 89, 93, 100, 113, 117, 122, 128, 129, 133, 135, 136, 139, 142, + 145, 149, 152, 156, 162, 165, 167, 169, 171, 184, 187, 195, 201, 205, 208, 210, + 217, 219, 222, 228, 232, 234, 247, 249, 253, 256, 267, 271, 273, 276, 282, 288, + 291, 297, 312, 322, 324, 336, 338, 342, 347, 353, 357, 359, 374, 379, 390, 393, + 395, 409, 426, 441, 448, 450, 452, 464, 466, 470, 475, 488, 492, 512, 513, 514, + 516, 520, 521, 523, 525, 527, 528, 530, 537, 540, 542, 556, 558, 561, 570, 576, + 577, 579, 582, 584, 588, 593, 600, 603, 609, 616, 618, 632, 638, 640, 650, 653, + 655, 656, 660, 666, 672, 675, 685, 688, 698, 705, 708, 711, 712, 715, 721, 727, + 728, 732, 737, 754, 760, 771, 773, 778, 780, 793, 795, 802, 806, 808, 812, 833, + 840, 843, 849, 856, 858, 873, 912, 916, 919, 932, 934, 961, 963, 968, 970, 977, + 989, 993, 1010, 1016, 1024, 1025, 1027, 1029, 1031, 1032, 1034, 1036, 1038, 1041, 1043, 1047, + 1048, 1050, 1057, 1059, 1061, 1064, 1066, 1079, 1080, 1083, 1085, 1088, 1090, 1096, 1099, 1103, + 1106, 1109, 1113, 1116, 1122, 1129, 1153, 1156, 1159, 1169, 1171, 1176, 1183, 1185, 1195, 1199, + 1209, 1212, 1216, 1218, 1221, 1225, 1234, 1236, 1241, 1243, 1250, 1256, 1270, 1281, 1287, 1296, + 1299, 1306, 1309, 1313, 1338, 1341, 1348, 1353, 1362, 1375, 1376, 1387, 1400, 1408, 1410, 1415, + 1425, 1453, 1457, 1477, 1481, 1494, 1496, 1507, 1512, 1538, 1545, 1547, 1549, 1551, 1554, 1561, + 1563, 1565, 1570, 1572, 1575, 1577, 1587, 1593, 1601, 1603, 1605, 1612, 1617, 1619, 1632, 1648, + 1658, 1662, 1664, 1674, 1680, 1690, 1692, 1704, 1729, 1736, 1740, 1745, 1747, 1751, 1752, 1761, + 1763, 1767, 1773, 1787, 1795, 1801, 1806, 1810, 1817, 1834, 1840, 1844, 1857, 1864, 1866, 1877, + 1882, 1892, 1902, 1915, 1934, 1953, 1985, 1987, 2000, 2002, 2013, 2048, 2052, 2058, 2064, 2068, + 2071, 2074, 2081, 2088, 2104, 2114, 2119, 2121, 2123, 2130, 2136, 2141, 2147, 2153, 2157, 2177, + 2179, 2184, 2189, 2193, 2203, 2208, 2223, 2226, 2232, 2244, 2249, 2251, 2256, 2258, 2265, 2269, + 2304, 2306, 2324, 2335, 2336, 2361, 2373, 2375, 2385, 2418, 2443, 2460, 2480, 2504, 2509, 2520, + 2531, 2537, 2562, 2568, 2572, 2578, 2592, 2596, 2599, 2602, 2614, 2620, 2625, 2627, 2629, 2634, + 2641, 2650, 2682, 2688, 2697, 2707, 2712, 2718, 2731, 2754, 2759, 2760, 2775, 2788, 2793, 2805, + 2811, 2817, 2820, 2832, 2842, 2854, 2890, 2902, 2921, 2923, 2978, 3010, 3012, 3026, 3081, 3083, + 3085, 3097, 3099, 3120, 3136, 3152, 3159, 3188, 3210, 3228, 3234, 3245, 3250, 3256, 3264, 3276, + 3281, 3296, 3349, 3363, 3378, 3392, 3395, 3420, 3440, 3461, 3488, 3529, 3531, 3584, 3588, 3591, + 3600, 3602, 3614, 3616, 3628, 3634, 3650, 3657, 3668, 3683, 3685, 3713, 3716, 3720, 3726, 3729, + 3736, 3753, 3778, 3802, 3805, 3819, 3841, 3845, 3851, 3856, 3880, 3922, 3938, 3970, 3993, 4032, + }; + const int kmap_size = 4096; - const int nwant = 2; - const uint16_t * kgrid = kgrid_256; + const int nwant = grid_size == 256 ? 2 : 3; + const uint16_t * kgrid = grid_size == 256 ? kgrid_256 : kgrid_512; uint32_t * kgrid_q3xs; int * kmap_q3xs; uint16_t * kneighbors_q3xs; @@ -10240,7 +11609,7 @@ void iq3xs_init_impl(int grid_size) { } void iq3xs_free_impl(int grid_size) { - GGML_ASSERT(grid_size == 256); + GGML_ASSERT(grid_size == 256 || grid_size == 512); const int gindex = iq3_data_index(grid_size); if (iq3_data[gindex].grid) { free(iq3_data[gindex].grid); iq3_data[gindex].grid = NULL; @@ -10273,9 +11642,10 @@ static int iq3_find_best_neighbour(const uint16_t * restrict neighbours, const u return grid_index; } -static void quantize_row_iq3_xxs_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights) { +static void quantize_row_iq3_xxs_impl(int grid_size, const float * restrict x, void * restrict vy, int n, + const float * restrict quant_weights) { - const int gindex = iq3_data_index(256); + const int gindex = iq3_data_index(grid_size); const uint32_t * kgrid_q3xs = iq3_data[gindex].grid; const int * kmap_q3xs = iq3_data[gindex].map; @@ -10289,9 +11659,23 @@ static void quantize_row_iq3_xxs_impl(const float * restrict x, void * restrict const int kMaxQ = 8; - const int nbl = n/256; + const int nbl = n/QK_K; - block_iq3_xxs * y = vy; + ggml_fp16_t * dh; + uint8_t * qs; + int block_size; + if (grid_size == 256) { + block_iq3_xxs * y = vy; + dh = &y->d; + qs = y->qs; + block_size = sizeof(block_iq3_xxs); + } else { + block_iq3_s * y = vy; + dh = &y->d; + qs = y->qs; + block_size = sizeof(block_iq3_s); + } + int quant_size = block_size - sizeof(ggml_fp16_t); float scales[QK_K/32]; float weight[32]; @@ -10302,20 +11686,21 @@ static void quantize_row_iq3_xxs_impl(const float * restrict x, void * restrict bool is_on_grid[8]; bool is_on_grid_aux[8]; uint8_t block_signs[8]; - uint8_t q3[3*(QK_K/8)]; + uint8_t q3[3*(QK_K/8)+QK_K/32]; uint32_t * scales_and_signs = (uint32_t *)(q3 + QK_K/4); + uint8_t * qh = q3 + 3*(QK_K/8); for (int ibl = 0; ibl < nbl; ++ibl) { - y[ibl].d = GGML_FP32_TO_FP16(0.f); - memset(q3, 0, 3*QK_K/8); + dh[0] = GGML_FP32_TO_FP16(0.f); + memset(q3, 0, 3*QK_K/8+QK_K/32); float max_scale = 0; const float * xbl = x + QK_K*ibl; float sumx2 = 0; for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i]; - float sigma2 = sumx2/QK_K; + float sigma2 = 2*sumx2/QK_K; for (int ib = 0; ib < QK_K/32; ++ib) { const float * xb = xbl + 32*ib; @@ -10433,7 +11818,13 @@ static void quantize_row_iq3_xxs_impl(const float * restrict x, void * restrict printf("\n"); GGML_ASSERT(false); } - q3[8*ib+k] = grid_index; + if (grid_size == 256) { + q3[8*ib+k] = grid_index; + } else { + q3[8*ib+k] = grid_index & 255; + qh[ib] |= ((grid_index >> 8) << k); + } + } scales_and_signs[ib] = block_signs[0] | (block_signs[1] << 7) | (block_signs[2] << 14) | (block_signs[3] << 21); GGML_ASSERT(scale >= 0); @@ -10442,63 +11833,25 @@ static void quantize_row_iq3_xxs_impl(const float * restrict x, void * restrict } if (!max_scale) { - memset(y[ibl].qs, 0, 3*QK_K/8); + memset(qs, 0, quant_size); + dh += block_size/sizeof(ggml_fp16_t); + qs += block_size; continue; } float d = max_scale/31; - y[ibl].d = GGML_FP32_TO_FP16(d); + dh[0] = GGML_FP32_TO_FP16(d * 1.0125f); // small improvement via this fudge factor float id = 1/d; - float sumqx = 0, sumq2 = 0; for (int ib = 0; ib < QK_K/32; ++ib) { int l = nearest_int(0.5f*(id*scales[ib]-1)); l = MAX(0, MIN(15, l)); scales_and_signs[ib] |= ((uint32_t)l << 28); - if (false) { - const float * xb = xbl + 32*ib; - if (quant_weights) { - const float * qw = quant_weights + QK_K*ibl + 32*ib; - for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]); - } else { - for (int i = 0; i < 32; ++i) weight[i] = xb[i]*xb[i]; - } - const float db = 0.25f * d * (1 + 2*l); - for (int k = 0; k < 8; ++k) { - const int8_t * signs = keven_signs_q2xs + 8*((scales_and_signs[ib] >> 7*(k/2)) & 127) + 4*(k%2); - const float * xk = xb + 4*k; - const float * wk = weight + 4*k; - //const uint8_t * grid = (const uint8_t *)(kgrid_q3xs + q3[8*ib+k]); - const uint8_t * grid = (const uint8_t *)(iq3xxs_grid + q3[8*ib+k]); - float best_mse = 0; int best_index = q3[8*ib+k]; - for (int j = 0; j < 4; ++j) { - float diff = db * grid[j] * signs[j] - xk[j]; - best_mse += wk[j] * diff * diff; - } - for (int idx = 0; idx < 256; ++idx) { - //grid = (const uint8_t *)(kgrid_q3xs + idx); - grid = (const uint8_t *)(iq3xxs_grid + idx); - float mse = 0; - for (int j = 0; j < 4; ++j) { - float diff = db * grid[j] * signs[j] - xk[j]; - mse += wk[j] * diff * diff; - } - if (mse < best_mse) { - best_mse = mse; best_index = idx; - } - } - q3[8*ib+k] = best_index; - //grid = (const uint8_t *)(kgrid_q3xs + best_index); - grid = (const uint8_t *)(iq3xxs_grid + best_index); - for (int j = 0; j < 4; ++j) { - float q = db * grid[j] * signs[j]; - sumqx += wk[j] * q * xk[j]; - sumq2 += wk[j] * q * q; - } - } - if (sumq2 > 0) y[ibl].d = GGML_FP32_TO_FP16(d*sumqx/sumq2); - } } - memcpy(y[ibl].qs, q3, 3*QK_K/8); + memcpy(qs, q3, quant_size); + + dh += block_size/sizeof(ggml_fp16_t); + qs += block_size; + } } @@ -10508,7 +11861,7 @@ size_t quantize_iq3_xxs(const float * src, void * dst, int nrow, int n_per_row, int nblock = n_per_row/QK_K; char * qrow = (char *)dst; for (int row = 0; row < nrow; ++row) { - quantize_row_iq3_xxs_impl(src, qrow, n_per_row, quant_weights); + quantize_row_iq3_xxs_impl(256, src, qrow, n_per_row, quant_weights); src += n_per_row; qrow += nblock*sizeof(block_iq3_xxs); } @@ -10523,9 +11876,227 @@ void quantize_row_iq3_xxs(const float * restrict x, void * restrict vy, int k) { void quantize_row_iq3_xxs_reference(const float * restrict x, block_iq3_xxs * restrict y, int k) { assert(k % QK_K == 0); - quantize_row_iq3_xxs_impl(x, y, k, NULL); + quantize_row_iq3_xxs_impl(256, x, y, k, NULL); } +static void quantize_row_iq3_s_impl(int block_size, const float * restrict x, void * restrict vy, int n, + const float * restrict quant_weights, + float * scales, + float * weight, + float * xval, + int8_t * L, + int8_t * Laux, + float * waux, + bool * is_on_grid, + bool * is_on_grid_aux, + uint8_t * block_signs) { + + const int gindex = iq3_data_index(512); + + const uint32_t * kgrid_q3xs = iq3_data[gindex].grid; + const int * kmap_q3xs = iq3_data[gindex].map; + const uint16_t * kneighbors_q3xs = iq3_data[gindex].neighbours; + + //GGML_ASSERT(quant_weights && "missing quantization weights"); + GGML_ASSERT(kgrid_q3xs && "forgot to call ggml_quantize_init()?"); + GGML_ASSERT(kmap_q3xs && "forgot to call ggml_quantize_init()?"); + GGML_ASSERT(kneighbors_q3xs && "forgot to call ggml_quantize_init()?"); + GGML_ASSERT(n%QK_K == 0); + + const int kMaxQ = 8; + + const int nbl = n/QK_K; + + block_iq3_s * y = vy; + + const int bs4 = block_size/4; + const int bs8 = block_size/8; + + for (int ibl = 0; ibl < nbl; ++ibl) { + + memset(&y[ibl], 0, sizeof(block_iq3_s)); + y[ibl].d = GGML_FP32_TO_FP16(0.f); + + uint8_t * qs = y[ibl].qs; + uint8_t * qh = y[ibl].qh; + uint8_t * signs = y[ibl].signs; + + float max_scale = 0; + + const float * xbl = x + QK_K*ibl; + float sumx2 = 0; + for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i]; + float sigma2 = 2*sumx2/QK_K; + + for (int ib = 0; ib < QK_K/block_size; ++ib) { + const float * xb = xbl + block_size*ib; + if (quant_weights) { + const float * qw = quant_weights + QK_K*ibl + block_size*ib; + for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]); + } else { + for (int i = 0; i < block_size; ++i) weight[i] = xb[i]*xb[i]; + } + for (int i = 0; i < block_size; ++i) waux[i] = sqrtf(weight[i]); + for (int k = 0; k < bs8; ++k) { + uint8_t s = 0; + for (int i = 0; i < 8; ++i) { + if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i]; + else { + xval[8*k + i] = -xb[8*k + i]; s |= (1 << i); + } + } + block_signs[k] = s; + } + float max = xval[0]; + for (int i = 1; i < block_size; ++i) max = MAX(max, xval[i]); + if (!max) { + scales[ib] = 0; + continue; + } + float best = 0; + float scale = max/(2*kMaxQ-1); + for (int k = 0; k < bs4; ++k) is_on_grid[k] = false; + for (int is = -9; is <= 9; ++is) { + float id = (2*kMaxQ-1+is*0.2f)/max; + float this_scale = 1/id; + for (int k = 0; k < bs4; ++k) { + for (int i = 0; i < 4; ++i) { + int l = nearest_int(0.5f*(id*xval[4*k+i]-1)); + Laux[4*k+i] = MAX(0, MIN(kMaxQ-1, l)); + } + uint16_t u = 0; + for (int i = 0; i < 4; ++i) u |= (Laux[4*k+i] << 3*i); + int grid_index = kmap_q3xs[u]; + is_on_grid_aux[k] = true; + if (grid_index < 0) { + is_on_grid_aux[k] = false; + const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1; + grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, this_scale, Laux + 4*k); + } + } + float sumqx = 0, sumq2 = 0; + for (int i = 0; i < block_size; ++i) { + float w = weight[i]; + float q = 2*Laux[i] + 1; + sumqx += w*xval[i]*q; + sumq2 += w*q*q; + } + if (sumq2 > 0 && sumqx*sumqx > best*sumq2) { + scale = sumqx/sumq2; best = scale*sumqx; + for (int i = 0; i < block_size; ++i) L[i] = Laux[i]; + for (int k = 0; k < bs4; ++k) is_on_grid[k] = is_on_grid_aux[k]; + } + } + int n_not_ongrid = 0; + for (int k = 0; k < bs4; ++k) if (!is_on_grid[k]) ++n_not_ongrid; + if (n_not_ongrid > 0 && scale > 0) { + float id = 1/scale; + for (int k = 0; k < bs4; ++k) { + //if (is_on_grid[k]) continue; + uint16_t u = 0; + for (int i = 0; i < 4; ++i) { + int l = nearest_int(0.5f*(id*xval[4*k+i]-1)); + l = MAX(0, MIN(kMaxQ-1, l)); + u |= (l << 3*i); + } + int grid_index = kmap_q3xs[u]; + if (grid_index < 0) { + const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1; + grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, scale, L + 4*k); + } + const int8_t * pg = (const int8_t *)(kgrid_q3xs + grid_index); + for (int i = 0; i < 4; ++i) L[4*k+i] = (pg[i] - 1)/2; + } + float sumqx = 0, sumq2 = 0; + for (int i = 0; i < block_size; ++i) { + float w = weight[i]; + float q = 2*L[i] + 1; + sumqx += w*xval[i]*q; + sumq2 += w*q*q; + } + if (sumq2 > 0) scale = sumqx/sumq2; + } + if (scale < 0) { + // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale) + // and correspondingly flip quant signs. + scale = -scale; + for (int k = 0; k < bs8; ++k) block_signs[k] = ~block_signs[k]; + } + for (int k = 0; k < bs4; ++k) { + uint16_t u = 0; + for (int i = 0; i < 4; ++i) u |= (L[4*k+i] << 3*i); + int grid_index = kmap_q3xs[u]; + if (grid_index < 0) { + printf("Oops: found point %u not on grid:", u); + for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]); + printf("\n"); + GGML_ASSERT(false); + } + qs[k] = grid_index & 255; + qh[(ib*bs4+k)/8] |= ((grid_index >> 8) << ((ib*bs4+k)%8)); + } + qs += bs4; + for (int k = 0; k < bs8; ++k) signs[k] = block_signs[k]; + signs += bs8; + GGML_ASSERT(scale >= 0); + scales[ib] = scale; + max_scale = MAX(max_scale, scale); + } + + if (!max_scale) { + continue; + } + + float d = max_scale/31; + y[ibl].d = GGML_FP32_TO_FP16(d * 1.033f); + float id = 1/d; + for (int ib = 0; ib < QK_K/block_size; ib += 2) { + int l1 = nearest_int(0.5f*(id*scales[ib+0]-1)); + l1 = MAX(0, MIN(15, l1)); + int l2 = nearest_int(0.5f*(id*scales[ib+1]-1)); + l2 = MAX(0, MIN(15, l2)); + y[ibl].scales[ib/2] = l1 | (l2 << 4); + } + + } +} + +#define IQ3S_BLOCK_SIZE 32 +size_t quantize_iq3_s(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) { + (void)hist; + GGML_ASSERT(n_per_row%QK_K == 0); + int nblock = n_per_row/QK_K; + float scales[QK_K/IQ3S_BLOCK_SIZE]; + float weight[IQ3S_BLOCK_SIZE]; + float xval[IQ3S_BLOCK_SIZE]; + int8_t L[IQ3S_BLOCK_SIZE]; + int8_t Laux[IQ3S_BLOCK_SIZE]; + float waux[IQ3S_BLOCK_SIZE]; + bool is_on_grid[IQ3S_BLOCK_SIZE/4]; + bool is_on_grid_aux[IQ3S_BLOCK_SIZE/4]; + uint8_t block_signs[IQ3S_BLOCK_SIZE/8]; + char * qrow = (char *)dst; + for (int row = 0; row < nrow; ++row) { + quantize_row_iq3_s_impl(IQ3S_BLOCK_SIZE, src, qrow, n_per_row, quant_weights, + scales, weight, xval, L, Laux, waux, is_on_grid, is_on_grid_aux, block_signs); + src += n_per_row; + qrow += nblock*sizeof(block_iq3_s); + } + return nrow * nblock * sizeof(block_iq3_s); +} + +void quantize_row_iq3_s(const float * restrict x, void * restrict vy, int k) { + assert(k % QK_K == 0); + block_iq3_s * restrict y = vy; + quantize_row_iq3_s_reference(x, y, k); +} + +void quantize_row_iq3_s_reference(const float * restrict x, block_iq3_s * restrict y, int k) { + assert(k % QK_K == 0); + quantize_iq3_s(x, y, 1, k, NULL, NULL); +} + + // =================================== 1.5 bpw =================================================== static int iq1_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid, @@ -10608,7 +12179,7 @@ static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?"); GGML_ASSERT(n%QK_K == 0); - const int nbl = n/256; + const int nbl = n/QK_K; block_iq1_s * y = vy; @@ -10729,3 +12300,388 @@ size_t quantize_iq1_s(const float * src, void * dst, int nrow, int n_per_row, in } return nrow * nblock * sizeof(block_iq1_s); } + +// ============================ 4-bit non-linear quants + +static inline int best_index_int8(int n, const int8_t * val, float x) { + if (x <= val[0]) return 0; + if (x >= val[n-1]) return n-1; + int ml = 0, mu = n-1; + while (mu-ml > 1) { + int mav = (ml+mu)/2; + if (x < val[mav]) mu = mav; else ml = mav; + } + return x - val[mu-1] < val[mu] - x ? mu-1 : mu; +} + +static void quantize_row_iq4_nl_impl(const int super_block_size, const int block_size, const float * GGML_RESTRICT x, + ggml_fp16_t * dh, uint8_t * q4, uint16_t * scales_h, uint8_t * scales_l, + float * scales, float * weight, uint8_t * L, + const int8_t * values, + const float * quant_weights) { + + const int ntry = 7; + + float sigma2 = 0; + for (int j = 0; j < super_block_size; ++j) sigma2 += x[j]*x[j]; + sigma2 *= 2.f/super_block_size; + + memset(q4, 0, super_block_size/2); + dh[0] = GGML_FP32_TO_FP16(0.f); + + float max_scale = 0, amax_scale = 0; + for (int ib = 0; ib < super_block_size/block_size; ++ib) { + const float * xb = x + ib*block_size; + if (quant_weights) { + const float * qw = quant_weights + ib*block_size; + for (int j = 0; j < block_size; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]); + } else { + for (int j = 0; j < block_size; ++j) weight[j] = xb[j]*xb[j]; + } + float amax = 0, max = 0; + for (int j = 0; j < block_size; ++j) { + float ax = fabsf(xb[j]); + if (ax > amax) { + amax = ax; max = xb[j]; + } + } + if (!amax) { + scales[ib] = 0; + continue; + } + float d = -max/values[0]; + float id = 1/d; + float sumqx = 0, sumq2 = 0; + for (int j = 0; j < block_size; ++j) { + float al = id*xb[j]; + int l = best_index_int8(16, values, al); + float q = values[l]; + float w = weight[j]; + sumqx += w*q*xb[j]; + sumq2 += w*q*q; + } + d = sumqx/sumq2; + float best = d*sumqx; + for (int itry = -ntry; itry <= ntry; ++itry) { + id = (itry + values[0])/max; + sumqx = sumq2 = 0; + for (int j = 0; j < block_size; ++j) { + float al = id*xb[j]; + int l = best_index_int8(16, values, al); + float q = values[l]; + float w = weight[j]; + sumqx += w*q*xb[j]; + sumq2 += w*q*q; + } + if (sumq2 > 0 && sumqx*sumqx > best*sumq2) { + d = sumqx/sumq2; best = d * sumqx; + } + } + scales[ib] = d; + float abs_d = fabsf(d); + if (abs_d > amax_scale) { + amax_scale = abs_d; max_scale = d; + } + } + + if (super_block_size/block_size > 1) { + int nb = super_block_size/block_size; + memset(scales_h, 0, ((nb+7)/8)*sizeof(uint16_t)); + float d = -max_scale/32; + dh[0] = GGML_FP32_TO_FP16(d); + float id = d ? 1/d : 0.f; + for (int ib = 0; ib < super_block_size/block_size; ++ib) { + int l = nearest_int(id*scales[ib]); + l = MAX(-32, MIN(31, l)); + float dl = d * l; + float idl = dl ? 1/dl : 0.f; + uint8_t * Lb = L + ib*block_size; + const float * xb = x + ib*block_size; + for (int j = 0; j < block_size; ++j) { + Lb[j] = best_index_int8(16, values, idl*xb[j]); + } + l += 32; + uint8_t l_l = l & 0xf; + uint8_t l_h = l >> 4; + if (ib%2 == 0) scales_l[ib/2] = l_l; + else scales_l[ib/2] |= (l_l << 4); + scales_h[ib/8] |= (l_h << 2*(ib%8)); + } + } else { + dh[0] = GGML_FP32_TO_FP16(scales[0]); + float id = scales[0] ? 1/scales[0] : 0; + for (int j = 0; j < super_block_size; ++j) { + L[j] = best_index_int8(16, values, id*x[j]); + } + } + + for (int i = 0; i < super_block_size/32; ++i) { + for (int j = 0; j < 16; ++j) { + q4[16*i + j] = L[32*i + j] | (L[32*i + 16 + j] << 4); + } + } +} + +size_t quantize_iq4_nl(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) { + (void)hist; + GGML_ASSERT(n_per_row%QK4_NL == 0); + int nblock = n_per_row/QK4_NL; + char * qrow = (char *)dst; + uint8_t L[QK4_NL]; + float weight[QK4_NL]; + uint16_t unused_h; + uint8_t * unused_l = NULL; + float scale; + for (int row = 0; row < nrow; ++row) { + block_iq4_nl * iq4 = (block_iq4_nl *)qrow; + for (int ibl = 0; ibl < nblock; ++ibl) { + const float * qw = quant_weights ? quant_weights + QK4_NL*ibl : NULL; + quantize_row_iq4_nl_impl(QK4_NL, 32, src + QK4_NL*ibl, &iq4[ibl].d, iq4[ibl].qs, &unused_h, unused_l, + &scale, weight, L, kvalues_iq4nl, qw); + } + src += n_per_row; + qrow += nblock*sizeof(block_iq4_nl); + } + return nrow * nblock * sizeof(block_iq4_nl); +} + +void quantize_row_iq4_nl(const float * restrict x, void * restrict vy, int k) { + assert(k % QK4_NL == 0); + block_iq4_nl * restrict y = vy; + quantize_row_iq4_nl_reference(x, y, k); +} + +void quantize_row_iq4_nl_reference(const float * restrict x, block_iq4_nl * restrict y, int k) { + assert(k % QK4_NL == 0); + quantize_iq4_nl(x, y, 1, k, NULL, NULL); +} + +size_t quantize_iq4_xs(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) { +#if QK_K == 64 + return quantize_iq4_nl(src, dst, nrow, n_per_row, hist, quant_weights); +#else + (void)hist; + GGML_ASSERT(n_per_row%QK_K == 0); + int nblock = n_per_row/QK_K; + char * qrow = (char *)dst; + uint8_t L[QK_K]; + float weight[32]; + float scales[QK_K/32]; + for (int row = 0; row < nrow; ++row) { + block_iq4_xs * iq4 = (block_iq4_xs *)qrow; + for (int ibl = 0; ibl < nblock; ++ibl) { + const float * qw = quant_weights ? quant_weights + QK_K*ibl : NULL; + quantize_row_iq4_nl_impl(QK_K, 32, src + QK_K*ibl, &iq4[ibl].d, iq4[ibl].qs, &iq4[ibl].scales_h, iq4[ibl].scales_l, + scales, weight, L, kvalues_iq4nl, qw); + } + src += n_per_row; + qrow += nblock*sizeof(block_iq4_xs); + } + return nrow * nblock * sizeof(block_iq4_xs); +#endif +} + +void quantize_row_iq4_xs(const float * restrict x, void * restrict vy, int k) { + assert(k % QK_K == 0); + block_iq4_xs * restrict y = vy; + quantize_row_iq4_xs_reference(x, y, k); +} + +void quantize_row_iq4_xs_reference(const float * restrict x, block_iq4_xs * restrict y, int k) { + assert(k % QK_K == 0); + quantize_iq4_xs(x, y, 1, k, NULL, NULL); +} + +// =============================== 2.5625 bpw + +static void quantize_row_iq2_s_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights) { + + const int gindex = iq2_data_index(GGML_TYPE_IQ2_S); + + const uint64_t * kgrid_q2xs = iq2_data[gindex].grid; + const int * kmap_q2xs = iq2_data[gindex].map; + const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours; + + GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?"); + GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?"); + GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?"); + GGML_ASSERT(n%QK_K == 0); + + const int kMaxQ = 3; + + const int nbl = n/QK_K; + + block_iq2_s * y = vy; + + float scales[QK_K/16]; + float weight[16]; + float xval[16]; + int8_t L[16]; + int8_t Laux[16]; + float waux[16]; + bool is_on_grid[2]; + bool is_on_grid_aux[2]; + uint8_t block_signs[2]; + + for (int ibl = 0; ibl < nbl; ++ibl) { + + memset(&y[ibl], 0, sizeof(block_iq2_s)); + y[ibl].d = GGML_FP32_TO_FP16(0.f); + + float max_scale = 0; + + const float * xbl = x + QK_K*ibl; + float sumx2 = 0; + for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i]; + float sigma2 = 2*sumx2/QK_K; + + for (int ib = 0; ib < QK_K/16; ++ib) { + const float * xb = xbl + 16*ib; + if (quant_weights) { + const float * qw = quant_weights + QK_K*ibl + 16*ib; + for (int i = 0; i < 16; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]); + } else { + for (int i = 0; i < 16; ++i) weight[i] = 0.25f*sigma2 + xb[i]*xb[i]; + } + for (int i = 0; i < 16; ++i) waux[i] = sqrtf(weight[i]); + for (int k = 0; k < 2; ++k) { + uint8_t s = 0; + for (int i = 0; i < 8; ++i) { + if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i]; + else { + xval[8*k + i] = -xb[8*k + i]; s |= (1 << i); + } + } + block_signs[k] = s; + } + float max = xval[0]; + for (int i = 1; i < 16; ++i) max = MAX(max, xval[i]); + if (!max) { + scales[ib] = 0; + continue; + } + float best = 0; + float scale = max/(2*kMaxQ-1); + is_on_grid[0] = is_on_grid[1] = true; + for (int is = -9; is <= 9; ++is) { + float id = (2*kMaxQ-1+is*0.1f)/max; + float this_scale = 1/id; + for (int k = 0; k < 2; ++k) { + for (int i = 0; i < 8; ++i) { + int l = nearest_int(0.5f*(id*xval[8*k+i]-1)); + Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l)); + } + uint16_t u = 0; + for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i); + int grid_index = kmap_q2xs[u]; + is_on_grid_aux[k] = true; + if (grid_index < 0) { + is_on_grid_aux[k] = false; + const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1; + grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k); + } + } + float sumqx = 0, sumq2 = 0; + for (int i = 0; i < 16; ++i) { + float w = weight[i]; + float q = 2*Laux[i] + 1; + sumqx += w*xval[i]*q; + sumq2 += w*q*q; + } + if (sumq2 > 0 && sumqx*sumqx > best*sumq2) { + scale = sumqx/sumq2; best = scale*sumqx; + for (int i = 0; i < 16; ++i) L[i] = Laux[i]; + for (int k = 0; k < 2; ++k) is_on_grid[k] = is_on_grid_aux[k]; + } + } + int n_not_ongrid = 0; + for (int k = 0; k < 2; ++k) if (!is_on_grid[k]) ++n_not_ongrid; + if (n_not_ongrid > 0 && scale > 0) { + float id = 1/scale; + for (int k = 0; k < 2; ++k) { + if (is_on_grid[k]) continue; + uint16_t u = 0; + for (int i = 0; i < 8; ++i) { + int l = nearest_int(0.5f*(id*xval[8*k+i]-1)); + l = MAX(0, MIN(kMaxQ-1, l)); + u |= (l << 2*i); + L[8*k + i] = l; + } + int grid_index = kmap_q2xs[u]; + if (grid_index < 0) { + const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1; + grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k); + } + } + float sumqx = 0, sumq2 = 0; + for (int i = 0; i < 16; ++i) { + float w = weight[i]; + float q = 2*L[i] + 1; + sumqx += w*xval[i]*q; + sumq2 += w*q*q; + } + if (sumq2 > 0) scale = sumqx/sumq2; + } + if (scale < 0) { + scale = -scale; + for (int k = 0; k < 2; ++k) block_signs[k] = ~block_signs[k]; + } + for (int k = 0; k < 2; ++k) { + uint16_t u = 0; + for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i); + int grid_index = kmap_q2xs[u]; + if (grid_index < 0) { + printf("Oops: found point %u not on grid:", u); + for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]); + printf("\n"); + GGML_ASSERT(false); + } + const int i8 = 2*ib + k; + y[ibl].qs[i8] = grid_index & 255; + y[ibl].qh[i8/4] |= ((grid_index >> 8) << 2*(i8%4)); + y[ibl].qs[QK_K/8 + i8] = block_signs[k]; + } + GGML_ASSERT(scale >= 0); + scales[ib] = scale; + max_scale = MAX(max_scale, scale); + } + + if (!max_scale) { + continue; + } + + float d = max_scale/31; + y[ibl].d = GGML_FP32_TO_FP16(d * 0.9875f); + float id = 1/d; + for (int ib = 0; ib < QK_K/16; ++ib) { + int l = nearest_int(0.5f*(id*scales[ib]-1)); + l = MAX(0, MIN(15, l)); + if (ib%2 == 0) y[ibl].scales[ib/2] = l; + else y[ibl].scales[ib/2] |= (l << 4); + } + } +} + +size_t quantize_iq2_s(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) { + (void)hist; + GGML_ASSERT(n_per_row%QK_K == 0); + int nblock = n_per_row/QK_K; + char * qrow = (char *)dst; + for (int row = 0; row < nrow; ++row) { + quantize_row_iq2_s_impl(src, qrow, n_per_row, quant_weights); + src += n_per_row; + qrow += nblock*sizeof(block_iq2_s); + } + return nrow * nblock * sizeof(block_iq2_s); +} + +void quantize_row_iq2_s_reference(const float * restrict x, block_iq2_s * restrict y, int k) { + assert(k % QK_K == 0); + quantize_iq2_s(x, y, 1, k, NULL, NULL); +} + +void quantize_row_iq2_s(const float * restrict x, void * restrict vy, int k) { + assert(k % QK_K == 0); + block_iq2_s * restrict y = vy; + quantize_row_iq2_s_reference(x, y, k); +} diff --git a/ggml-quants.h b/ggml-quants.h index ad381cfab..316e35687 100644 --- a/ggml-quants.h +++ b/ggml-quants.h @@ -182,6 +182,15 @@ typedef struct { } block_iq2_xs; static_assert(sizeof(block_iq2_xs) == sizeof(ggml_fp16_t) + QK_K/8*sizeof(uint16_t) + QK_K/32, "wrong iq2_xs block size/padding"); +// 2.5625 bpw quants +typedef struct { + ggml_fp16_t d; + uint8_t qs[QK_K/4]; + uint8_t qh[QK_K/32]; + uint8_t scales[QK_K/32]; +} block_iq2_s; +static_assert(sizeof(block_iq2_s) == sizeof(ggml_fp16_t) + QK_K/4 + QK_K/16, "wrong iq2_s block size/padding"); + // (Almost) "true" 3-bit quantization. // Due to the need to use blocks as per ggml design, it ends up using // 3.0625 bpw because of the 16-bit scale for each block of 256. @@ -191,6 +200,21 @@ typedef struct { } block_iq3_xxs; static_assert(sizeof(block_iq3_xxs) == sizeof(ggml_fp16_t) + 3*(QK_K/8), "wrong iq3_xxs block size/padding"); +// 3.4375 bpw +#if QK_K == 64 +#define IQ3S_N_SCALE 2 +#else +#define IQ3S_N_SCALE QK_K/64 +#endif +typedef struct { + ggml_fp16_t d; + uint8_t qs[QK_K/4]; + uint8_t qh[QK_K/32]; + uint8_t signs[QK_K/8]; + uint8_t scales[IQ3S_N_SCALE]; +} block_iq3_s; +static_assert(sizeof(block_iq3_s) == sizeof(ggml_fp16_t) + 13*(QK_K/32) + IQ3S_N_SCALE, "wrong iq3_s block size/padding"); + typedef struct { ggml_fp16_t d; uint8_t qs[QK_K/8]; @@ -198,6 +222,27 @@ typedef struct { } block_iq1_s; static_assert(sizeof(block_iq1_s) == sizeof(ggml_fp16_t) + QK_K/8 + QK_K/16, "wrong iq1_s block size/padding"); +// Non-linear quants +#define QK4_NL 32 +typedef struct { + ggml_fp16_t d; + uint8_t qs[QK4_NL/2]; +} block_iq4_nl; +static_assert(sizeof(block_iq4_nl) == sizeof(ggml_fp16_t) + QK4_NL/2, "wrong iq4_nl block size/padding"); + +#if QK_K == 64 +#define block_iq4_xs block_iq4_nl +//typedef struct block_iq4_nl block_iq4_xs; +#else +typedef struct { + ggml_fp16_t d; + uint16_t scales_h; + uint8_t scales_l[QK_K/64]; + uint8_t qs[QK_K/2]; +} block_iq4_xs; +static_assert(sizeof(block_iq4_xs) == sizeof(ggml_fp16_t) + sizeof(uint16_t) + QK_K/64 + QK_K/2, "wrong iq4_xs block size/padding"); +#endif + #ifdef __cplusplus extern "C" { #endif @@ -217,6 +262,10 @@ void quantize_row_q5_K_reference(const float * GGML_RESTRICT x, block_q5_K * GGM void quantize_row_q6_K_reference(const float * GGML_RESTRICT x, block_q6_K * GGML_RESTRICT y, int k); void quantize_row_q8_K_reference(const float * GGML_RESTRICT x, block_q8_K * GGML_RESTRICT y, int k); void quantize_row_iq3_xxs_reference(const float * GGML_RESTRICT x, block_iq3_xxs * GGML_RESTRICT y, int k); +void quantize_row_iq4_nl_reference (const float * GGML_RESTRICT x, block_iq4_nl * GGML_RESTRICT y, int k); +void quantize_row_iq4_xs_reference (const float * GGML_RESTRICT x, block_iq4_xs * GGML_RESTRICT y, int k); +void quantize_row_iq3_s_reference (const float * GGML_RESTRICT x, block_iq3_s * GGML_RESTRICT y, int k); +void quantize_row_iq2_s_reference (const float * GGML_RESTRICT x, block_iq2_s * GGML_RESTRICT y, int k); void quantize_row_q4_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k); void quantize_row_q4_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k); @@ -232,6 +281,10 @@ void quantize_row_q5_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, in void quantize_row_q6_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k); void quantize_row_q8_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k); void quantize_row_iq3_xxs(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k); +void quantize_row_iq4_nl (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k); +void quantize_row_iq4_xs (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k); +void quantize_row_iq3_s (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k); +void quantize_row_iq2_s (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k); // Dequantization void dequantize_row_q4_0(const block_q4_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int k); @@ -249,8 +302,12 @@ void dequantize_row_q6_K(const block_q6_K * GGML_RESTRICT x, float * GGML_RESTRI void dequantize_row_q8_K(const block_q8_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int k); void dequantize_row_iq2_xxs(const block_iq2_xxs * GGML_RESTRICT x, float * GGML_RESTRICT y, int k); void dequantize_row_iq2_xs (const block_iq2_xs * GGML_RESTRICT x, float * GGML_RESTRICT y, int k); +void dequantize_row_iq2_s (const block_iq2_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int k); void dequantize_row_iq3_xxs(const block_iq3_xxs * GGML_RESTRICT x, float * GGML_RESTRICT y, int k); void dequantize_row_iq1_s (const block_iq1_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int k); +void dequantize_row_iq4_nl (const block_iq4_nl * GGML_RESTRICT x, float * GGML_RESTRICT y, int k); +void dequantize_row_iq4_xs (const block_iq4_xs * GGML_RESTRICT x, float * GGML_RESTRICT y, int k); +void dequantize_row_iq3_s (const block_iq3_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int k); // Dot product void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); @@ -266,16 +323,24 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); void ggml_vec_dot_iq2_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); void ggml_vec_dot_iq2_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void ggml_vec_dot_iq2_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); void ggml_vec_dot_iq1_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void ggml_vec_dot_iq4_nl_q8_0 (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void ggml_vec_dot_iq4_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void ggml_vec_dot_iq3_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); // // Quantization utilizing an importance matrix (a.k.a. "Activation aWare Quantization") // size_t quantize_iq2_xxs(const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix); size_t quantize_iq2_xs (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix); +size_t quantize_iq2_s (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix); size_t quantize_iq3_xxs(const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix); size_t quantize_iq1_s (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix); +size_t quantize_iq4_nl (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix); +size_t quantize_iq4_xs (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix); +size_t quantize_iq3_s (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix); size_t quantize_q2_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix); size_t quantize_q3_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix); size_t quantize_q4_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix); diff --git a/ggml-sycl.cpp b/ggml-sycl.cpp index cd4b3a1e1..cad08d610 100644 --- a/ggml-sycl.cpp +++ b/ggml-sycl.cpp @@ -661,26 +661,29 @@ namespace dpct /// \param [out] total_memory The number of bytes of total memory on the SYCL device. void get_memory_info(size_t &free_memory, size_t &total_memory) { + total_memory = get_device_info().get_global_mem_size(); + const char *warning_info = "get_memory_info: [warning] ext_intel_free_memory is not " + "supported (export/set ZES_ENABLE_SYSMAN=1 to support), " + "use total memory as free memory"; #if (defined(__SYCL_COMPILER_VERSION) && __SYCL_COMPILER_VERSION >= 20221105) if (!has(sycl::aspect::ext_intel_free_memory)) { - std::cerr << "get_memory_info: ext_intel_free_memory is not supported." << std::endl; - free_memory = 0; + std::cerr << warning_info << std::endl; + free_memory = total_memory; } else { free_memory = get_info(); } #else - std::cerr << "get_memory_info: ext_intel_free_memory is not supported." << std::endl; - free_memory = 0; + std::cerr << warning_info << std::endl; + free_memory = total_memory; #if defined(_MSC_VER) && !defined(__clang__) #pragma message("Querying the number of bytes of free memory is not supported") #else #warning "Querying the number of bytes of free memory is not supported" #endif #endif - total_memory = get_device_info().get_global_mem_size(); } void get_device_info(device_info &out) const @@ -738,15 +741,25 @@ namespace dpct #endif // DPCT_USM_LEVEL_NONE } - sycl::queue *create_in_order_queue(bool enable_exception_handler = false) - { - std::lock_guard lock(m_mutex); - return create_queue_impl(enable_exception_handler, - sycl::property::queue::in_order()); + sycl::queue *create_queue(sycl::context context, sycl::device device, + bool enable_exception_handler = false) { + return create_in_order_queue(context, device, enable_exception_handler); } - sycl::queue *create_out_of_order_queue(bool enable_exception_handler = false) - { + sycl::queue *create_in_order_queue(bool enable_exception_handler = false) { + std::lock_guard lock(m_mutex); + return create_queue_impl(enable_exception_handler, + sycl::property::queue::in_order()); + } + + sycl::queue *create_in_order_queue(sycl::context context, sycl::device device, + bool enable_exception_handler = false) { + std::lock_guard lock(m_mutex); + return create_queue_impl(context, device, enable_exception_handler, + sycl::property::queue::in_order()); + } + + sycl::queue *create_out_of_order_queue(bool enable_exception_handler = false) { std::lock_guard lock(m_mutex); return create_queue_impl(enable_exception_handler); } @@ -809,6 +822,25 @@ namespace dpct return _queues.back().get(); } + template + sycl::queue *create_queue_impl(sycl::context context, sycl::device device, + bool enable_exception_handler, + Properties... properties) { + sycl::async_handler eh = {}; + if (enable_exception_handler) { + eh = exception_handler; + } + _queues.push_back(std::make_shared( + context, device, eh, + sycl::property_list( + #ifdef DPCT_PROFILING_ENABLED + sycl::property::queue::enable_profiling(), + #endif + properties...))); + + return _queues.back().get(); + } + void get_version(int &major, int &minor) const { detail::get_version(*this, major, minor); @@ -2943,14 +2975,11 @@ bool ggml_sycl_loaded(void); void * ggml_sycl_host_malloc(size_t size); void ggml_sycl_host_free(void * ptr); bool ggml_sycl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); -void ggml_sycl_set_tensor_split(const float * tensor_split); -void ggml_sycl_transform_tensor(void * data, struct ggml_tensor * tensor); void ggml_sycl_free_data(struct ggml_tensor * tensor); void ggml_sycl_assign_buffers(struct ggml_tensor * tensor); void ggml_sycl_assign_buffers_no_scratch(struct ggml_tensor * tensor); void ggml_sycl_assign_buffers_force_inplace(struct ggml_tensor * tensor); void ggml_sycl_assign_buffers_no_alloc(struct ggml_tensor * tensor); -void ggml_sycl_assign_scratch_offset(struct ggml_tensor * tensor, size_t offset); void ggml_sycl_copy_to_device(struct ggml_tensor * tensor); void ggml_sycl_set_main_device(int main_device); void ggml_sycl_set_mul_mat_q(bool mul_mat_q); @@ -2963,6 +2992,14 @@ int get_main_device(); void print_ggml_tensor(const char*name, struct ggml_tensor *src); void log_tensor_with_cnt(const char* name, struct ggml_tensor * src, int stop_cnt); +void dev2dev_memcpy(sycl::queue &q_dst, sycl::queue &q_src, void *ptr_dst, + const void *ptr_src, size_t size) { + char *host_buf = (char *)malloc(size); + q_src.memcpy(host_buf, (const char *)ptr_src, size).wait(); + q_dst.memcpy((char *)ptr_dst, host_buf, size).wait(); + free(host_buf); +} + static __dpct_inline__ int get_int_from_int8(const int8_t *x8, const int &i32) { const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment @@ -3180,6 +3217,8 @@ static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_ #define SYCL_SILU_BLOCK_SIZE 256 #define SYCL_TANH_BLOCK_SIZE 256 #define SYCL_RELU_BLOCK_SIZE 256 +#define SYCL_HARDSIGMOID_BLOCK_SIZE 256 +#define SYCL_HARDSWISH_BLOCK_SIZE 256 #define SYCL_SQR_BLOCK_SIZE 256 #define SYCL_CPY_BLOCK_SIZE 32 #define SYCL_SCALE_BLOCK_SIZE 256 @@ -3196,6 +3235,7 @@ static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_ #define SYCL_PAD_BLOCK_SIZE 256 #define SYCL_ACC_BLOCK_SIZE 256 #define SYCL_IM2COL_BLOCK_SIZE 256 +#define SYCL_POOL2D_BLOCK_SIZE 256 // dmmv = dequantize_mul_mat_vec #ifndef GGML_SYCL_DMMV_X @@ -3218,8 +3258,7 @@ static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUA #define MUL_MAT_SRC1_COL_STRIDE 128 #define MAX_STREAMS 8 -static dpct::queue_ptr g_syclStreams[GGML_SYCL_MAX_DEVICES][MAX_STREAMS] = { - {0}}; +static dpct::queue_ptr g_syclStreams[GGML_SYCL_MAX_DEVICES][MAX_STREAMS] = {{0}}; struct ggml_tensor_extra_gpu { void * data_device[GGML_SYCL_MAX_DEVICES]; // 1 pointer for each device for split tensors @@ -3228,30 +3267,108 @@ struct ggml_tensor_extra_gpu { [MAX_STREAMS]; // events for synchronizing multiple GPUs }; -inline dpct::err0 ggml_sycl_set_device(const int device) try { - int current_device; +class sycl_gpu_mgr { + public: + std::vector gpus; + std::vector devices; + sycl::queue *first_queue; + sycl::context co_ctx; + int max_compute_units = 0; + int work_group_size = 0; + std::string gpus_list = ""; - SYCL_CHECK(CHECK_TRY_ERROR( - current_device = dpct::dev_mgr::instance().current_device_id())); + sycl_gpu_mgr() { + detect_sycl_gpu_list_with_max_cu(); + get_allow_gpus(); + create_context_with_gpus(); + } - // GGML_SYCL_DEBUG("ggml_sycl_set_device device=%d, current_device=%d\n", device, current_device); - if (device == current_device) { - return 0; - } + void create_context_with_gpus() { + sycl::context ctx = sycl::context(devices); + assert(gpus.size() > 0); + first_queue = dpct::get_current_device().create_queue(ctx, devices[0]); + co_ctx = first_queue->get_context(); + } - return CHECK_TRY_ERROR(dpct::select_device(device)); -} -catch (sycl::exception const &exc) { - std::cerr << exc.what() << "Exception caught at file:" << __FILE__ - << ", line:" << __LINE__ << std::endl; - crash(); - std::exit(1); -} + sycl::context &get_co_ctx() { return co_ctx; } + void get_allow_gpus() { + gpus_list = ""; + for (size_t i = 0; i < gpus.size(); ++i) { + gpus_list += std::to_string(gpus[i]); + gpus_list += ","; + } + if (gpus_list.length() > 2) { + gpus_list.pop_back(); + } + } + + bool is_allowed_gpu(int device_id) { + return std::find(gpus.begin(), gpus.end(), device_id) != gpus.end(); + } + + void detect_sycl_gpu_list_with_max_cu() try { + int device_count = dpct::dev_mgr::instance().device_count(); + + for (int id = 0; id < device_count; id++) { + sycl::device device = dpct::dev_mgr::instance().get_device(id); + if (!device.is_gpu()) + continue; + dpct::device_info prop; + dpct::get_device_info(prop, device); + if (max_compute_units < prop.get_max_compute_units()) + max_compute_units = prop.get_max_compute_units(); + } + + for (int id = 0; id < device_count; id++) { + sycl::device device = dpct::dev_mgr::instance().get_device(id); + if (!device.is_gpu()) + continue; + dpct::device_info prop; + dpct::get_device_info(prop, device); + if (max_compute_units == prop.get_max_compute_units() && + prop.get_major_version() == 1) { + gpus.push_back(id); + devices.push_back(device); + work_group_size = prop.get_max_work_group_size(); + } + } + return; + } catch (sycl::exception const &exc) { + std::cerr << exc.what() << "Exception caught at file:" << __FILE__ + << ", line:" << __LINE__ << std::endl; + std::exit(1); + } + + int get_gpu_count() { return (int)gpus.size(); } + + int get_index(int id) { + for (int i = 0; i < (int)gpus.size(); i++) { + if (gpus[i] == id) + return i; + } + assert(false); + return -1; + } + + int get_next_index(int id) { + int cur_index = get_index(id); + for (int i = cur_index + 1; i < (int)gpus.size(); i++) { + if (gpus[i] == id) + return i; + } + assert(false); + return -1; + } +}; + +static sycl_gpu_mgr *g_sycl_gpu_mgr = NULL; static int g_device_count = -1; static int g_all_sycl_device_count = -1; static int g_main_device = -1; -static int g_main_device_index = -1; +static int g_main_device_id = -1; + +static std::array g_default_tensor_split = {}; static float g_tensor_split[GGML_SYCL_MAX_DEVICES] = {0}; @@ -3268,8 +3385,6 @@ struct sycl_device_id2index { int index; }; -static sycl_device_id2index g_sycl_device_id2index[GGML_SYCL_MAX_DEVICES] = { {-1} }; - static void * g_scratch_buffer = nullptr; static size_t g_scratch_size = 0; // disabled by default static size_t g_scratch_offset = 0; @@ -3290,6 +3405,63 @@ static void bad_arch(const sycl::stream &stream_ct1) { (void) bad_arch; // suppress unused function warning } +/* +device_index: device index from 0 to n (continue numbers). + It is used for device select/set in SYCL backend internal data structure. +*/ +void check_allow_gpu_index(const int device_index) { + if (device_index >= g_device_count) { + char error_buf[256]; + snprintf(error_buf, sizeof(error_buf), + "%s error: device_index:%d is out of range: [0-%d]", __func__, + device_index, g_device_count - 1); + fprintf(stderr, "%s\n", error_buf); + assert(false); + } +} + +/* +device_id: device ID is shown by ggml_backend_sycl_print_sycl_devices(). + It is only used to set current working device. +*/ +void check_allow_gpu_id(const int device_id) { + if (!g_sycl_gpu_mgr->is_allowed_gpu(device_id)) { + char error_buf[256]; + snprintf(error_buf, sizeof(error_buf), + "error: cannot set device=%d, which is not allowed. Please " + "set GPU ID in: [%s]", + device_id, g_sycl_gpu_mgr->gpus_list.c_str()); + fprintf(stderr, "%s\n", error_buf); + throw std::invalid_argument(error_buf); + } +} + +int get_current_device_id() { + return dpct::dev_mgr::instance().current_device_id(); +} + +inline dpct::err0 ggml_sycl_set_device(const int device) try { + + int device_id = g_sycl_gpu_mgr->gpus[device]; + check_allow_gpu_id(device_id); + + int current_device_id; + SYCL_CHECK(CHECK_TRY_ERROR(current_device_id = get_current_device_id())); + + // GGML_SYCL_DEBUG("ggml_sycl_set_device device_id=%d, + // current_device_id=%d\n", device, current_device); + if (device_id == current_device_id) { + return 0; + } + + return CHECK_TRY_ERROR(dpct::select_device(device_id)); +} catch (sycl::exception const &exc) { + std::cerr << exc.what() << "Exception caught at file:" << __FILE__ + << ", line:" << __LINE__ << std::endl; + crash(); + std::exit(1); +} + void log_ggml_var_device(const char*name, float *src, size_t total_elements, bool src_on_device){ if(!g_ggml_sycl_debug) return; if(!src){ @@ -3302,22 +3474,18 @@ void log_ggml_var_device(const char*name, float *src, size_t total_elements, boo size_t total_size = total_elements*sizeof(float); float *local_buf = NULL; - // printf("total_size %d2, src_on_device %d\n", total_size, src_on_device); if(src_on_device) { local_buf = (float *) ggml_sycl_host_malloc(total_size); - // printf("local buf %p size %d bytes\n", local_buf, total_size); ggml_sycl_set_device(g_main_device); - dpct::queue_ptr main_stream = g_syclStreams[g_main_device_index][0]; + dpct::queue_ptr main_stream = g_syclStreams[g_main_device][0]; main_stream->memcpy(local_buf, src, total_size); } else { local_buf = (float *)src; - // printf("local buf from src-> data %p\n", local_buf); } std::ofstream logfile; logfile.open(filename); - // printf("local buf element %d\n", total_elements); for(size_t i=0; ibackend == GGML_BACKEND_GPU || src->backend == GGML_BACKEND_GPU_SPLIT; + const bool src_on_device = src->backend == GGML_BACKEND_TYPE_GPU || src->backend == GGML_BACKEND_TYPE_GPU_SPLIT; float *src_data =NULL; if(src_on_device) { ggml_tensor_extra_gpu * src_extra = (ggml_tensor_extra_gpu *) src->extra; - src_data = (float*)src_extra->data_device[g_main_device_index]; + src_data = (float*)src_extra->data_device[g_main_device]; } else { src_data = (float *)src->data; @@ -3359,10 +3527,6 @@ void log_tensor_with_cnt(const char* name, struct ggml_tensor * src, int stop_cn sprintf(filename, "%s_%07d", name, log_file_name_idx); log_file_name_idx++; print_ggml_tensor(filename, src); - // print_ggml_tensor("ggml_sycl_rms_norm_src0", (ggml_tensor *)src0); - // print_ggml_tensor("ggml_sycl_rms_norm_src1", (ggml_tensor *)src1); - // int *ptr = NULL; - // *ptr = 0; } static __dpct_inline__ float warp_reduce_sum(float x, @@ -3583,6 +3747,28 @@ static void relu_f32(const float * x, float * dst, const int k, dst[i] = sycl::fmax((float)(x[i]), (float)0); } +static void hardsigmoid_f32(const float * x, float * dst, const int k, + const sycl::nd_item<3> &item_ct1) { + const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) + + item_ct1.get_local_id(2); + + if (i >= k) { + return; + } + dst[i] = sycl::fmin(1.0f, sycl::fmax(0.0f, (x[i] + 3.0f) / 6.0f)); +} + +static void hardswish_f32(const float * x, float * dst, const int k, + const sycl::nd_item<3> &item_ct1) { + const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) + + item_ct1.get_local_id(2); + + if (i >= k) { + return; + } + dst[i] = x[i] * sycl::fmin(1.0f, sycl::fmax(0.0f, (x[i] + 3.0f) / 6.0f)); +} + static void leaky_relu_f32(const float *x, float *dst, const int k, const float negative_slope, const sycl::nd_item<3> &item_ct1) { const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) + @@ -4964,8 +5150,8 @@ static void k_get_rows_float( template static void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__ y, const int k, const sycl::nd_item<3> &item_ct1) { - const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) + - 2 * item_ct1.get_local_id(2); + const int i = 2 * (item_ct1.get_local_range(2) * item_ct1.get_group(2) + + item_ct1.get_local_id(2)); if (i >= k) { return; @@ -7695,7 +7881,7 @@ static void cpy_1_f16_f16(const char * cxi, char * cdsti) { static void cpy_1_f16_f32(const char * cxi, char * cdsti) { const sycl::half *xi = (const sycl::half *)cxi; - float *dsti = (float *)cdsti; + float * dsti = (float *) cdsti; *dsti = *xi; } @@ -8086,11 +8272,11 @@ static void k_argsort_f32_i32(const float * x, int * dst, const int ncols, int ixj = col ^ j; if (ixj > col) { if ((col & k) == 0) { - if (order == GGML_SORT_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) { + if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) { swap(dst_row[col], dst_row[ixj]); } } else { - if (order == GGML_SORT_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) { + if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) { swap(dst_row[col], dst_row[ixj]); } } @@ -8126,23 +8312,51 @@ static void diag_mask_inf_f32(const float * x, float * dst, const int ncols, con dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX; } -static void soft_max_f32(const float * x, const float * y, float * dst, const int ncols, const int nrows_y, const float scale, - const sycl::nd_item<3> &item_ct1, float *buf) { + +template +static void soft_max_f32(const float * x, const float * mask, const float *pos, float * dst, const int ncols_par, + const int nrows_y, const float scale, const float max_bias, const float m0, + const float m1, uint32_t n_head_log2, const sycl::nd_item<3> &item_ct1, float *buf) { + const int ncols = ncols_template == 0 ? ncols_par : ncols_template; + const int tid = item_ct1.get_local_id(2); const int rowx = item_ct1.get_group(2); const int rowy = rowx % nrows_y; // broadcast the mask (y) in the row dimension - const int block_size = item_ct1.get_local_range(2); + const int block_size = block_size_template == 0 ? item_ct1.get_local_range(2) : block_size_template; const int warp_id = item_ct1.get_local_id(2) / WARP_SIZE; const int lane_id = item_ct1.get_local_id(2) % WARP_SIZE; + float slope = 0.0f; + + // ALiBi + if (max_bias > 0.0f) { + const uint32_t h = rowx/nrows_y; // head index + + const float base = h < n_head_log2 ? m0 : m1; + const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1; + + slope = sycl::pow(base, float(exp)); + } + + float * vals = vals_smem ? buf + WARP_SIZE : dst + rowx*ncols; float max_val = -INFINITY; - for (int col = tid; col < ncols; col += block_size) { + for (int col0 = 0; col0 < ncols; col0 += block_size) { + const int col = col0 + tid; + + if (ncols_template == 0 && col >= ncols) { + break; + } + const int ix = rowx*ncols + col; const int iy = rowy*ncols + col; - max_val = sycl::max(max_val, x[ix] * scale + (y ? y[iy] : 0.0f)); + + const float val = x[ix]*scale + (mask ? mask[iy] : 0.0f) + (pos ? slope*pos[col] : 0.0f); + + vals[col] = val; + max_val = sycl::max(max_val, val); } // find the max value in the block @@ -8151,30 +8365,12 @@ static void soft_max_f32(const float * x, const float * y, float * dst, const in if (warp_id == 0) { buf[lane_id] = -INFINITY; } - /* - DPCT1118:12: SYCL group functions and algorithms must be encountered in - converged control flow. You may need to adjust the code. - */ - /* - DPCT1065:60: Consider replacing sycl::nd_item::barrier() with - sycl::nd_item::barrier(sycl::access::fence_space::local_space) for - better performance if there is no access to global memory. - */ - item_ct1.barrier(); + item_ct1.barrier(sycl::access::fence_space::local_space); if (lane_id == 0) { buf[warp_id] = max_val; } - /* - DPCT1118:13: SYCL group functions and algorithms must be encountered in - converged control flow. You may need to adjust the code. - */ - /* - DPCT1065:61: Consider replacing sycl::nd_item::barrier() with - sycl::nd_item::barrier(sycl::access::fence_space::local_space) for - better performance if there is no access to global memory. - */ - item_ct1.barrier(); + item_ct1.barrier(sycl::access::fence_space::local_space); max_val = buf[lane_id]; max_val = warp_reduce_max(max_val, item_ct1); @@ -8182,13 +8378,16 @@ static void soft_max_f32(const float * x, const float * y, float * dst, const in float tmp = 0.f; - for (int col = tid; col < ncols; col += block_size) { - const int ix = rowx*ncols + col; - const int iy = rowy*ncols + col; - const float val = - sycl::native::exp((x[ix] * scale + (y ? y[iy] : 0.0f)) - max_val); +#pragma unroll + for (int col0 = 0; col0 < ncols; col0 += block_size) { + const int col = col0 + tid; + if (ncols_template == 0 && col >= ncols) { + break; + } + + const float val = sycl::native::exp(vals[col] - max_val); tmp += val; - dst[ix] = val; + vals[col] = val; } // find the sum of exps in the block @@ -8197,40 +8396,29 @@ static void soft_max_f32(const float * x, const float * y, float * dst, const in if (warp_id == 0) { buf[lane_id] = 0.f; } - /* - DPCT1118:14: SYCL group functions and algorithms must be encountered in - converged control flow. You may need to adjust the code. - */ - /* - DPCT1065:62: Consider replacing sycl::nd_item::barrier() with - sycl::nd_item::barrier(sycl::access::fence_space::local_space) for - better performance if there is no access to global memory. - */ - item_ct1.barrier(); + item_ct1.barrier(sycl::access::fence_space::local_space); if (lane_id == 0) { buf[warp_id] = tmp; } - /* - DPCT1118:15: SYCL group functions and algorithms must be encountered in - converged control flow. You may need to adjust the code. - */ - /* - DPCT1065:63: Consider replacing sycl::nd_item::barrier() with - sycl::nd_item::barrier(sycl::access::fence_space::local_space) for - better performance if there is no access to global memory. - */ - item_ct1.barrier(); + item_ct1.barrier(sycl::access::fence_space::local_space); tmp = buf[lane_id]; tmp = warp_reduce_sum(tmp, item_ct1); } - const float inv_tmp = 1.f / tmp; + const float inv_sum = 1.f / tmp; - for (int col = tid; col < ncols; col += block_size) { - const int i = rowx*ncols + col; - dst[i] *= inv_tmp; +#pragma unroll + for (int col0 = 0; col0 < ncols; col0 += block_size) { + const int col = col0 + tid; + + if (ncols_template == 0 && col >= ncols) { + return; + } + + const int idst = rowx*ncols + col; + dst[idst] = vals[col] * inv_sum; } } @@ -8295,6 +8483,62 @@ static void im2col_kernel(const float *x, T *dst, int offset_delta, } } +template +static void pool2d_nchw_kernel( + const int ih, const int iw, const int oh, const int ow, + const int kh, const int kw, const int sh, const int sw, + const int ph, const int pw, const int parallel_elements, + const Ti* src, To* dst, const enum ggml_op_pool op, + const sycl::nd_item<3> &item_ct1) { + int idx = item_ct1.get_local_id(2) + + item_ct1.get_group(2) * item_ct1.get_local_range(2); + if (idx >= parallel_elements) { + return; + } + + const int I_HW = ih * iw; + const int O_HW = oh * ow; + const int nc = idx / O_HW; + const int cur_oh = idx % O_HW / ow; + const int cur_ow = idx % O_HW % ow; + const Ti* i_ptr = src + nc * I_HW; + To* o_ptr = dst + nc * O_HW; + const int start_h = cur_oh * sh - ph; + const int bh = sycl::max(0, start_h); + const int eh = sycl::min(ih, start_h + kh); + const int start_w = cur_ow * sw - pw; + const int bw = sycl::max(0, start_w); + const int ew = sycl::min(iw, start_w + kw); + + To res = 0; + + switch (op) { + case GGML_OP_POOL_AVG: res = 0; break; + case GGML_OP_POOL_MAX: res = -FLT_MAX; break; + } + + for (int i = bh; i < eh; i += 1) { + for (int j = bw; j < ew; j += 1) { +#if DPCT_COMPATIBILITY_TEMP >= 350 + /* + DPCT1098:106: The '*' expression is used instead of the __ldg + call. These two expressions do not provide the exact same + functionality. Check the generated code for potential precision + and/or performance issues. + */ + Ti cur = *(i_ptr + i * iw + j); +#else + Ti cur = i_ptr[i * iw + j]; +#endif + switch (op) { + case GGML_OP_POOL_AVG: res += (cur / (kh * kw)); break; + case GGML_OP_POOL_MAX: res = sycl::max(res, (To)cur); break; + } + } + } + o_ptr[cur_oh * ow + cur_ow] = res; +} + template static void get_rows_sycl(const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst, const void *src0_dd, @@ -8583,6 +8827,30 @@ static void relu_f32_sycl(const float *x, float *dst, const int k, }); } +static void hardsigmoid_f32_sycl(const float *x, float *dst, const int k, + dpct::queue_ptr stream) { + const int num_blocks = (k + SYCL_HARDSIGMOID_BLOCK_SIZE - 1) / SYCL_HARDSIGMOID_BLOCK_SIZE; + stream->parallel_for( + sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * + sycl::range<3>(1, 1, SYCL_HARDSIGMOID_BLOCK_SIZE), + sycl::range<3>(1, 1, SYCL_HARDSIGMOID_BLOCK_SIZE)), + [=](sycl::nd_item<3> item_ct1) { + hardsigmoid_f32(x, dst, k, item_ct1); + }); +} + +static void hardswish_f32_sycl(const float *x, float *dst, const int k, + dpct::queue_ptr stream) { + const int num_blocks = (k + SYCL_HARDSWISH_BLOCK_SIZE - 1) / SYCL_HARDSWISH_BLOCK_SIZE; + stream->parallel_for( + sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * + sycl::range<3>(1, 1, SYCL_HARDSWISH_BLOCK_SIZE), + sycl::range<3>(1, 1, SYCL_HARDSWISH_BLOCK_SIZE)), + [=](sycl::nd_item<3> item_ct1) { + hardswish_f32(x, dst, k, item_ct1); + }); +} + static void leaky_relu_f32_sycl(const float *x, float *dst, const int k, const float negative_slope, dpct::queue_ptr stream) { @@ -8809,11 +9077,10 @@ template static void dequantize_block_sycl(const void *__restrict__ vx, dst_t *__restrict__ y, const int k, dpct::queue_ptr stream) { - const int num_blocks = (k + SYCL_DEQUANTIZE_BLOCK_SIZE - 1) / SYCL_DEQUANTIZE_BLOCK_SIZE; + const int num_blocks = (k + 2*SYCL_DEQUANTIZE_BLOCK_SIZE - 1) / (2*SYCL_DEQUANTIZE_BLOCK_SIZE); { dpct::has_capability_or_fail(stream->get_device(), {sycl::aspect::fp16}); - stream->parallel_for( sycl::nd_range<3>( sycl::range<3>(1, 1, num_blocks) * @@ -9188,192 +9455,22 @@ static void convert_mul_mat_vec_f16_sycl(const void *vx, const dfloat *y, } } -static void mul_mat_vec_q4_0_q8_1_sycl(const void *vx, const void *vy, - float *dst, const int ncols, - const int nrows, - dpct::queue_ptr stream) { - GGML_ASSERT(ncols % QK4_0 == 0); - const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; - const sycl::range<3> block_nums(1, 1, block_num_y); - const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); - stream->parallel_for( - sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { - mul_mat_vec_q(vx, vy, dst, ncols, nrows, - item_ct1); - }); -} - -static void mul_mat_vec_q4_1_q8_1_sycl(const void *vx, const void *vy, - float *dst, const int ncols, - const int nrows, - dpct::queue_ptr stream) { - GGML_ASSERT(ncols % QK4_1 == 0); - const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; - const sycl::range<3> block_nums(1, 1, block_num_y); - const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); - stream->parallel_for( - sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { - mul_mat_vec_q(vx, vy, dst, ncols, nrows, - item_ct1); - }); -} - -static void mul_mat_vec_q5_0_q8_1_sycl(const void *vx, const void *vy, - float *dst, const int ncols, - const int nrows, - dpct::queue_ptr stream) { - GGML_ASSERT(ncols % QK5_0 == 0); - const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; - const sycl::range<3> block_nums(1, 1, block_num_y); - const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); - stream->parallel_for( - sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { - mul_mat_vec_q(vx, vy, dst, ncols, nrows, - item_ct1); - }); -} - -static void mul_mat_vec_q5_1_q8_1_sycl(const void *vx, const void *vy, - float *dst, const int ncols, - const int nrows, - dpct::queue_ptr stream) { - GGML_ASSERT(ncols % QK5_1 == 0); - const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; - const sycl::range<3> block_nums(1, 1, block_num_y); - const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); - stream->parallel_for( - sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { - mul_mat_vec_q(vx, vy, dst, ncols, nrows, - item_ct1); - }); -} - -static void mul_mat_vec_q8_0_q8_1_sycl(const void *vx, const void *vy, - float *dst, const int ncols, - const int nrows, - dpct::queue_ptr stream) { - GGML_ASSERT(ncols % QK8_0 == 0); - const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; - const sycl::range<3> block_nums(1, 1, block_num_y); - const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); - stream->parallel_for( - sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { - mul_mat_vec_q(vx, vy, dst, ncols, nrows, - item_ct1); - }); -} - -static void mul_mat_vec_q2_K_q8_1_sycl(const void *vx, const void *vy, - float *dst, const int ncols, - const int nrows, - dpct::queue_ptr stream) { - GGML_ASSERT(ncols % QK_K == 0); - const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; - const sycl::range<3> block_nums(1, 1, block_num_y); - const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); - stream->parallel_for( - sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { - mul_mat_vec_q(vx, vy, dst, ncols, nrows, - item_ct1); - }); -} - -static void mul_mat_vec_q3_K_q8_1_sycl(const void *vx, const void *vy, - float *dst, const int ncols, - const int nrows, - dpct::queue_ptr stream) { - GGML_ASSERT(ncols % QK_K == 0); - const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; - const sycl::range<3> block_nums(1, 1, block_num_y); - const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); - stream->parallel_for( - sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { - mul_mat_vec_q(vx, vy, dst, ncols, nrows, - item_ct1); - }); -} - -static void mul_mat_vec_q4_K_q8_1_sycl(const void *vx, const void *vy, - float *dst, const int ncols, - const int nrows, - dpct::queue_ptr stream) { - GGML_ASSERT(ncols % QK_K == 0); - const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; - const sycl::range<3> block_nums(1, 1, block_num_y); - const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); - stream->parallel_for( - sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { - mul_mat_vec_q(vx, vy, dst, ncols, nrows, - item_ct1); - }); -} - -static void mul_mat_vec_q5_K_q8_1_sycl(const void *vx, const void *vy, - float *dst, const int ncols, - const int nrows, - dpct::queue_ptr stream) { - GGML_ASSERT(ncols % QK_K == 0); - const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; - const sycl::range<3> block_nums(1, 1, block_num_y); - const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); - stream->parallel_for( - sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { - mul_mat_vec_q(vx, vy, dst, ncols, nrows, - item_ct1); - }); -} - -static void mul_mat_vec_q6_K_q8_1_sycl(const void *vx, const void *vy, - float *dst, const int ncols, - const int nrows, - dpct::queue_ptr stream) { - GGML_ASSERT(ncols % QK_K == 0); - const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; - const sycl::range<3> block_nums(1, 1, block_num_y); - const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); - stream->parallel_for( - sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { - mul_mat_vec_q(vx, vy, dst, ncols, nrows, - item_ct1); - }); -} - -int get_device_index_by_id(int id){ - int res = g_sycl_device_id2index[id].index; - // GGML_SYCL_DEBUG("get_device_index_by_id id=%d device_index=%d\n", id, res); - GGML_ASSERT(res>=0); - return res; -} - -int get_device_id_by_index(int index){ - int res = g_device_caps[index].device_id; - GGML_ASSERT(res>=0); - return res; -} - - -int get_current_device_index(){ - return get_device_index_by_id(dpct::dev_mgr::instance().current_device_id()); +template +static void mul_mat_vec_q_sycl_submitter(const void *vx, const void *vy, + float *dst, const int ncols, + const int nrows, + dpct::queue_ptr stream) { + GGML_ASSERT(ncols % QK4_0 == 0); + const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; + const sycl::range<3> block_nums(1, 1, block_num_y); + const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); + stream->parallel_for( + sycl::nd_range<3>(block_nums * block_dims, block_dims), [= + ](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { + mul_mat_vec_q( + vx, vy, dst, ncols, nrows, item_ct1); + }); } static void ggml_mul_mat_q4_0_q8_1_sycl(const void *vx, const void *vy, @@ -9384,7 +9481,7 @@ static void ggml_mul_mat_q4_0_q8_1_sycl(const void *vx, const void *vy, int id; SYCL_CHECK( - CHECK_TRY_ERROR(id = get_current_device_index())); + CHECK_TRY_ERROR(id = get_current_device_id())); const int compute_capability = g_device_caps[id].cc; int mmq_x, mmq_y, nwarps; @@ -9499,7 +9596,7 @@ static void ggml_mul_mat_q4_1_q8_1_sycl(const void *vx, const void *vy, int id; SYCL_CHECK( - CHECK_TRY_ERROR(id = get_current_device_index())); + CHECK_TRY_ERROR(id = get_current_device_id())); const int compute_capability = g_device_caps[id].cc; int mmq_x, mmq_y, nwarps; @@ -9614,7 +9711,7 @@ static void ggml_mul_mat_q5_0_q8_1_sycl(const void *vx, const void *vy, int id; SYCL_CHECK( - CHECK_TRY_ERROR(id = get_current_device_index())); + CHECK_TRY_ERROR(id = get_current_device_id())); const int compute_capability = g_device_caps[id].cc; int mmq_x, mmq_y, nwarps; @@ -9729,7 +9826,7 @@ static void ggml_mul_mat_q5_1_q8_1_sycl(const void *vx, const void *vy, int id; SYCL_CHECK( - CHECK_TRY_ERROR(id = get_current_device_index())); + CHECK_TRY_ERROR(id = get_current_device_id())); const int compute_capability = g_device_caps[id].cc; int mmq_x, mmq_y, nwarps; @@ -9844,7 +9941,7 @@ static void ggml_mul_mat_q8_0_q8_1_sycl(const void *vx, const void *vy, int id; SYCL_CHECK( - CHECK_TRY_ERROR(id = get_current_device_index())); + CHECK_TRY_ERROR(id = get_current_device_id())); const int compute_capability = g_device_caps[id].cc; int mmq_x, mmq_y, nwarps; @@ -9959,7 +10056,7 @@ static void ggml_mul_mat_q2_K_q8_1_sycl(const void *vx, const void *vy, int id; SYCL_CHECK( - CHECK_TRY_ERROR(id = get_current_device_index())); + CHECK_TRY_ERROR(id = get_current_device_id())); const int compute_capability = g_device_caps[id].cc; int mmq_x, mmq_y, nwarps; @@ -10082,7 +10179,7 @@ static void ggml_mul_mat_q3_K_q8_1_sycl(const void *vx, const void *vy, int id; SYCL_CHECK( - CHECK_TRY_ERROR(id = get_current_device_index())); + CHECK_TRY_ERROR(id = get_current_device_id())); const int compute_capability = g_device_caps[id].cc; int mmq_x, mmq_y, nwarps; @@ -10210,7 +10307,7 @@ static void ggml_mul_mat_q4_K_q8_1_sycl(const void *vx, const void *vy, int id; SYCL_CHECK( - CHECK_TRY_ERROR(id = get_current_device_index())); + CHECK_TRY_ERROR(id = get_current_device_id())); const int compute_capability = g_device_caps[id].cc; int mmq_x, mmq_y, nwarps; @@ -10331,7 +10428,7 @@ static void ggml_mul_mat_q5_K_q8_1_sycl(const void *vx, const void *vy, int id; SYCL_CHECK( - CHECK_TRY_ERROR(id = get_current_device_index())); + CHECK_TRY_ERROR(id = get_current_device_id())); const int compute_capability = g_device_caps[id].cc; int mmq_x, mmq_y, nwarps; @@ -10452,7 +10549,7 @@ static void ggml_mul_mat_q6_K_q8_1_sycl(const void *vx, const void *vy, int id; SYCL_CHECK( - CHECK_TRY_ERROR(id = get_current_device_index())); + CHECK_TRY_ERROR(id = get_current_device_id())); const int compute_capability = g_device_caps[id].cc; int mmq_x, mmq_y, nwarps; @@ -10608,6 +10705,31 @@ static void ggml_mul_mat_vec_nc_f16_f32_sycl( } } +static void +ggml_cpy_f16_f32_sycl(const char *cx, char *cdst, const int ne, const int ne00, + const int ne01, const int ne02, const int nb00, + const int nb01, const int nb02, const int nb03, + const int ne10, const int ne11, const int ne12, + const int nb10, const int nb11, const int nb12, + const int nb13, dpct::queue_ptr stream) { + + const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE; + { + dpct::has_capability_or_fail(stream->get_device(), + {sycl::aspect::fp16}); + + stream->parallel_for( + sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * + sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE), + sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)), + [=](sycl::nd_item<3> item_ct1) { + cpy_f32_f16(cx, cdst, ne, ne00, ne01, ne02, nb00, + nb01, nb02, nb03, ne10, ne11, ne12, + nb10, nb11, nb12, nb13, item_ct1); + }); + } +} + static void ggml_cpy_f32_f32_sycl(const char *cx, char *cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, @@ -10977,7 +11099,7 @@ static void argsort_f32_i32_sycl(const float *x, int *dst, const int ncols, const sycl::range<3> block_dims(1, 1, ncols); const sycl::range<3> block_nums(1, nrows, 1); - if (order == GGML_SORT_ASC) { + if (order == GGML_SORT_ORDER_ASC) { /* DPCT1049:44: The work-group size passed to the SYCL kernel may exceed the limit. To get the device limit, query @@ -10986,9 +11108,9 @@ static void argsort_f32_i32_sycl(const float *x, int *dst, const int ncols, stream->parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) { - k_argsort_f32_i32(x, dst, ncols, item_ct1); + k_argsort_f32_i32(x, dst, ncols, item_ct1); }); - } else if (order == GGML_SORT_DESC) { + } else if (order == GGML_SORT_ORDER_DESC) { /* DPCT1049:45: The work-group size passed to the SYCL kernel may exceed the limit. To get the device limit, query @@ -10997,7 +11119,7 @@ static void argsort_f32_i32_sycl(const float *x, int *dst, const int ncols, stream->parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) { - k_argsort_f32_i32(x, dst, ncols, item_ct1); + k_argsort_f32_i32(x, dst, ncols, item_ct1); }); } else { GGML_ASSERT(false); @@ -11019,35 +11141,96 @@ static void diag_mask_inf_f32_sycl(const float *x, float *dst, }); } -static void soft_max_f32_sycl(const float *x, const float *y, float *dst, - const int ncols_x, const int nrows_x, - const int nrows_y, const float scale, +template +static void soft_max_f32_submitter(const float * x, const float * mask, const float *pos, float * dst, const int ncols_par, + const int nrows_y, const float scale, const float max_bias, const float m0, + const float m1, uint32_t n_head_log2, sycl::range<3> block_nums, sycl::range<3> block_dims, + const size_t n_local_scratch, dpct::queue_ptr stream) { + stream->submit([&](sycl::handler &cgh) { + sycl::local_accessor local_buf_acc(n_local_scratch, cgh); + + cgh.parallel_for( + sycl::nd_range<3>(block_nums * block_dims, block_dims), + [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { + soft_max_f32(x, mask, pos, dst, ncols_par, + nrows_y, scale, max_bias, m0, + m1, n_head_log2, item_ct1, + local_buf_acc.get_pointer()); + }); + }); +} + +static void soft_max_f32_sycl(const float * x, const float * mask, const float * pos, + float * dst, const int ncols_x, const int nrows_x, + const int nrows_y, const float scale, const float max_bias, dpct::queue_ptr stream) { int nth = WARP_SIZE; while (nth < ncols_x && nth < SYCL_SOFT_MAX_BLOCK_SIZE) nth *= 2; const sycl::range<3> block_dims(1, 1, nth); const sycl::range<3> block_nums(1, 1, nrows_x); - /* - DPCT1049:46: The work-group size passed to the SYCL kernel may exceed the - limit. To get the device limit, query info::device::max_work_group_size. - Adjust the work-group size if needed. - */ - stream->submit([&](sycl::handler &cgh) { - /* - DPCT1101:96: 'SYCL_SOFT_MAX_BLOCK_SIZE/WARP_SIZE' expression was - replaced with a value. Modify the code to use the original expression, - provided in comments, if it is correct. - */ - sycl::local_accessor buf_acc_ct1( - sycl::range<1>(32 /*SYCL_SOFT_MAX_BLOCK_SIZE/WARP_SIZE*/), cgh); + const size_t n_local_scratch = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE); + static_assert(SYCL_SOFT_MAX_BLOCK_SIZE == 1024, "These values need to be adjusted."); - cgh.parallel_for( - sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { - soft_max_f32(x, y, dst, ncols_x, nrows_y, scale, item_ct1, - buf_acc_ct1.get_pointer()); - }); - }); + const uint32_t n_head_kv = nrows_x/nrows_y; + const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv)); + + const float m0 = powf(2.0f, -(max_bias ) / n_head_log2); + const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); + + const size_t local_mem_size = stream->get_device().get_info(); + if (n_local_scratch*sizeof(float) < local_mem_size) { + switch (ncols_x) { + case 32: + soft_max_f32_submitter(x, mask, pos, dst, ncols_x, nrows_y, scale, + max_bias, m0, m1, n_head_log2, block_nums, + block_dims, n_local_scratch, stream); + break; + case 64: + soft_max_f32_submitter(x, mask, pos, dst, ncols_x, nrows_y, scale, + max_bias, m0, m1, n_head_log2, block_nums, + block_dims, n_local_scratch, stream); + break; + case 128: + soft_max_f32_submitter(x, mask, pos, dst, ncols_x, nrows_y, scale, + max_bias, m0, m1, n_head_log2, block_nums, + block_dims, n_local_scratch, stream); + break; + case 256: + soft_max_f32_submitter(x, mask, pos, dst, ncols_x, nrows_y, scale, + max_bias, m0, m1, n_head_log2, block_nums, + block_dims, n_local_scratch, stream); + break; + case 512: + soft_max_f32_submitter(x, mask, pos, dst, ncols_x, nrows_y, scale, + max_bias, m0, m1, n_head_log2, block_nums, + block_dims, n_local_scratch, stream); + break; + case 1024: + soft_max_f32_submitter(x, mask, pos, dst, ncols_x, nrows_y, scale, + max_bias, m0, m1, n_head_log2, block_nums, + block_dims, n_local_scratch, stream); + break; + case 2048: + soft_max_f32_submitter(x, mask, pos, dst, ncols_x, nrows_y, scale, + max_bias, m0, m1, n_head_log2, block_nums, + block_dims, n_local_scratch, stream); + break; + case 4096: + soft_max_f32_submitter(x, mask, pos, dst, ncols_x, nrows_y, scale, + max_bias, m0, m1, n_head_log2, block_nums, + block_dims, n_local_scratch, stream); + break; + default: + soft_max_f32_submitter(x, mask, pos, dst, ncols_x, nrows_y, scale, + max_bias, m0, m1, n_head_log2, block_nums, + block_dims, n_local_scratch, stream); + break; + } + } else { + soft_max_f32_submitter(x, mask, pos, dst, ncols_x, nrows_y, scale, + max_bias, m0, m1, n_head_log2, block_nums, + block_dims, WARP_SIZE, stream); + } } template @@ -11103,12 +11286,9 @@ struct sycl_buffer { static sycl_buffer g_sycl_buffer_pool[GGML_SYCL_MAX_DEVICES][MAX_SYCL_BUFFERS]; static size_t g_sycl_pool_size[GGML_SYCL_MAX_DEVICES] = {0}; -static void *ggml_sycl_pool_malloc_leg(size_t size, size_t *actual_size) try { +static void *ggml_sycl_pool_malloc_leg(int device_index, size_t size, size_t *actual_size) try { scoped_spin_lock lock(g_sycl_pool_lock); - int id; - SYCL_CHECK( - CHECK_TRY_ERROR(id = get_current_device_index())); - // GGML_SYCL_DEBUG("ggml_sycl_pool_malloc_leg index %d\n", id); + // GGML_SYCL_DEBUG("ggml_sycl_pool_malloc_leg device_index %d size=%lu\n", device_index, size); #ifdef DEBUG_SYCL_MALLOC int nnz = 0; size_t max_size = 0; @@ -11116,7 +11296,7 @@ static void *ggml_sycl_pool_malloc_leg(size_t size, size_t *actual_size) try { size_t best_diff = 1ull << 36; int ibest = -1; for (int i = 0; i < MAX_SYCL_BUFFERS; ++i) { - sycl_buffer& b = g_sycl_buffer_pool[id][i]; + sycl_buffer& b = g_sycl_buffer_pool[device_index][i]; if (b.ptr != nullptr) { #ifdef DEBUG_SYCL_MALLOC ++nnz; @@ -11132,7 +11312,7 @@ static void *ggml_sycl_pool_malloc_leg(size_t size, size_t *actual_size) try { *actual_size = b.size; b.ptr = nullptr; b.size = 0; - // GGML_SYCL_DEBUG("ggml_sycl_pool_malloc_leg return 1 %p\n", ptr); + // GGML_SYCL_DEBUG("ggml_sycl_pool_malloc_leg return 1 %p and rm in pool\n", ptr); return ptr; } } @@ -11140,30 +11320,30 @@ static void *ggml_sycl_pool_malloc_leg(size_t size, size_t *actual_size) try { } } if (ibest >= 0) { - sycl_buffer& b = g_sycl_buffer_pool[id][ibest]; + sycl_buffer& b = g_sycl_buffer_pool[device_index][ibest]; void * ptr = b.ptr; *actual_size = b.size; b.ptr = nullptr; b.size = 0; - // GGML_SYCL_DEBUG("ggml_sycl_pool_malloc_leg return 2 %p\n", ptr); + // GGML_SYCL_DEBUG("ggml_sycl_pool_malloc_leg return 2 %p and rm in pool\n", ptr); return ptr; } void * ptr; size_t look_ahead_size = (size_t) (1.05 * size); look_ahead_size = 256 * ((look_ahead_size + 255)/256); - const dpct::queue_ptr stream = g_syclStreams[id][0]; + const dpct::queue_ptr stream = g_syclStreams[device_index][0]; SYCL_CHECK( CHECK_TRY_ERROR(ptr = (void *)sycl::malloc_device( look_ahead_size, *stream))); *actual_size = look_ahead_size; - g_sycl_pool_size[id] += look_ahead_size; + g_sycl_pool_size[device_index] += look_ahead_size; #ifdef DEBUG_SYCL_MALLOC fprintf(stderr, "%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, requested %u MB\n", __func__, id, nnz, (uint32_t)(max_size/1024/1024), (uint32_t)(g_sycl_pool_size[id]/1024/1024), (uint32_t)(size/1024/1024)); #endif - // GGML_SYCL_DEBUG("ggml_sycl_pool_malloc_leg return %p\n", ptr); + // GGML_SYCL_DEBUG("ggml_sycl_pool_malloc_leg look_ahead_size=%lu, return %p\n", look_ahead_size, ptr); return ptr; } catch (sycl::exception const &exc) { @@ -11172,15 +11352,11 @@ catch (sycl::exception const &exc) { std::exit(1); } -static void ggml_sycl_pool_free_leg(void *ptr, size_t size) try { +static void ggml_sycl_pool_free_leg(int device_index, void *ptr, size_t size) try { scoped_spin_lock lock(g_sycl_pool_lock); - int id; - SYCL_CHECK( - CHECK_TRY_ERROR(id = get_current_device_index())); - - const dpct::queue_ptr stream = g_syclStreams[id][0]; + const dpct::queue_ptr stream = g_syclStreams[device_index][0]; for (int i = 0; i < MAX_SYCL_BUFFERS; ++i) { - sycl_buffer& b = g_sycl_buffer_pool[id][i]; + sycl_buffer& b = g_sycl_buffer_pool[device_index][i]; if (b.ptr == nullptr) { b.ptr = ptr; b.size = size; @@ -11189,7 +11365,7 @@ static void ggml_sycl_pool_free_leg(void *ptr, size_t size) try { } fprintf(stderr, "WARNING: sycl buffer pool full, increase MAX_SYCL_BUFFERS\n"); SYCL_CHECK(CHECK_TRY_ERROR(sycl::free(ptr, *stream))); - g_sycl_pool_size[id] -= size; + g_sycl_pool_size[device_index] -= size; } catch (sycl::exception const &exc) { std::cerr << exc.what() << "Exception caught at file:" << __FILE__ @@ -11206,7 +11382,8 @@ DPCT1082:64: Migration of CUmemGenericAllocationHandle type is not supported. static dpct::device_ptr g_sycl_pool_addr[GGML_SYCL_MAX_DEVICES] = {0}; static size_t g_sycl_pool_used[GGML_SYCL_MAX_DEVICES] = {0}; -static void *ggml_sycl_pool_malloc_vmm(size_t size, size_t *actual_size) try { +static void *ggml_sycl_pool_malloc_vmm(int device_index, size_t size, size_t *actual_size) try { + GGML_UNUSED(device_index); GGML_UNUSED(size); GGML_UNUSED(actual_size); return NULL; @@ -11217,20 +11394,16 @@ catch (sycl::exception const &exc) { std::exit(1); } -static void ggml_sycl_pool_free_vmm(void *ptr, size_t size) try { +static void ggml_sycl_pool_free_vmm(int device_index, void *ptr, size_t size) try { scoped_spin_lock lock(g_sycl_pool_lock); - int id; - SYCL_CHECK( - CHECK_TRY_ERROR(id = dpct::dev_mgr::instance().current_device_id())); - #ifdef DEBUG_SYCL_MALLOC - printf("sycl pool[%d]: freed %llu bytes at %llx\n", id, (unsigned long long) size, ptr); + printf("sycl pool[%d]: freed %llu bytes at %llx\n", device_index, (unsigned long long) size, ptr); #endif - g_sycl_pool_used[id] -= size; + g_sycl_pool_used[device_index] -= size; // all deallocations must be in reverse order of the allocations - GGML_ASSERT(ptr == (void *) (g_sycl_pool_addr[id] + g_sycl_pool_used[id])); + GGML_ASSERT(ptr == (void *) (g_sycl_pool_addr[device_index] + g_sycl_pool_used[device_index])); } catch (sycl::exception const &exc) { std::cerr << exc.what() << "Exception caught at file:" << __FILE__ @@ -11238,14 +11411,11 @@ catch (sycl::exception const &exc) { std::exit(1); } -static void *ggml_sycl_pool_malloc(size_t size, size_t *actual_size) try { - int id; - SYCL_CHECK( - CHECK_TRY_ERROR(id = get_current_device_index())); - if (g_device_caps[id].vmm) { - return ggml_sycl_pool_malloc_vmm(size, actual_size); +static void *ggml_sycl_pool_malloc(int device_index, size_t size, size_t *actual_size) try { + if (g_device_caps[device_index].vmm) { + return ggml_sycl_pool_malloc_vmm(device_index, size, actual_size); } else { - return ggml_sycl_pool_malloc_leg(size, actual_size); + return ggml_sycl_pool_malloc_leg(device_index, size, actual_size); } } catch (sycl::exception const &exc) { @@ -11254,14 +11424,11 @@ catch (sycl::exception const &exc) { std::exit(1); } -static void ggml_sycl_pool_free(void *ptr, size_t size) try { - int id; - SYCL_CHECK( - CHECK_TRY_ERROR(id = get_current_device_index())); - if (g_device_caps[id].vmm) { - ggml_sycl_pool_free_vmm(ptr, size); +static void ggml_sycl_pool_free(int device_index, void *ptr, size_t size) try { + if (g_device_caps[device_index].vmm) { + ggml_sycl_pool_free_vmm(device_index, ptr, size); } else { - ggml_sycl_pool_free_leg(ptr, size); + ggml_sycl_pool_free_leg(device_index, ptr, size); } } catch (sycl::exception const &exc) { @@ -11273,13 +11440,17 @@ catch (sycl::exception const &exc) { template struct sycl_pool_alloc { + int device_index = -1; + int device_id = -1; T * ptr = nullptr; size_t actual_size = 0; // size is in number of elements T * alloc(size_t size) { GGML_ASSERT(ptr == nullptr); - ptr = (T *) ggml_sycl_pool_malloc(size * sizeof(T), &this->actual_size); + device_id = get_current_device_id(); + device_index = g_sycl_gpu_mgr->get_index(device_id); + ptr = (T *) ggml_sycl_pool_malloc(device_index, size * sizeof(T), &this->actual_size); // GGML_SYCL_DEBUG("alloc %lu return %p actual size=%lu\n", size * sizeof(T), ptr, this->actual_size); return ptr; } @@ -11290,7 +11461,7 @@ struct sycl_pool_alloc { ~sycl_pool_alloc() { if (ptr != nullptr) { - ggml_sycl_pool_free(ptr, actual_size); + ggml_sycl_pool_free(device_index, ptr, actual_size); } } @@ -11311,44 +11482,57 @@ bool ggml_sycl_loaded(void) { return g_sycl_loaded; } -void ggml_backend_sycl_print_sycl_devices(){ - int device_count = dpct::dev_mgr::instance().device_count(); - fprintf(stderr, "found %d SYCL devices:\n", device_count); - for (int id = 0; id < device_count; ++id) { - dpct::device_info prop; - SYCL_CHECK(CHECK_TRY_ERROR(dpct::get_device_info( - prop, dpct::dev_mgr::instance().get_device(id)))); - sycl::device cur_device = dpct::dev_mgr::instance().get_device(id); - fprintf(stderr, " Device %d: %s,\tcompute capability %d.%d,\n\tmax compute_units %d,\tmax work group size %d,\tmax sub group size %d,\tglobal mem size %lu\n", id, - prop.get_name(), prop.get_major_version(), - prop.get_minor_version(), - prop.get_max_compute_units(), - prop.get_max_work_group_size(), - prop.get_max_sub_group_size(), - prop.get_global_mem_size() - ); - } - // fprintf(stderr, "\n"); +void print_device_detail(int id) { + dpct::device_info prop; + SYCL_CHECK(CHECK_TRY_ERROR( + dpct::get_device_info(prop, dpct::dev_mgr::instance().get_device(id)))); + sycl::device cur_device = dpct::dev_mgr::instance().get_device(id); + std::string version; + version += std::to_string(prop.get_major_version()); + version += "."; + version += std::to_string(prop.get_minor_version()); + + fprintf(stderr, "|%2d|%45s|%18s|%17d|%14d|%13d|%15lu|\n", id, + prop.get_name(), version.c_str(), prop.get_max_compute_units(), + prop.get_max_work_group_size(), prop.get_max_sub_group_size(), + prop.get_global_mem_size()); } -int get_sycl_env(const char* env_name, int default_val){ - char * user_device_string = getenv(env_name); +void ggml_backend_sycl_print_sycl_devices() { + int device_count = dpct::dev_mgr::instance().device_count(); + fprintf(stderr, "found %d SYCL devices:\n", device_count); + fprintf(stderr, "|ID| Name |compute capability|Max compute units|Max work group|Max sub group|Global mem size|\n"); + fprintf(stderr, "|--|---------------------------------------------|------------------|-----------------|--------------|-------------|---------------|\n"); + for (int id = 0; id < device_count; ++id) { + print_device_detail(id); + } +} + +void print_gpu_device_list() { + fprintf(stderr, "detect %d SYCL GPUs: [%s] with Max compute units:%d\n", + g_sycl_gpu_mgr->get_gpu_count(), + g_sycl_gpu_mgr->gpus_list.c_str(), + g_sycl_gpu_mgr->max_compute_units); +} + +int get_sycl_env(const char *env_name, int default_val) { + char *user_device_string = getenv(env_name); int user_number = default_val; unsigned n; - if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1) { - user_number = (int)n; - } else { - user_number=default_val; - } + if (user_device_string != NULL && + sscanf(user_device_string, " %u", &n) == 1) { + user_number = (int)n; + } else { + user_number = default_val; + } return user_number; } -int get_work_group_size(int user_device_id){ +int get_work_group_size(int user_device_id) { dpct::device_info prop; - dpct::get_device_info( - prop, - dpct::dev_mgr::instance().get_device(user_device_id)); + dpct::get_device_info(prop, + dpct::dev_mgr::instance().get_device(user_device_id)); return prop.get_max_work_group_size(); } @@ -11357,113 +11541,81 @@ void ggml_init_sycl() try { if (!initialized) { g_ggml_sycl_debug = get_sycl_env("GGML_SYCL_DEBUG", 0); + fprintf(stderr, "%s: GGML_SYCL_DEBUG: %d\n", __func__, g_ggml_sycl_debug); - printf("GGML_SYCL_DEBUG=%d\n", g_ggml_sycl_debug); - - int user_device_id = get_sycl_env("GGML_SYCL_DEVICE", 0); - +#if defined(GGML_SYCL_F16) + fprintf(stderr, "%s: GGML_SYCL_F16: yes\n", __func__); +#else + fprintf(stderr, "%s: GGML_SYCL_F16: no\n", __func__); +#endif if (CHECK_TRY_ERROR(g_all_sycl_device_count = - dpct::dev_mgr::instance().device_count()) != - 0) { + dpct::dev_mgr::instance().device_count()) != 0) { initialized = true; g_sycl_loaded = false; return; } GGML_ASSERT(g_all_sycl_device_count <= GGML_SYCL_MAX_DEVICES); + ggml_backend_sycl_print_sycl_devices(); + + if (!g_sycl_gpu_mgr) g_sycl_gpu_mgr = new sycl_gpu_mgr(); + + g_device_count = g_sycl_gpu_mgr->get_gpu_count(); + g_work_group_size = g_sycl_gpu_mgr->work_group_size; + + print_gpu_device_list(); + int64_t total_vram = 0; -#if defined(GGML_SYCL_F16) - fprintf(stderr, "%s: GGML_SYCL_F16: yes\n", __func__); -#else - fprintf(stderr, "%s: GGML_SYCL_F16: no\n", __func__); -#endif - - +/* NOT REMOVE, keep it for next optimize for XMX. #if defined(SYCL_USE_XMX) fprintf(stderr, "%s: SYCL_USE_XMX: yes\n", __func__); #else fprintf(stderr, "%s: SYCL_USE_XMX: no\n", __func__); #endif - ggml_backend_sycl_print_sycl_devices(); +*/ for (int id = 0; id < GGML_SYCL_MAX_DEVICES; ++id) { - g_sycl_device_id2index[id].index = -1; g_device_caps[id].vmm = 0; g_device_caps[id].device_id = -1; g_device_caps[id].cc = 0; g_tensor_split[id] = 0; + g_default_tensor_split[id] = 0; } - int device_inx = -1; - for (int id = 0; id < g_all_sycl_device_count; ++id) { - if(id!=user_device_id) continue; - - device_inx++; - - g_device_caps[device_inx].vmm = 0; - g_device_caps[device_inx].device_id = id; - g_sycl_device_id2index[id].index = device_inx; + for (int i = 0; i < g_device_count; ++i) { + int device_id = g_sycl_gpu_mgr->gpus[i]; + g_device_caps[i].vmm = 0; dpct::device_info prop; SYCL_CHECK(CHECK_TRY_ERROR(dpct::get_device_info( - prop, dpct::dev_mgr::instance().get_device(id)))); + prop, dpct::dev_mgr::instance().get_device(device_id)))); - g_tensor_split[device_inx] = total_vram; + g_default_tensor_split[i] = total_vram; total_vram += prop.get_global_mem_size(); - g_device_caps[device_inx].cc = + g_device_caps[i].cc = 100 * prop.get_major_version() + 10 * prop.get_minor_version(); - - } - device_inx = -1; - for (int id = 0; id < g_all_sycl_device_count; ++id) { - if(id!=user_device_id) continue; - device_inx++; - g_tensor_split[device_inx] /= total_vram; } - device_inx = -1; - for (int id = 0; id < g_all_sycl_device_count; ++id) { - if(id!=user_device_id) continue; - device_inx++; - SYCL_CHECK(ggml_sycl_set_device(id)); + for (int i = 0; i < g_device_count; ++i) { + g_default_tensor_split[i] /= total_vram; + } + + for (int i = 0; i < g_device_count; ++i) { + SYCL_CHECK(ggml_sycl_set_device(i)); // create sycl streams for (int is = 0; is < MAX_STREAMS; ++is) { - /* - DPCT1025:88: The SYCL queue is created ignoring the flag and - priority options. - */ SYCL_CHECK(CHECK_TRY_ERROR( - g_syclStreams[device_inx][is] = - dpct::get_current_device().create_queue())); + g_syclStreams[i][is] = + dpct::get_current_device().create_queue( + g_sycl_gpu_mgr->get_co_ctx(), dpct::get_current_device()))); } - const dpct::queue_ptr stream = g_syclStreams[device_inx][0]; + const dpct::queue_ptr stream = g_syclStreams[i][0]; // create sycl handle - SYCL_CHECK(CHECK_TRY_ERROR(g_sycl_handles[device_inx] = - stream)); - /* - DPCT1027:89: The call to syclSetMathMode was replaced with 0 - because this functionality is redundant in SYCL. - */ - SYCL_CHECK(0); + SYCL_CHECK(CHECK_TRY_ERROR(g_sycl_handles[i] = stream)); } - // configure logging to stdout - // SYCL_CHECK(syclLoggerConfigure(1, 1, 0, nullptr)); - - //hardcode, force set to 1 device - g_device_count = 1; - ggml_sycl_set_main_device(user_device_id); - ggml_sycl_set_device(user_device_id); - g_work_group_size = get_work_group_size(user_device_id); - // fprintf(stderr, "Using Device %d\n", user_device_id); - - // for (int id = 0; id < g_all_sycl_device_count; ++id) { - // GGML_SYCL_DEBUG("id=%d g_device_caps[%d].device_id=%d g_sycl_device_id2index[%d].index=%d ", id, id, - // g_device_caps[id].device_id, id, g_sycl_device_id2index[id].index); - // } - initialized = true; g_sycl_loaded = true; } @@ -11474,31 +11626,6 @@ catch (sycl::exception const &exc) { std::exit(1); } - -void ggml_sycl_set_tensor_split(const float * tensor_split) { - if (tensor_split == nullptr) { - return; - } - bool all_zero = true; - for (int i = 0; i < g_device_count; ++i) { - if (tensor_split[i] != 0.0f) { - all_zero = false; - break; - } - } - if (all_zero) { - return; - } - float split_sum = 0.0f; - for (int i = 0; i < g_device_count; ++i) { - g_tensor_split[i] = split_sum; - split_sum += tensor_split[i]; - } - for (int i = 0; i < g_device_count; ++i) { - g_tensor_split[i] /= split_sum; - } -} - void *ggml_sycl_host_malloc(size_t size) try { if (getenv("GGML_SYCL_NO_PINNED") != nullptr) { return nullptr; @@ -11508,28 +11635,14 @@ void *ggml_sycl_host_malloc(size_t size) try { //allow to use dpct::get_in_order_queue() for host malloc dpct::err0 err = CHECK_TRY_ERROR( ptr = (void *)sycl::malloc_host(size, dpct::get_in_order_queue())); - /* - DPCT1000:82: Error handling if-stmt was detected but could not be rewritten. - */ + if (err != 0) { // clear the error - /* - DPCT1026:83: The call to syclGetLastError was removed because this - functionality is redundant in SYCL. - */ - /* - DPCT1001:81: The statement could not be removed. - */ fprintf( stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n", - /* - DPCT1009:84: SYCL uses exceptions to report errors and does not use - the error codes. The original code was commented out and a warning - string was inserted. You need to rewrite this code. - */ size / 1024.0 / 1024.0, - "syclGetErrorString is not supported" /*syclGetErrorString(err)*/); + "syclGetErrorString is not supported"); return nullptr; } @@ -11559,17 +11672,17 @@ static dpct::err0 ggml_sycl_cpy_tensor_2d(void *dst, dpct::memcpy_direction kind; char * src_ptr; - if (src->backend == GGML_BACKEND_CPU) { + if (src->backend == GGML_BACKEND_TYPE_CPU) { kind = dpct::host_to_device; src_ptr = (char *) src->data; - // GGML_SYCL_DEBUG("ggml_sycl_cpy_tensor_2d GGML_BACKEND_CPU src_ptr %p\n", src_ptr); - } else if (src->backend == GGML_BACKEND_GPU || src->backend == GGML_BACKEND_GPU_SPLIT) { - GGML_ASSERT(src->backend != GGML_BACKEND_GPU_SPLIT || (i1_low == 0 && i1_high == src->ne[1])); + // GGML_SYCL_DEBUG("ggml_sycl_cpy_tensor_2d GGML_BACKEND_TYPE_CPU src_ptr %p\n", src_ptr); + } else if (src->backend == GGML_BACKEND_TYPE_GPU || src->backend == GGML_BACKEND_TYPE_GPU_SPLIT) { + GGML_ASSERT(src->backend != GGML_BACKEND_TYPE_GPU_SPLIT || (i1_low == 0 && i1_high == src->ne[1])); kind = dpct::device_to_device; ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra; int id; SYCL_CHECK(CHECK_TRY_ERROR( - id = get_current_device_index())); + id = get_current_device_id())); // GGML_SYCL_DEBUG("current device index %d\n", id); src_ptr = (char *) extra->data_device[id]; } else { @@ -11803,7 +11916,6 @@ inline void ggml_sycl_op_tanh(const ggml_tensor *src0, const ggml_tensor *src1, GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); - tanh_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream); (void) src1; @@ -11826,6 +11938,37 @@ inline void ggml_sycl_op_relu(const ggml_tensor *src0, const ggml_tensor *src1, (void) src1_dd; } +static void ggml_sycl_op_hardsigmoid(const ggml_tensor *src0, + const ggml_tensor *src1, ggml_tensor *dst, + const float *src0_dd, const float *src1_dd, + float *dst_dd, + const dpct::queue_ptr &main_stream) { + + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); + + hardsigmoid_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream); + + (void) src1; + (void) dst; + (void) src1_dd; +} + +static void ggml_sycl_op_hardswish(const ggml_tensor *src0, + const ggml_tensor *src1, ggml_tensor *dst, + const float *src0_dd, const float *src1_dd, + float *dst_dd, const dpct::queue_ptr &main_stream) { + + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); + + hardswish_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream); + + (void) src1; + (void) dst; + (void) src1_dd; +} + inline void ggml_sycl_op_leaky_relu(const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst, const float *src0_dd, const float *src1_dd, @@ -11994,11 +12137,11 @@ inline void ggml_sycl_op_mul_mat_q( int device_id; SYCL_CHECK( - CHECK_TRY_ERROR(device_id = dpct::dev_mgr::instance().current_device_id())); + CHECK_TRY_ERROR(device_id = get_current_device_id())); // the main device has a larger memory buffer to hold the results from all GPUs // nrows_dst == nrows of the matrix that the dequantize_mul_mat kernel writes into - const int64_t nrows_dst = dst->backend == GGML_BACKEND_GPU && device_id == g_main_device ? ne0 : row_diff; + const int64_t nrows_dst = dst->backend == GGML_BACKEND_TYPE_GPU && device_id == g_main_device ? ne0 : row_diff; switch (src0->type) { case GGML_TYPE_Q4_0: @@ -12046,16 +12189,16 @@ catch (sycl::exception const &exc) { std::exit(1); } -static int64_t get_row_rounding(ggml_type type) { +static int64_t get_row_rounding(ggml_type type, const std::array & tensor_split) { int64_t min_compute_capability = INT_MAX; int64_t max_compute_capability = INT_MIN; - for (int64_t id = 0; id < g_device_count; ++id) { - if (g_tensor_split[id] < (id + 1 < g_device_count ? g_tensor_split[id + 1] : 1.0f)) { - if (min_compute_capability > g_device_caps[id].cc) { - min_compute_capability = g_device_caps[id].cc; + for (int i = 0; i < g_device_count; ++i) { + if (tensor_split[i] < (i + 1 < g_device_count ? tensor_split[i + 1] : 1.0f)) { + if (min_compute_capability > g_device_caps[i].cc) { + min_compute_capability = g_device_caps[i].cc; } - if (max_compute_capability < g_device_caps[id].cc) { - max_compute_capability = g_device_caps[id].cc; + if (max_compute_capability < g_device_caps[i].cc) { + max_compute_capability = g_device_caps[i].cc; } } } @@ -12075,12 +12218,16 @@ static int64_t get_row_rounding(ggml_type type) { case GGML_TYPE_Q3_K: case GGML_TYPE_Q4_K: case GGML_TYPE_Q5_K: + case GGML_TYPE_IQ2_XXS: + case GGML_TYPE_IQ2_XS: + case GGML_TYPE_IQ3_XXS: return max_compute_capability >= VER_GEN9 ? 128 : 64; case GGML_TYPE_Q6_K: return 64; default: GGML_ASSERT(false); } + } inline void ggml_sycl_op_mul_mat_vec_q( @@ -12095,37 +12242,63 @@ inline void ggml_sycl_op_mul_mat_vec_q( const int64_t ne00 = src0->ne[0]; const int64_t row_diff = row_high - row_low; + // TODO: support these quantization types + GGML_ASSERT(!(src0->type == GGML_TYPE_IQ2_XXS || + src0->type == GGML_TYPE_IQ2_XS || + src0->type == GGML_TYPE_IQ3_XXS || + src0->type == GGML_TYPE_IQ1_S)); + switch (src0->type) { case GGML_TYPE_Q4_0: - mul_mat_vec_q4_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); - break; + mul_mat_vec_q_sycl_submitter( + src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + break; case GGML_TYPE_Q4_1: - mul_mat_vec_q4_1_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); - break; + mul_mat_vec_q_sycl_submitter( + src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + break; case GGML_TYPE_Q5_0: - mul_mat_vec_q5_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); - break; + mul_mat_vec_q_sycl_submitter( + src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + break; case GGML_TYPE_Q5_1: - mul_mat_vec_q5_1_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); - break; + mul_mat_vec_q_sycl_submitter( + src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + break; case GGML_TYPE_Q8_0: - mul_mat_vec_q8_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); - break; + mul_mat_vec_q_sycl_submitter( + src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + break; case GGML_TYPE_Q2_K: - mul_mat_vec_q2_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); - break; + mul_mat_vec_q_sycl_submitter( + src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + break; case GGML_TYPE_Q3_K: - mul_mat_vec_q3_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); - break; + mul_mat_vec_q_sycl_submitter( + src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + break; case GGML_TYPE_Q4_K: - mul_mat_vec_q4_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); - break; + mul_mat_vec_q_sycl_submitter( + src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + break; case GGML_TYPE_Q5_K: - mul_mat_vec_q5_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); - break; + mul_mat_vec_q_sycl_submitter( + src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + break; case GGML_TYPE_Q6_K: - mul_mat_vec_q6_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); - break; + mul_mat_vec_q_sycl_submitter( + src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + break; default: GGML_ASSERT(false); break; @@ -12145,7 +12318,7 @@ inline void ggml_sycl_op_dequantize_mul_mat_vec( const int64_t src1_ncols, const int64_t src1_padded_row_size, const dpct::queue_ptr &stream) { - GGML_TENSOR_BINARY_OP_LOCALS + GGML_TENSOR_BINARY_OP_LOCALS; const int64_t row_diff = row_high - row_low; @@ -12239,27 +12412,22 @@ inline void ggml_sycl_op_mul_mat_sycl( const int64_t row_diff = row_high - row_low; int id; - int device_id = dpct::dev_mgr::instance().current_device_id(); SYCL_CHECK( - CHECK_TRY_ERROR(id = get_current_device_index())); + CHECK_TRY_ERROR(id = get_current_device_id())); // the main device has a larger memory buffer to hold the results from all GPUs // ldc == nrows of the matrix that cuBLAS writes into - int ldc = dst->backend == GGML_BACKEND_GPU && device_id == g_main_device ? ne0 : row_diff; + int ldc = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device ? ne0 : row_diff; #ifdef GGML_SYCL_F16 bool use_fp16 = true; // TODO(Yu) SYCL capability check #else bool use_fp16 = false; #endif - // if (compute_capability >= VER_GEN9 && (src0->type == GGML_TYPE_F16 || - // ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == - // src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) { if ((src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && use_fp16 && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) { - // convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32 // GGML_SYCL_DEBUG("ggml_sycl_op_mul_mat_sycl - fp16 path\n"); sycl_pool_alloc src0_as_f16; if (src0->type != GGML_TYPE_F16) { @@ -12288,7 +12456,6 @@ inline void ggml_sycl_op_mul_mat_sycl( const sycl::half alpha_f16 = 1.0f; const sycl::half beta_f16 = 0.0f; - SYCL_CHECK(CHECK_TRY_ERROR(g_sycl_handles[id] = stream)); SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm( *g_sycl_handles[id], oneapi::mkl::transpose::trans, @@ -12304,14 +12471,21 @@ inline void ggml_sycl_op_mul_mat_sycl( else { // GGML_SYCL_DEBUG("ggml_sycl_op_mul_mat_sycl - fp32 path\n"); sycl_pool_alloc src0_ddq_as_f32; - + sycl_pool_alloc src1_ddq_as_f32; if (src0->type != GGML_TYPE_F32) { const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(src0->type); GGML_ASSERT(to_fp32_sycl != nullptr); src0_ddq_as_f32.alloc(row_diff*ne00); to_fp32_sycl(src0_dd_i, src0_ddq_as_f32.get(), row_diff*ne00, stream); } + if (src1->type != GGML_TYPE_F32) { + const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(src1->type); + GGML_ASSERT(to_fp32_sycl != nullptr); + src1_ddq_as_f32.alloc(src1_ncols*ne10); + to_fp32_sycl(src1_ddf_i, src1_ddq_as_f32.get(), src1_ncols*ne10, stream); + } const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32.get(); + const float * src1_ddf1_i = src1->type == GGML_TYPE_F32 ? (const float *) src1_ddf_i : src1_ddq_as_f32.get(); const float alpha = 1.0f; const float beta = 0.0f; @@ -12324,7 +12498,6 @@ inline void ggml_sycl_op_mul_mat_sycl( src1_ddf_i, ne10, dpct::get_value(&beta, *g_sycl_handles[id]), dst_dd_i, ldc))); } - (void) dst; (void) src1_ddq_i; (void) src1_padded_row_size; @@ -12445,6 +12618,48 @@ inline void ggml_sycl_op_alibi(const ggml_tensor *src0, const ggml_tensor *src1, (void) src1_dd; } +static void ggml_sycl_op_pool2d(const ggml_tensor *src0, + const ggml_tensor *src1, ggml_tensor *dst, + const float *src0_dd, const float *src1_dd, + float *dst_dd, const dpct::queue_ptr &main_stream) { + + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); + + const int32_t * opts = (const int32_t *)dst->op_params; + enum ggml_op_pool op = static_cast(opts[0]); + const int k0 = opts[1]; + const int k1 = opts[2]; + const int s0 = opts[3]; + const int s1 = opts[4]; + const int p0 = opts[5]; + const int p1 = opts[6]; + + const int64_t IH = src0->ne[1]; + const int64_t IW = src0->ne[0]; + + const int64_t N = dst->ne[3]; + const int64_t OC = dst->ne[2]; + const int64_t OH = dst->ne[1]; + const int64_t OW = dst->ne[0]; + + const int parallel_elements = N * OC * OH * OW; + const int num_blocks = (parallel_elements + SYCL_POOL2D_BLOCK_SIZE - 1) / SYCL_POOL2D_BLOCK_SIZE; + sycl::range<3> block_nums(1, 1, num_blocks); + main_stream->parallel_for( + sycl::nd_range<3>(block_nums * + sycl::range<3>(1, 1, SYCL_IM2COL_BLOCK_SIZE), + sycl::range<3>(1, 1, SYCL_IM2COL_BLOCK_SIZE)), + [=](sycl::nd_item<3> item_ct1) { + pool2d_nchw_kernel(IH, IW, OH, OW, k1, k0, s1, s0, p1, p0, + parallel_elements, src0_dd, dst_dd, op, + item_ct1); + }); + + (void) src1; + (void) src1_dd; +} + inline void ggml_sycl_op_im2col(const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst, const float *src0_dd, const float *src1_dd, @@ -12561,14 +12776,35 @@ inline void ggml_sycl_op_soft_max(const ggml_tensor *src0, const int64_t ne00 = src0->ne[0]; const int64_t nrows_x = ggml_nrows(src0); - const int64_t nrows_y = src1 ? ggml_nrows(src1) : 1; + const int64_t nrows_y = src0->ne[1]; float scale = 1.0f; - memcpy(&scale, dst->op_params, sizeof(float)); + float max_bias = 0.0f; - soft_max_f32_sycl(src0_dd, src1 ? src1_dd : nullptr, dst_dd, ne00, nrows_x, nrows_y, scale, main_stream); + memcpy(&scale, dst->op_params + 0, sizeof(float)); + memcpy(&max_bias, dst->op_params + 1, sizeof(float)); - (void) dst; + // positions tensor + float * src2_dd = nullptr; + sycl_pool_alloc src2_f; + + ggml_tensor * src2 = dst->src[2]; + const bool use_src2 = src2 != nullptr; + + if (use_src2) { + const bool src2_on_device = src2->backend == GGML_BACKEND_TYPE_GPU; + + if (src2_on_device) { + ggml_tensor_extra_gpu * src2_extra = (ggml_tensor_extra_gpu *) src2->extra; + src2_dd = (float *) src2_extra->data_device[g_main_device]; + } else { + src2_dd = src2_f.alloc(ggml_nelements(src2)); + SYCL_CHECK(ggml_sycl_cpy_tensor_2d(src2_dd, src2, 0, 0, 0, 1, main_stream)); + } + } + + soft_max_f32_sycl(src0_dd, src1 ? src1_dd : nullptr, src2_dd, dst_dd, ne00, + nrows_x, nrows_y, scale, max_bias, main_stream); } inline void ggml_sycl_op_scale(const ggml_tensor *src0, const ggml_tensor *src1, @@ -12627,16 +12863,16 @@ static void ggml_sycl_op_flatten(const ggml_tensor *src0, const bool use_src1 = src1 != nullptr; const int64_t nrows1 = use_src1 ? ggml_nrows(src1) : 1; - GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_GPU_SPLIT); - GGML_ASSERT( dst->backend != GGML_BACKEND_GPU_SPLIT); + GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT); + GGML_ASSERT( dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT); ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr; ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; - const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT; - const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_GPU; - const bool dst_on_device = dst->backend == GGML_BACKEND_GPU; + const bool src0_on_device = src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT; + const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_TYPE_GPU; + const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU; // dd = data device float * src0_ddf = nullptr; @@ -12648,12 +12884,12 @@ static void ggml_sycl_op_flatten(const ggml_tensor *src0, sycl_pool_alloc dst_f; ggml_sycl_set_device(g_main_device); - dpct::queue_ptr main_stream = g_syclStreams[g_main_device_index][0]; - // GGML_SYCL_DEBUG("g_main_device_index=%d, main_stream=%p src0_on_device=%d, src1_on_device=%d, dst_on_device=%d\n", - // g_main_device_index, main_stream, src0_on_device, src1_on_device, dst_on_device); + dpct::queue_ptr main_stream = g_syclStreams[g_main_device][0]; + // GGML_SYCL_DEBUG("g_main_device=%d, main_stream=%p src0_on_device=%d, src1_on_device=%d, dst_on_device=%d\n", + // g_main_device, main_stream, src0_on_device, src1_on_device, dst_on_device); if (src0_on_device) { - src0_ddf = (float *) src0_extra->data_device[g_main_device_index]; + src0_ddf = (float *) src0_extra->data_device[g_main_device]; } else { src0_ddf = src0_f.alloc(ggml_nelements(src0)); // GGML_SYCL_DEBUG("before ggml_sycl_cpy_tensor_2d src0_ddf=%p, src0=%p\n", src0_ddf, src0); @@ -12662,15 +12898,14 @@ static void ggml_sycl_op_flatten(const ggml_tensor *src0, if (use_src1) { if (src1_on_device) { - src1_ddf = (float *) src1_extra->data_device[g_main_device_index]; + src1_ddf = (float *) src1_extra->data_device[g_main_device]; } else { src1_ddf = src1_f.alloc(ggml_nelements(src1)); SYCL_CHECK(ggml_sycl_cpy_tensor_2d(src1_ddf, src1, 0, 0, 0, nrows1, main_stream)); } } if (dst_on_device) { - dst_ddf = (float *) dst_extra->data_device[g_main_device_index]; - // printf("zjy dst_ddf=%p main_stream=%p g_main_device_index=%d\n", dst_ddf, main_stream, g_main_device_index); + dst_ddf = (float *) dst_extra->data_device[g_main_device]; } else { dst_ddf = dst_f.alloc(ggml_nelements(dst)); } @@ -12691,7 +12926,7 @@ static void ggml_sycl_op_flatten(const ggml_tensor *src0, main_stream->memcpy(dst->data, dst_ddf, ggml_nbytes(dst)))); } - if (dst->backend == GGML_BACKEND_CPU) { + if (dst->backend == GGML_BACKEND_TYPE_CPU) { SYCL_CHECK(CHECK_TRY_ERROR( dpct::get_current_device().queues_wait_and_throw())); } @@ -12714,21 +12949,19 @@ static void ggml_sycl_set_peer_access(const int n_tokens) { } #ifdef NDEBUG - for (int id = 0; id < g_device_count; ++id) { - SYCL_CHECK(ggml_sycl_set_device(get_device_id_by_index(id))); + for (int i = 0; i < g_device_count; ++i) { + SYCL_CHECK(ggml_sycl_set_device(i)); // SYCL_CHECK(syclDeviceSynchronize()); } - for (int id = 0; id < g_device_count; ++id) { - SYCL_CHECK(ggml_sycl_set_device(get_device_id_by_index(id))); - int device_id = g_device_caps[id].device_id; + for (int i = 0; i < g_device_count; ++i) { + SYCL_CHECK(ggml_sycl_set_device(i)); for (int id_other = 0; id_other < g_device_count; ++id_other) { - int device_id_other = g_device_caps[id_other].device_id; - if (device_id == id_other) { + if (i == id_other) { continue; } - if (device_id != g_main_device && device_id_other != g_main_device) { + if (i != g_main_device && id_other != g_main_device) { continue; } @@ -12748,6 +12981,10 @@ static void ggml_sycl_set_peer_access(const int n_tokens) { peer_access_enabled = enable_peer_access; } +struct ggml_backend_sycl_split_buffer_type_context { + std::array tensor_split; +}; + static void ggml_sycl_op_mul_mat(const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst, ggml_sycl_op_mul_mat_t op, @@ -12766,8 +13003,9 @@ static void ggml_sycl_op_mul_mat(const ggml_tensor *src0, const int nb2 = dst->nb[2]; const int nb3 = dst->nb[3]; - GGML_ASSERT(dst->backend != GGML_BACKEND_GPU_SPLIT); - GGML_ASSERT(src1->backend != GGML_BACKEND_GPU_SPLIT); + GGML_ASSERT(dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT); + GGML_ASSERT(src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT); + GGML_ASSERT(src1->type == GGML_TYPE_F32 || (src1->ne[2] == 1 && src1->ne[3] == 1)); GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0); @@ -12782,91 +13020,101 @@ static void ggml_sycl_op_mul_mat(const ggml_tensor *src0, ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra; ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; - const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT; + const bool src0_on_device = src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT; const bool src0_is_contiguous = ggml_is_contiguous(src0); const bool src1_is_contiguous = ggml_is_contiguous(src1); int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING); - const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT; + const bool split = src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT; GGML_ASSERT(!(split && ne02 > 1)); GGML_ASSERT(!(split && ne03 > 1)); GGML_ASSERT(!(split && ne02 < ne12)); - // dd = data device - char * src0_dd[GGML_SYCL_MAX_DEVICES] = {nullptr}; - float * src1_ddf[GGML_SYCL_MAX_DEVICES] = {nullptr}; // float - char * src1_ddq[GGML_SYCL_MAX_DEVICES] = {nullptr}; // q8_1 - float * dst_dd[GGML_SYCL_MAX_DEVICES] = {nullptr}; + std::array tensor_split; + if (split) { + // TODO: check that src0->buffer->buft is a split buffer type, replace GGML_BACKEND_TYPE_GPU_SPLIT check + // GGML_ASSERT(src0->buffer != nullptr && src0->buffer->buft == ...); + ggml_backend_sycl_split_buffer_type_context * buft_ctx = (ggml_backend_sycl_split_buffer_type_context *) src0->buffer->buft->context; + tensor_split = buft_ctx->tensor_split; + } - // as = actual size - size_t src0_as[GGML_SYCL_MAX_DEVICES] = {0}; - size_t src1_asf[GGML_SYCL_MAX_DEVICES] = {0}; - size_t src1_asq[GGML_SYCL_MAX_DEVICES] = {0}; - size_t dst_as[GGML_SYCL_MAX_DEVICES] = {0}; + struct dev_data { + sycl_pool_alloc src0_dd_alloc; + sycl_pool_alloc src1_ddf_alloc; + sycl_pool_alloc src1_ddq_alloc; + sycl_pool_alloc dst_dd_alloc; - int64_t row_low[GGML_SYCL_MAX_DEVICES]; - int64_t row_high[GGML_SYCL_MAX_DEVICES]; + char *src0_dd = nullptr; + float *src1_ddf = nullptr; // float + char *src1_ddq = nullptr; // q8_1 + float *dst_dd = nullptr; + + int64_t row_low; + int64_t row_high; + }; + + dev_data dev[GGML_SYCL_MAX_DEVICES]; int used_devices = 0; + dpct::queue_ptr main_stream = g_syclStreams[g_main_device][0]; - for (int64_t id = 0; id < g_device_count; ++id) { + for (int i = 0; i < g_device_count; ++i) { // by default, use all rows - row_low[id] = 0; - row_high[id] = ne01; + dev[i].row_low = 0; + dev[i].row_high = ne01; // for multi GPU, get the row boundaries from tensor split // and round to mul_mat_q tile sizes if (split) { - const int64_t rounding = get_row_rounding(src0->type); + const int64_t rounding = get_row_rounding(src0->type, tensor_split); - if (id != 0) { - row_low[id] = ne01*g_tensor_split[id]; - if (row_low[id] < ne01) { - row_low[id] -= row_low[id] % rounding; + if (i != 0) { + dev[i].row_low = ne01*tensor_split[i]; + if (dev[i].row_low < ne01) { + dev[i].row_low -= dev[i].row_low % rounding; } } - if (id != g_device_count - 1) { - row_high[id] = ne01*g_tensor_split[id + 1]; - if (row_high[id] < ne01) { - row_high[id] -= row_high[id] % rounding; + if (i != g_device_count - 1) { + dev[i].row_high = ne01*tensor_split[i + 1]; + if (dev[i].row_high < ne01) { + dev[i].row_high -= dev[i].row_high % rounding; } } } } - for (int64_t id = 0; id < g_device_count; ++id) { - if ((!split && id != g_main_device_index) || row_low[id] == row_high[id]) { + for (int i = 0; i < g_device_count; ++i) { + if ((!split && i != g_main_device) || dev[i].row_low == dev[i].row_high) { continue; } used_devices++; - const bool src1_on_device = src1->backend == GGML_BACKEND_GPU && id == g_main_device_index; - const bool dst_on_device = dst->backend == GGML_BACKEND_GPU && id == g_main_device_index; + const bool src1_on_device = src1->backend == GGML_BACKEND_TYPE_GPU && i == g_main_device; + const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU && i == g_main_device; - ggml_sycl_set_device(get_device_id_by_index(id)); - const dpct::queue_ptr stream = g_syclStreams[id][0]; + ggml_sycl_set_device(i); + dpct::queue_ptr stream = g_syclStreams[i][0]; if (src0_on_device && src0_is_contiguous) { - src0_dd[id] = (char *) src0_extra->data_device[id]; + dev[i].src0_dd = (char *) src0_extra->data_device[i]; } else { - // const size_t size_src0_ddq = split ? (row_high[id]-row_low[id])*ne00 * src0_ts/src0_bs : ggml_nbytes(src0); - src0_dd[id] = (char *) ggml_sycl_pool_malloc(ggml_nbytes(src0), &src0_as[id]); + dev[i].src0_dd = dev[i].src0_dd_alloc.alloc(ggml_nbytes(src0)); } if (src1_on_device && src1_is_contiguous) { - src1_ddf[id] = (float *) src1_extra->data_device[id]; + dev[i].src1_ddf = (float *) src1_extra->data_device[i]; } else { - src1_ddf[id] = (float *) ggml_sycl_pool_malloc(ggml_nbytes(src1), &src1_asf[id]); + dev[i].src1_ddf = dev[i].src1_ddf_alloc.alloc(ggml_nelements(src1)); } if (convert_src1_to_q8_1) { - src1_ddq[id] = (char *) ggml_sycl_pool_malloc(nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs, &src1_asq[id]); + dev[i].src1_ddq = dev[i].src1_ddq_alloc.alloc(nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs); if (src1_on_device && src1_is_contiguous) { - quantize_row_q8_1_sycl(src1_ddf[id], src1_ddq[id], ne10, nrows1, src1_padded_col_size, stream); + quantize_row_q8_1_sycl(dev[i].src1_ddf, dev[i].src1_ddq, ne10, nrows1, src1_padded_col_size, stream); /* DPCT1010:90: SYCL uses exceptions to report errors and does not use the error codes. The call was replaced with 0. You need to @@ -12877,25 +13125,25 @@ static void ggml_sycl_op_mul_mat(const ggml_tensor *src0, } if (dst_on_device) { - dst_dd[id] = (float *) dst_extra->data_device[id]; + dev[i].dst_dd = (float *) dst_extra->data_device[i]; } else { - const size_t size_dst_ddf = split ? (row_high[id]-row_low[id])*ne1*sizeof(float) : ggml_nbytes(dst); - dst_dd[id] = (float *) ggml_sycl_pool_malloc(size_dst_ddf, &dst_as[id]); + const size_t size_dst_ddf = split ? (dev[i].row_high - dev[i].row_low)*ne1 : ggml_nelements(dst); + dev[i].dst_dd = dev[i].dst_dd_alloc.alloc(size_dst_ddf); } } // if multiple devices are used they need to wait for the main device // here an event is recorded that signals that the main device has finished calculating the input data if (split && used_devices > 1) { - SYCL_CHECK(ggml_sycl_set_device(g_main_device)); + ggml_sycl_set_device(g_main_device); /* DPCT1024:91: The original code returned the error code that was further consumed by the program logic. This original code was replaced with 0. You may need to rewrite the program logic consuming the error code. */ SYCL_CHECK(CHECK_TRY_ERROR( - *src0_extra->events[g_main_device_index][0] = - g_syclStreams[g_main_device_index][0]->ext_oneapi_submit_barrier())); + *src0_extra->events[g_main_device][0] = + g_syclStreams[g_main_device][0]->ext_oneapi_submit_barrier())); } const int64_t src1_col_stride = split && used_devices > 1 ? MUL_MAT_SRC1_COL_STRIDE : ne11; @@ -12903,22 +13151,27 @@ static void ggml_sycl_op_mul_mat(const ggml_tensor *src0, const int64_t is = split ? (src1_col_0/src1_col_stride) % MAX_STREAMS : 0; const int64_t src1_ncols = src1_col_0 + src1_col_stride > ne11 ? ne11 - src1_col_0 : src1_col_stride; - for (int64_t id = 0; id < g_device_count; ++id) { - if ((!split && id != g_main_device_index) || row_low[id] == row_high[id]) { + for (int i = 0; i < g_device_count; ++i) { + if ((!split && i != g_main_device) || dev[i].row_low == dev[i].row_high) { continue; } - const bool src1_on_device = src1->backend == GGML_BACKEND_GPU && id == g_main_device_index; - const bool dst_on_device = dst->backend == GGML_BACKEND_GPU && id == g_main_device_index; - const int64_t row_diff = row_high[id] - row_low[id]; + const bool src1_on_device = src1->backend == GGML_BACKEND_TYPE_GPU && i == g_main_device; + const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU && i == g_main_device; + const int64_t row_diff = dev[i].row_high - dev[i].row_low; - ggml_sycl_set_device(get_device_id_by_index(id)); - const dpct::queue_ptr stream = g_syclStreams[id][is]; + ggml_sycl_set_device(i); + dpct::queue_ptr stream = g_syclStreams[i][is]; // wait for main GPU data if necessary - if (split && (id != g_main_device_index || is != 0)) { + if (split && (i != g_main_device || is != 0)) { + /* + DPCT1009:163: SYCL uses exceptions to report errors and does not + use the error codes. The original code was commented out and a + warning string was inserted. You need to rewrite this code. + */ SYCL_CHECK(CHECK_TRY_ERROR(stream->ext_oneapi_submit_barrier( - {*src0_extra->events[g_main_device_index][0]}))); + {*src0_extra->events[g_main_device][0]}))); } for (int64_t i0 = 0; i0 < ne13*ne12; ++i0) { @@ -12928,42 +13181,44 @@ static void ggml_sycl_op_mul_mat(const ggml_tensor *src0, const size_t src1_ddq_i_offset = (i0*ne11 + src1_col_0) * src1_padded_col_size*q8_1_ts/q8_1_bs; // for split tensors the data begins at i0 == i0_offset_low - char * src0_dd_i = src0_dd[id] + (i0/i02_divisor) * (ne01*ne00*src0_ts)/src0_bs; - float * src1_ddf_i = src1_ddf[id] + (i0*ne11 + src1_col_0) * ne10; - char * src1_ddq_i = src1_ddq[id] + src1_ddq_i_offset; - float * dst_dd_i = dst_dd[id] + (i0*ne1 + src1_col_0) * (dst_on_device ? ne0 : row_diff); + char * src0_dd_i = dev[i].src0_dd + (i0/i02_divisor) * (ne01*ne00*src0_ts)/src0_bs; + float * src1_ddf_i = dev[i].src1_ddf + (i0*ne11 + src1_col_0) * ne10; + char * src1_ddq_i = dev[i].src1_ddq + src1_ddq_i_offset; + float * dst_dd_i = dev[i].dst_dd + (i0*ne1 + src1_col_0) * (dst_on_device ? ne0 : row_diff); // the main device memory buffer can be on VRAM scratch, with space for all partial results // in that case an offset on dst_ddf_i is needed - if (dst->backend == GGML_BACKEND_GPU && id == g_main_device_index) { - dst_dd_i += row_low[id]; // offset is 0 if no tensor split + if (dst->backend == GGML_BACKEND_TYPE_GPU && i == g_main_device) { + dst_dd_i += dev[i].row_low; // offset is 0 if no tensor split } // copy src0, src1 to device if necessary - if (src1->backend == GGML_BACKEND_GPU && src1_is_contiguous) { - if (id != g_main_device_index) { + if (src1->backend == GGML_BACKEND_TYPE_GPU && src1_is_contiguous) { + if (i != g_main_device) { if (convert_src1_to_q8_1) { - char * src1_ddq_i_source = src1_ddq[g_main_device_index] + src1_ddq_i_offset; - SYCL_CHECK(CHECK_TRY_ERROR(stream->memcpy( + char * src1_ddq_i_source = dev[g_main_device].src1_ddq + src1_ddq_i_offset; + SYCL_CHECK(CHECK_TRY_ERROR(stream->memcpy( src1_ddq_i, src1_ddq_i_source, src1_ncols * src1_padded_col_size * q8_1_ts / q8_1_bs))); } else { - float * src1_ddf_i_source = (float *) src1_extra->data_device[g_main_device_index]; + + float * src1_ddf_i_source = (float *) src1_extra->data_device[g_main_device]; src1_ddf_i_source += (i0*ne11 + src1_col_0) * ne10; - SYCL_CHECK(CHECK_TRY_ERROR(stream->memcpy( + + SYCL_CHECK(CHECK_TRY_ERROR(dev2dev_memcpy(*stream, *main_stream, src1_ddf_i, src1_ddf_i_source, src1_ncols * ne10 * sizeof(float)))); } } - } else if (src1->backend == GGML_BACKEND_CPU || (src1_on_device && !src1_is_contiguous)) { + } else if (src1->backend == GGML_BACKEND_TYPE_CPU || (src1_on_device && !src1_is_contiguous)) { SYCL_CHECK(ggml_sycl_cpy_tensor_2d( src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream)); } else { GGML_ASSERT(false); } - if (convert_src1_to_q8_1 && (src1->backend == GGML_BACKEND_CPU || !src1_is_contiguous)) { + if (convert_src1_to_q8_1 && (src1->backend == GGML_BACKEND_TYPE_CPU || !src1_is_contiguous)) { quantize_row_q8_1_sycl(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream); /* DPCT1010:92: SYCL uses exceptions to report errors and does @@ -12974,14 +13229,14 @@ static void ggml_sycl_op_mul_mat(const ggml_tensor *src0, } if (src1_col_0 == 0 && (!src0_on_device || !src0_is_contiguous) && i02 % i02_divisor == 0) { - SYCL_CHECK(ggml_sycl_cpy_tensor_2d(src0_dd_i, src0, i03, i02/i02_divisor, row_low[id], row_high[id], stream)); + SYCL_CHECK(ggml_sycl_cpy_tensor_2d(src0_dd_i, src0, i03, i02/i02_divisor, dev[i].row_low, dev[i].row_high, stream)); } if (src1->type == GGML_TYPE_F16) { src1_padded_col_size = (i0 * ne11 + src1_col_0) * ne10; } // do the computation op(src0, src1, dst, src0_dd_i, src1_ddf_i, src1_ddq_i, dst_dd_i, - row_low[id], row_high[id], src1_ncols, src1_padded_col_size, stream); + dev[i].row_low, dev[i].row_high, src1_ncols, src1_padded_col_size, stream); /* DPCT1010:93: SYCL uses exceptions to report errors and does not use the error codes. The call was replaced with 0. You need to @@ -12993,11 +13248,11 @@ static void ggml_sycl_op_mul_mat(const ggml_tensor *src0, if (!dst_on_device) { void * dst_off_device; dpct::memcpy_direction kind; - if (dst->backend == GGML_BACKEND_CPU) { + if (dst->backend == GGML_BACKEND_TYPE_CPU) { dst_off_device = dst->data; kind = dpct::device_to_host; - } else if (dst->backend == GGML_BACKEND_GPU) { - dst_off_device = dst_extra->data_device[g_main_device_index]; + } else if (dst->backend == GGML_BACKEND_TYPE_GPU) { + dst_off_device = dst_extra->data_device[g_main_device]; kind = dpct::device_to_device; } else { GGML_ASSERT(false); @@ -13010,11 +13265,29 @@ static void ggml_sycl_op_mul_mat(const ggml_tensor *src0, // If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results. float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3); GGML_ASSERT(dst->nb[1] == ne0*sizeof(float)); - dhf_dst_i += src1_col_0*ne0 + row_low[id]; - SYCL_CHECK(CHECK_TRY_ERROR(dpct::async_dpct_memcpy( - dhf_dst_i, ne0 * sizeof(float), dst_dd_i, - row_diff * sizeof(float), row_diff * sizeof(float), - src1_ncols, kind, *stream))); + dhf_dst_i += src1_col_0*ne0 + dev[i].row_low; + + //todo, dirty solution. Need be updated when device2device memcpy() is supported. + if (kind == dpct::device_to_device) { + size_t dst_size = ggml_nbytes_pad(dst); + float *host_buf = (float *)malloc(dst_size); + SYCL_CHECK(CHECK_TRY_ERROR(dpct::async_dpct_memcpy( + host_buf, ne0 * sizeof(float), dst_dd_i, + row_diff * sizeof(float), row_diff * sizeof(float), + src1_ncols, dpct::device_to_host, *stream))); + dpct::dev_mgr::instance().get_device(g_sycl_gpu_mgr->gpus[i]).queues_wait_and_throw(); + SYCL_CHECK(CHECK_TRY_ERROR(dpct::async_dpct_memcpy( + dhf_dst_i, ne0 * sizeof(float), host_buf, + row_diff * sizeof(float), row_diff * sizeof(float), + src1_ncols, dpct::host_to_device, *main_stream))); + dpct::dev_mgr::instance().get_device(g_sycl_gpu_mgr->gpus[g_main_device]).queues_wait_and_throw(); + free(host_buf); + } else { + SYCL_CHECK(CHECK_TRY_ERROR(dpct::async_dpct_memcpy( + dhf_dst_i, ne0 * sizeof(float), dst_dd_i, + row_diff * sizeof(float), row_diff * sizeof(float), + src1_ncols, kind, *stream))); + } } else { float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3); GGML_ASSERT(dst->nb[1] == ne0*sizeof(float)); @@ -13026,7 +13299,7 @@ static void ggml_sycl_op_mul_mat(const ggml_tensor *src0, } // add event for the main device to wait on until other device is done - if (split && (id != g_main_device_index || is != 0)) { + if (split && (i != g_main_device || is != 0)) { /* DPCT1024:94: The original code returned the error code that was further consumed by the program logic. This original @@ -13034,53 +13307,32 @@ static void ggml_sycl_op_mul_mat(const ggml_tensor *src0, program logic consuming the error code. */ SYCL_CHECK(CHECK_TRY_ERROR( - *src0_extra->events[id][is] = + *src0_extra->events[i][is] = stream->ext_oneapi_submit_barrier())); } } } } - for (int64_t id = 0; id < g_device_count; ++id) { - if ((!split && id != g_main_device_index) || row_low[id] == row_high[id]) { - continue; - } - SYCL_CHECK(ggml_sycl_set_device(get_device_id_by_index(id))); - - // free buffers again when done - if (dst_as[id] > 0) { - ggml_sycl_pool_free(dst_dd[id], dst_as[id]); - } - if (src1_asq[id] > 0) { - ggml_sycl_pool_free(src1_ddq[id], src1_asq[id]); - } - if (src1_asf[id] > 0) { - ggml_sycl_pool_free(src1_ddf[id], src1_asf[id]); - } - if (src0_as[id] > 0) { - ggml_sycl_pool_free(src0_dd[id], src0_as[id]); - } - } - // main device waits for all other devices to be finished if (split && g_device_count > 1) { int64_t is_max = (ne11 + MUL_MAT_SRC1_COL_STRIDE - 1) / MUL_MAT_SRC1_COL_STRIDE; is_max = is_max <= MAX_STREAMS ? is_max : MAX_STREAMS; - SYCL_CHECK(ggml_sycl_set_device(g_main_device)); - for (int64_t id = 0; id < g_device_count; ++id) { - if (row_low[id] == row_high[id]) { + ggml_sycl_set_device(g_main_device); + for (int i = 0; i < g_device_count; ++i) { + if (dev[i].row_low == dev[i].row_high) { continue; } for (int64_t is = 0; is < is_max; ++is) { SYCL_CHECK(CHECK_TRY_ERROR( - g_syclStreams[g_main_device_index][0]->ext_oneapi_submit_barrier( - {*src0_extra->events[id][is]}))); + g_syclStreams[g_main_device][0]->ext_oneapi_submit_barrier( + {*src0_extra->events[i][is]}))); } } } - if (dst->backend == GGML_BACKEND_CPU) { + if (dst->backend == GGML_BACKEND_TYPE_CPU) { SYCL_CHECK(ggml_sycl_set_device(g_main_device)); SYCL_CHECK(CHECK_TRY_ERROR( dpct::get_current_device().queues_wait_and_throw())); @@ -13092,110 +13344,132 @@ catch (sycl::exception const &exc) { std::exit(1); } + static void ggml_sycl_repeat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_repeat); + GGML_SYCL_DEBUG("call %s done\n", __func__); } static void ggml_sycl_get_rows(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_get_rows); + GGML_SYCL_DEBUG("call %s done\n", __func__); } static void ggml_sycl_add(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_add); - // log_tensor_with_cnt("log_ggml_sycl_add_src0", (struct ggml_tensor *) src0, 6); - // log_tensor_with_cnt("log_ggml_sycl_add_src1", (struct ggml_tensor *)src1, 6); - // log_tensor_with_cnt("log_ggml_sycl_add_dst", dst, 6); + GGML_SYCL_DEBUG("call %s done\n", __func__); } static void ggml_sycl_acc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_acc); + GGML_SYCL_DEBUG("call %s done\n", __func__); } static void ggml_sycl_mul(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_mul); - // log_tensor_with_cnt("log_ggml_sycl_mul_src0", (struct ggml_tensor *)src0, 6); - // log_tensor_with_cnt("log_ggml_sycl_mul_src1", (struct ggml_tensor *)src1, 6); - // log_tensor_with_cnt("log_ggml_sycl_mul_dst", dst, 6); - + GGML_SYCL_DEBUG("call %s done\n", __func__); } static void ggml_sycl_div(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_div); + GGML_SYCL_DEBUG("call %s done\n", __func__); } static void ggml_sycl_gelu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_gelu); + GGML_SYCL_DEBUG("call %s done\n", __func__); } static void ggml_sycl_silu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_silu); + GGML_SYCL_DEBUG("call %s done\n", __func__); } static void ggml_sycl_gelu_quick(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_gelu_quick); + GGML_SYCL_DEBUG("call %s done\n", __func__); } static void ggml_sycl_tanh(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_tanh); + GGML_SYCL_DEBUG("call %s done\n", __func__); } static void ggml_sycl_relu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_relu); + GGML_SYCL_DEBUG("call %s done\n", __func__); +} + +static void ggml_sycl_hardsigmoid(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + GGML_SYCL_DEBUG("call %s\n", __func__); + ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_hardsigmoid); + GGML_SYCL_DEBUG("call %s done\n", __func__); +} + +static void ggml_sycl_hardswish(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + GGML_SYCL_DEBUG("call %s\n", __func__); + ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_hardswish); + GGML_SYCL_DEBUG("call %s done\n", __func__); } static void ggml_sycl_leaky_relu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_leaky_relu); + GGML_SYCL_DEBUG("call %s done\n", __func__); } static void ggml_sycl_sqr(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_sqr); + GGML_SYCL_DEBUG("call %s done\n", __func__); } static void ggml_sycl_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_norm); + GGML_SYCL_DEBUG("call %s done\n", __func__); } static void ggml_sycl_group_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_group_norm); + GGML_SYCL_DEBUG("call %s done\n", __func__); } static void ggml_sycl_concat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_concat); + GGML_SYCL_DEBUG("call %s done\n", __func__); } static void ggml_sycl_upscale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_upscale); + GGML_SYCL_DEBUG("call %s done\n", __func__); } static void ggml_sycl_pad(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_pad); + GGML_SYCL_DEBUG("call %s done\n", __func__); } static void ggml_sycl_rms_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_rms_norm); - // log_tensor_with_cnt("log_ggml_sycl_rms_norm_src0", (struct ggml_tensor *)src0, 6); - // log_tensor_with_cnt("log_ggml_sycl_rms_norm_src1", (struct ggml_tensor *)src1, 6); - // log_tensor_with_cnt("log_ggml_sycl_rms_norm_dst", dst, 6); + GGML_SYCL_DEBUG("call %s done\n", __func__); } bool ggml_sycl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { @@ -13217,7 +13491,7 @@ static void ggml_sycl_mul_mat_vec_p021(const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst) try { GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1)); - GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT); + GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT); GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation GGML_ASSERT(src0->type == GGML_TYPE_F16); @@ -13230,16 +13504,16 @@ static void ggml_sycl_mul_mat_vec_p021(const ggml_tensor *src0, const int64_t ne12 = src1->ne[2]; SYCL_CHECK(ggml_sycl_set_device(g_main_device)); - dpct::queue_ptr main_stream = g_syclStreams[g_main_device_index][0]; + dpct::queue_ptr main_stream = g_syclStreams[g_main_device][0]; ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; - void * src0_ddq = src0_extra->data_device[g_main_device_index]; + void * src0_ddq = src0_extra->data_device[g_main_device]; ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra; - float * src1_ddf = (float *) src1_extra->data_device[g_main_device_index]; + float * src1_ddf = (float *) src1_extra->data_device[g_main_device]; ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; - float * dst_ddf = (float *) dst_extra->data_device[g_main_device_index]; + float * dst_ddf = (float *) dst_extra->data_device[g_main_device]; ggml_mul_mat_p021_f16_f32_sycl(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream); } @@ -13255,7 +13529,7 @@ static void ggml_sycl_mul_mat_vec_nc(const ggml_tensor *src0, GGML_ASSERT(!ggml_is_transposed(src0)); GGML_ASSERT(!ggml_is_transposed(src1)); GGML_ASSERT(!ggml_is_permuted(src0)); - GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT); + GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT); GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F32); @@ -13269,16 +13543,16 @@ static void ggml_sycl_mul_mat_vec_nc(const ggml_tensor *src0, const int64_t ne12 = src1->ne[2]; SYCL_CHECK(ggml_sycl_set_device(g_main_device)); - dpct::queue_ptr main_stream = g_syclStreams[g_main_device_index][0]; + dpct::queue_ptr main_stream = g_syclStreams[g_main_device][0]; ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; - void * src0_ddq = src0_extra->data_device[g_main_device_index]; + void * src0_ddq = src0_extra->data_device[g_main_device]; ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra; - float * src1_ddf = (float *) src1_extra->data_device[g_main_device_index]; + float * src1_ddf = (float *) src1_extra->data_device[g_main_device]; ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; - float * dst_ddf = (float *) dst_extra->data_device[g_main_device_index]; + float * dst_ddf = (float *) dst_extra->data_device[g_main_device]; const int64_t row_stride_x = nb01 / sizeof(sycl::half); const int64_t channel_stride_x = nb02 / sizeof(sycl::half); @@ -13311,54 +13585,50 @@ static void k_compute_batched_ptrs(const sycl::half *src0_as_f16, int64_t i03 = i13 / r3; int64_t i02 = i12 / r2; - ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03; - ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12/2 + i13*nb13/2; - ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst + i12*nbd2 + i13*nbd3; + ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03; + ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12 + i13*nb13; + ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst + i12*nbd2 + i13*nbd3; } -static void ggml_sycl_mul_mat_mat_batched_sycl(const ggml_tensor *src0, - const ggml_tensor *src1, - ggml_tensor *dst) try { +static void ggml_sycl_mul_mat_batched_sycl(const ggml_tensor *src0, + const ggml_tensor *src1, + ggml_tensor *dst) try { GGML_ASSERT(!ggml_is_transposed(src0)); GGML_ASSERT(!ggml_is_transposed(src1)); - - GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT); + GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT); GGML_ASSERT(src0->type == GGML_TYPE_F16); - GGML_ASSERT(src1->type == GGML_TYPE_F32); - GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); + GGML_TENSOR_BINARY_OP_LOCALS - GGML_TENSOR_LOCALS(int64_t, nb0, src0, nb); - - GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); - - GGML_TENSOR_LOCALS(int64_t, nb1, src1, nb); - - const int64_t ne1 = ggml_nelements(src1); - const int64_t ne = ggml_nelements(dst); + const int64_t ne_dst = ggml_nelements(dst); SYCL_CHECK(ggml_sycl_set_device(g_main_device)); - dpct::queue_ptr main_stream = g_syclStreams[g_main_device_index][0]; + dpct::queue_ptr main_stream = g_syclStreams[g_main_device][0]; SYCL_CHECK( - CHECK_TRY_ERROR(g_sycl_handles[g_main_device_index] = main_stream)); + CHECK_TRY_ERROR(g_sycl_handles[g_main_device] = main_stream)); ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; - void * src0_ddq = src0_extra->data_device[g_main_device_index]; + void * src0_ddq = src0_extra->data_device[g_main_device]; sycl::half *src0_as_f16 = (sycl::half *)src0_ddq; ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra; - float * src1_ddf = (float *) src1_extra->data_device[g_main_device_index]; + float * src1_ddf = (float *) src1_extra->data_device[g_main_device]; ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; - float * dst_ddf = (float *) dst_extra->data_device[g_main_device_index]; + float * dst_ddf = (float *) dst_extra->data_device[g_main_device]; // convert src1 to fp16 - const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src1->type); - GGML_ASSERT(to_fp16_sycl != nullptr); - - sycl_pool_alloc src1_as_f16(ne1); - to_fp16_sycl(src1_ddf, src1_as_f16.get(), ne1, main_stream); + sycl_pool_alloc src1_f16_alloc; + if (src1->type != GGML_TYPE_F16) { + const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src1->type); + const int64_t ne_src1 = ggml_nelements(src1); + src1_f16_alloc.alloc(ne_src1); + GGML_ASSERT(to_fp16_sycl != nullptr); + to_fp16_sycl(src1_ddf, src1_f16_alloc.get(), ne_src1, main_stream); + } + sycl::half *src1_f16 = src1->type == GGML_TYPE_F16 ? (sycl::half *)src1_ddf + : src1_f16_alloc.get(); sycl_pool_alloc dst_f16; char * dst_t; @@ -13379,20 +13649,12 @@ static void ggml_sycl_mul_mat_mat_batched_sycl(const ggml_tensor *src0, const void * alpha = &alpha_f16; const void * beta = &beta_f16; - if (dst->op_params[0] == GGML_PREC_DEFAULT) { - dst_t = (char *) dst_f16.alloc(ne); + // TODO: Renable (dst->op_params[0] =! GGML_PREC_DEFAULT) pathway + // once oneMKL open source supports half, half, float, float: datatypes + dst_t = (char *) dst_f16.alloc(ne_dst); - nbd2 /= sizeof(float) / sizeof(sycl::half); - nbd3 /= sizeof(float) / sizeof(sycl::half); - } else { - dst_t = (char *) dst_ddf; - - cu_compute_type = dpct::library_data_t::real_float; - cu_data_type = dpct::library_data_t::real_float; - - alpha = &alpha_f32; - beta = &beta_f32; - } + nbd2 /= sizeof(float) / sizeof(sycl::half); + nbd3 /= sizeof(float) / sizeof(sycl::half); GGML_ASSERT(ne12 % ne02 == 0); GGML_ASSERT(ne13 % ne03 == 0); @@ -13410,7 +13672,7 @@ static void ggml_sycl_mul_mat_mat_batched_sycl(const ggml_tensor *src0, int i02 = i12 / r2; SYCL_CHECK( - syclGemmEx(g_sycl_handles[g_main_device_index], CUBLAS_OP_T, CUBLAS_OP_N, + syclGemmEx(g_sycl_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N, ne01, ne11, ne10, alpha, (const char *) src0_as_f16 + i02*src0->nb[2] + i03*src0->nb[3] , SYCL_R_16F, nb01/sizeof(half), (const char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2, SYCL_R_16F, nb11/sizeof(float), @@ -13423,18 +13685,16 @@ static void ggml_sycl_mul_mat_mat_batched_sycl(const ggml_tensor *src0, #else if (r2 == 1 && r3 == 1 && src0->nb[2]*src0->ne[2] == src0->nb[3] && src1->nb[2]*src1->ne[2] == src1->nb[3]) { // there is no broadcast and src0, src1 are contiguous across dims 2, 3 - // use syclGemmStridedBatchedEx SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch( - *g_sycl_handles[g_main_device_index], oneapi::mkl::transpose::trans, + *g_sycl_handles[g_main_device], oneapi::mkl::transpose::trans, oneapi::mkl::transpose::nontrans, ne01, ne11, ne10, alpha, (const char *)src0_as_f16, dpct::library_data_t::real_half, - nb01 / sizeof(sycl::half), src0->nb[2] / sizeof(sycl::half), - (const char *)src1_as_f16.get(), dpct::library_data_t::real_half, - nb11 / sizeof(float), src1->nb[2] / sizeof(float), beta, - (char *)dst_t, cu_data_type, ne01, dst->nb[2] / sizeof(float), + nb01 / nb00, nb02 / nb00, + (const char *)src1_f16, dpct::library_data_t::real_half, + nb11 / nb10, nb12 / nb10, beta, + (char *)dst_t, cu_data_type, ne01, nb2 / nb0, ne12 * ne13, cu_compute_type))); } else { - // use syclGemmBatchedEx const int ne23 = ne12*ne13; sycl_pool_alloc ptrs_src(2*ne23); @@ -13451,44 +13711,35 @@ static void ggml_sycl_mul_mat_mat_batched_sycl(const ggml_tensor *src0, {sycl::aspect::fp16}); main_stream->submit([&](sycl::handler &cgh) { - const sycl::half *src1_as_f16_get_ct1 = src1_as_f16.get(); - const void **ptrs_src_get_ct3 = ptrs_src.get(); - void **ptrs_dst_get_ct4 = ptrs_dst.get(); - + const void **ptrs_src_get = ptrs_src.get(); + void **ptrs_dst_get = ptrs_dst.get(); + size_t nb12_scaled = src1->type == GGML_TYPE_F16 ? nb12 : nb12 / 2; + size_t nb13_scaled = src1->type == GGML_TYPE_F16 ? nb13 : nb13 / 2; cgh.parallel_for(sycl::nd_range<3>(block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) { k_compute_batched_ptrs( - src0_as_f16, src1_as_f16_get_ct1, - dst_t, ptrs_src_get_ct3, - ptrs_dst_get_ct4, ne12, ne13, ne23, - nb02, nb03, nb12, nb13, nbd2, nbd3, r2, - r3, item_ct1); + src0_as_f16, src1_f16, + dst_t, ptrs_src_get, + ptrs_dst_get, ne12, ne13, ne23, + nb02, nb03, nb12_scaled, nb13_scaled, + nbd2, nbd3, r2, r3, item_ct1); }); }); } - /* - DPCT1010:95: SYCL uses exceptions to report errors and does not use the - error codes. The call was replaced with 0. You need to rewrite this - code. - */ - SYCL_CHECK(0); - SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch( - *g_sycl_handles[g_main_device_index], oneapi::mkl::transpose::trans, + *g_sycl_handles[g_main_device], oneapi::mkl::transpose::trans, oneapi::mkl::transpose::nontrans, ne01, ne11, ne10, alpha, (const void **)(ptrs_src.get() + 0 * ne23), - dpct::library_data_t::real_half, nb01 / sizeof(sycl::half), + dpct::library_data_t::real_half, nb01 / nb00, (const void **)(ptrs_src.get() + 1 * ne23), - dpct::library_data_t::real_half, nb11 / sizeof(float), beta, + dpct::library_data_t::real_half, nb11 / nb10, beta, (void **)(ptrs_dst.get() + 0 * ne23), cu_data_type, ne01, ne23, cu_compute_type))); } #endif - if (dst->op_params[0] == GGML_PREC_DEFAULT) { - const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16); - to_fp32_sycl(dst_f16.get(), dst_ddf, ne, main_stream); - } + const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16); + to_fp32_sycl(dst_f16.get(), dst_ddf, ne_dst, main_stream); } catch (sycl::exception const &exc) { std::cerr << exc.what() << "Exception caught at file:" << __FILE__ @@ -13496,18 +13747,19 @@ catch (sycl::exception const &exc) { std::exit(1); } + static void ggml_sycl_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { const bool all_on_device = - (src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT) && - (src1->backend == GGML_BACKEND_GPU) && - ( dst->backend == GGML_BACKEND_GPU); + (src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT) && + (src1->backend == GGML_BACKEND_TYPE_GPU) && + ( dst->backend == GGML_BACKEND_TYPE_GPU); - const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT; + const bool split = src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT; int64_t min_compute_capability = INT_MAX; - for (int64_t id = 0; id < g_device_count; ++id) { - if (min_compute_capability > g_device_caps[id].cc && g_tensor_split[id] < (id + 1 < g_device_count ? g_tensor_split[id + 1] : 1.0f)) { - min_compute_capability = g_device_caps[id].cc; + for (int i = 0; i < g_device_count; ++i) { + if (min_compute_capability > g_device_caps[i].cc && g_tensor_split[i] < (i + 1 < g_device_count ? g_tensor_split[i + 1] : 1.0f)) { + min_compute_capability = g_device_caps[i].cc; } } @@ -13533,10 +13785,10 @@ static void ggml_sycl_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1 // KQV single-batch // GGML_SYCL_DEBUG("ggml_sycl_mul_mat_vec_nc\n"); ggml_sycl_mul_mat_vec_nc(src0, src1, dst); - } else if (!split && all_on_device && use_xmx && src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1)) { + } else if (!split && all_on_device && use_xmx && src0->type == GGML_TYPE_F16 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1)) { // KQ + KQV multi-batch - // GGML_SYCL_DEBUG("ggml_sycl_mul_mat_mat_batched_sycl\n"); - ggml_sycl_mul_mat_mat_batched_sycl(src0, src1, dst); + // GGML_SYCL_DEBUG("ggml_sycl_mul_mat_batched_sycl\n"); + ggml_sycl_mul_mat_batched_sycl(src0, src1, dst); } else if (src0->type == GGML_TYPE_F32) { // GGML_SYCL_DEBUG("ggml_sycl_op_mul_mat\n"); ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_sycl, false); @@ -13631,7 +13883,7 @@ static void ggml_sycl_mul_mat_id_sycl(ggml_tensor * dst) { GGML_ASSERT(!ggml_is_transposed(src00)); GGML_ASSERT(!ggml_is_transposed(src1)); - GGML_ASSERT(src00->backend != GGML_BACKEND_GPU_SPLIT); + GGML_ASSERT(src00->backend != GGML_BACKEND_TYPE_GPU_SPLIT); GGML_ASSERT(src1->type == GGML_TYPE_F32); GGML_TENSOR_LOCALS(int64_t, ne0, src00, ne); @@ -13648,30 +13900,30 @@ static void ggml_sycl_mul_mat_id_sycl(ggml_tensor * dst) { const int64_t ne = ggml_nelements(dst); SYCL_CHECK(ggml_sycl_set_device(g_main_device)); - syclStream_t main_stream = g_syclStreams[g_main_device_index][0]; + syclStream_t main_stream = g_syclStreams[g_main_device][0]; - SYCL_CHECK(syclSetStream(g_sycl_handles[g_main_device_index], main_stream)); + SYCL_CHECK(syclSetStream(g_sycl_handles[g_main_device], main_stream)); //ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; - //void * src0_ddq = src0_extra->data_device[g_main_device_index]; + //void * src0_ddq = src0_extra->data_device[g_main_device]; //half * src0_as_f16 = (half *) src0_ddq; ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra; - float * src1_ddf = (float *) src1_extra->data_device[g_main_device_index]; + float * src1_ddf = (float *) src1_extra->data_device[g_main_device]; ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; - float * dst_ddf = (float *) dst_extra->data_device[g_main_device_index]; + float * dst_ddf = (float *) dst_extra->data_device[g_main_device]; // convert src1 to fp16 const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src1->type); GGML_ASSERT(to_fp16_sycl != nullptr); size_t src1_as = 0; - half * src1_as_f16 = (half *) ggml_sycl_pool_malloc(ne1 * sizeof(half), &src1_as); + half * src1_as_f16 = (half *) ggml_sycl_pool_malloc(g_main_device, ne1 * sizeof(half), &src1_as); to_fp16_sycl(src1_ddf, src1_as_f16, ne1, main_stream); size_t dst_as = 0; - half * dst_f16 = (half *) ggml_sycl_pool_malloc(ne * sizeof(half), &dst_as); + half * dst_f16 = (half *) ggml_sycl_pool_malloc(g_main_device, ne * sizeof(half), &dst_as); GGML_ASSERT(ne12 % ne02 == 0); GGML_ASSERT(ne13 % ne03 == 0); @@ -13692,14 +13944,14 @@ static void ggml_sycl_mul_mat_id_sycl(ggml_tensor * dst) { size_t ptrs_src_s = 0; size_t ptrs_dst_s = 0; - ptrs_src = (const void **) ggml_sycl_pool_malloc(2*ne23*sizeof(void *), &ptrs_src_s); - ptrs_dst = ( void **) ggml_sycl_pool_malloc(1*ne23*sizeof(void *), &ptrs_dst_s); + ptrs_src = (const void **) ggml_sycl_pool_malloc(g_main_device, 2*ne23*sizeof(void *), &ptrs_src_s); + ptrs_dst = ( void **) ggml_sycl_pool_malloc(g_main_device, 1*ne23*sizeof(void *), &ptrs_dst_s); int64_t src0_ne = ggml_nelements(src00); half * src0_as_f16 = nullptr; size_t src0_as = 0; if (src00->type != GGML_TYPE_F16) { - src0_as_f16 = (half *) ggml_sycl_pool_malloc(src0_ne * sizeof(half), &src0_as); + src0_as_f16 = (half *) ggml_sycl_pool_malloc(g_main_device, src0_ne * sizeof(half), &src0_as); } static_assert(GGML_MAX_SRC == 6, "GGML_MAX_SRC == 6"); @@ -13714,16 +13966,16 @@ static void ggml_sycl_mul_mat_id_sycl(ggml_tensor * dst) { r2, r3, src00->type, src0_as_f16, src0_ne, src1_as_f16, dst_f16, - (const int *)((ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device_index], id, - dst->src[2] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[2]->extra)->data_device[g_main_device_index] : nullptr, - dst->src[3] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[3]->extra)->data_device[g_main_device_index] : nullptr, - dst->src[4] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[4]->extra)->data_device[g_main_device_index] : nullptr, - dst->src[5] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[5]->extra)->data_device[g_main_device_index] : nullptr + (const int *)((ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device], id, + dst->src[2] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[2]->extra)->data_device[g_main_device] : nullptr, + dst->src[3] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[3]->extra)->data_device[g_main_device] : nullptr, + dst->src[4] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[4]->extra)->data_device[g_main_device] : nullptr, + dst->src[5] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[5]->extra)->data_device[g_main_device] : nullptr ); SYCL_CHECK(syclGetLastError()); SYCL_CHECK( - syclGemmBatchedEx(g_sycl_handles[g_main_device_index], CUBLAS_OP_T, CUBLAS_OP_N, + syclGemmBatchedEx(g_sycl_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N, ne01, ne11, ne10, &alpha_f16, (const void **) (ptrs_src + 0*ne23), SYCL_R_16F, ne00, (const void **) (ptrs_src + 1*ne23), SYCL_R_16F, ne10, @@ -13733,20 +13985,20 @@ static void ggml_sycl_mul_mat_id_sycl(ggml_tensor * dst) { CUBLAS_GEMM_DEFAULT_TENSOR_OP)); if (src0_as != 0) { - ggml_sycl_pool_free(src0_as_f16, src0_as); + ggml_sycl_pool_free(g_main_device, src0_as_f16, src0_as); } if (ptrs_src_s != 0) { - ggml_sycl_pool_free(ptrs_src, ptrs_src_s); + ggml_sycl_pool_free(g_main_device, ptrs_src, ptrs_src_s); } if (ptrs_dst_s != 0) { - ggml_sycl_pool_free(ptrs_dst, ptrs_dst_s); + ggml_sycl_pool_free(g_main_device, ptrs_dst, ptrs_dst_s); } const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16); to_fp32_sycl(dst_f16, dst_ddf, ne, main_stream); - ggml_sycl_pool_free(src1_as_f16, src1_as); - ggml_sycl_pool_free(dst_f16, dst_as); + ggml_sycl_pool_free(g_main_device, src1_as_f16, src1_as); + ggml_sycl_pool_free(g_main_device, dst_f16, dst_as); } #endif @@ -13767,10 +14019,10 @@ static void ggml_sycl_mul_mat_id(const ggml_tensor *src0, std::vector ids_host(ggml_nbytes(ids)); - const dpct::queue_ptr stream = g_syclStreams[g_main_device_index][0]; + const dpct::queue_ptr stream = g_syclStreams[g_main_device][0]; - if (ids->backend == GGML_BACKEND_GPU) { - const char * ids_dev = (const char *)((const ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device_index]; + if (ids->backend == GGML_BACKEND_TYPE_GPU) { + const char * ids_dev = (const char *)((const ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device]; SYCL_CHECK(CHECK_TRY_ERROR( stream->memcpy(ids_host.data(), ids_dev, ggml_nbytes(ids)))); SYCL_CHECK(CHECK_TRY_ERROR(stream->wait())); @@ -13787,20 +14039,20 @@ static void ggml_sycl_mul_mat_id(const ggml_tensor *src0, ggml_tensor src1_row = *src1; ggml_tensor dst_row = *dst; - src1_row.backend = GGML_BACKEND_GPU; - dst_row.backend = GGML_BACKEND_GPU; + src1_row.backend = GGML_BACKEND_TYPE_GPU; + dst_row.backend = GGML_BACKEND_TYPE_GPU; src1_row.extra = &src1_row_extra; dst_row.extra = &dst_row_extra; - char * src1_original = src1->backend == GGML_BACKEND_CPU ? - (char *) src1->data : (char *) src1_extra->data_device[g_main_device_index]; - char * dst_original = dst->backend == GGML_BACKEND_CPU ? - (char *) dst->data : (char *) dst_extra->data_device[g_main_device_index]; + char * src1_original = src1->backend == GGML_BACKEND_TYPE_CPU ? + (char *) src1->data : (char *) src1_extra->data_device[g_main_device]; + char * dst_original = dst->backend == GGML_BACKEND_TYPE_CPU ? + (char *) dst->data : (char *) dst_extra->data_device[g_main_device]; if (src1->ne[1] == 1) { - GGML_ASSERT(src1->backend == GGML_BACKEND_GPU); - GGML_ASSERT(dst->backend == GGML_BACKEND_GPU); + GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU); + GGML_ASSERT(dst->backend == GGML_BACKEND_TYPE_GPU); for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) { //int32_t row_id; @@ -13813,10 +14065,10 @@ static void ggml_sycl_mul_mat_id(const ggml_tensor *src0, const struct ggml_tensor * src0_row = dst->src[row_id + 2]; - src1_row_extra.data_device[g_main_device_index] = src1_original + i01*src1->nb[1]; + src1_row_extra.data_device[g_main_device] = src1_original + i01*src1->nb[1]; src1_row.data = (char *) src1->data + i01*src1->nb[1]; // TODO why is this set? - dst_row_extra.data_device[g_main_device_index] = dst_original + i01*dst->nb[1]; + dst_row_extra.data_device[g_main_device] = dst_original + i01*dst->nb[1]; dst_row.data = (char *) dst->data + i01*dst->nb[1]; // TODO why is this set? ggml_sycl_mul_mat(src0_row, &src1_row, &dst_row); @@ -13825,8 +14077,8 @@ static void ggml_sycl_mul_mat_id(const ggml_tensor *src0, sycl_pool_alloc src1_contiguous(sizeof(float)*ggml_nelements(src1)); sycl_pool_alloc dst_contiguous(sizeof(float)*ggml_nelements(dst)); - src1_row_extra.data_device[g_main_device_index] = src1_contiguous.get(); - dst_row_extra.data_device[g_main_device_index] = dst_contiguous.get(); + src1_row_extra.data_device[g_main_device] = src1_contiguous.get(); + dst_row_extra.data_device[g_main_device] = dst_contiguous.get(); for (int32_t row_id = 0; row_id < n_as; ++row_id) { const struct ggml_tensor * src0_row = dst->src[row_id + 2]; @@ -13882,7 +14134,7 @@ static void ggml_sycl_mul_mat_id(const ggml_tensor *src0, } } - if (dst->backend == GGML_BACKEND_CPU) { + if (dst->backend == GGML_BACKEND_TYPE_CPU) { SYCL_CHECK(CHECK_TRY_ERROR(stream->wait())); } } @@ -13905,8 +14157,8 @@ static void ggml_sycl_cpy(const ggml_tensor *src0, const ggml_tensor *src1, const int64_t ne = ggml_nelements(src0); GGML_ASSERT(ne == ggml_nelements(src1)); - GGML_ASSERT(src0->backend == GGML_BACKEND_GPU); - GGML_ASSERT(src1->backend == GGML_BACKEND_GPU); + GGML_ASSERT(src0->backend == GGML_BACKEND_TYPE_GPU); + GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU); GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX); GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX); @@ -13914,13 +14166,13 @@ static void ggml_sycl_cpy(const ggml_tensor *src0, const ggml_tensor *src1, GGML_TENSOR_BINARY_OP_LOCALS; SYCL_CHECK(ggml_sycl_set_device(g_main_device)); - dpct::queue_ptr main_stream = g_syclStreams[g_main_device_index][0]; + dpct::queue_ptr main_stream = g_syclStreams[g_main_device][0]; const ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; const ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra; - char * src0_ddc = (char *) src0_extra->data_device[g_main_device_index]; - char * src1_ddc = (char *) src1_extra->data_device[g_main_device_index]; + char * src0_ddc = (char *) src0_extra->data_device[g_main_device]; + char * src1_ddc = (char *) src1_extra->data_device[g_main_device]; if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) { ggml_cpy_f32_f32_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); @@ -13932,6 +14184,8 @@ static void ggml_sycl_cpy(const ggml_tensor *src0, const ggml_tensor *src1, ggml_cpy_f32_q4_0_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) { ggml_cpy_f32_q4_1_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); + } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) { + ggml_cpy_f16_f32_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) { ggml_cpy_f16_f16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); } else if (src0->type == GGML_TYPE_I16 && src1->type == GGML_TYPE_I16) { @@ -13975,6 +14229,10 @@ static void ggml_sycl_alibi(const ggml_tensor * src0, const ggml_tensor * src1, ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_alibi); } +static void ggml_sycl_pool2d(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_pool2d); +} + static void ggml_sycl_im2col(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_im2col); } @@ -14001,112 +14259,25 @@ static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_spl return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]); } -void ggml_sycl_transform_tensor(void *data, struct ggml_tensor *tensor) try { - const int64_t nrows = ggml_nrows(tensor); - - const int64_t ne0 = tensor->ne[0]; - - const size_t nb1 = tensor->nb[1]; - - ggml_backend_type backend = tensor->backend; - ggml_tensor_extra_gpu * extra = new struct ggml_tensor_extra_gpu; - memset(extra, 0, sizeof(*extra)); - - for (int64_t id = 0; id < g_device_count; ++id) { - if (backend == GGML_BACKEND_GPU && id != g_main_device_index) { - continue; - } - ggml_sycl_set_device(get_device_id_by_index(id)); - const dpct::queue_ptr stream = g_syclStreams[id][0]; - - int64_t row_low, row_high; - if (backend == GGML_BACKEND_GPU) { - row_low = 0; - row_high = nrows; - } else if (backend == GGML_BACKEND_GPU_SPLIT) { - const int64_t rounding = get_row_rounding(tensor->type); - - row_low = id == 0 ? 0 : nrows*g_tensor_split[id]; - row_low -= row_low % rounding; - - if (id == g_device_count - 1) { - row_high = nrows; - } else { - row_high = nrows*g_tensor_split[id + 1]; - row_high -= row_high % rounding; - } - } else { - GGML_ASSERT(false); - } - if (row_low == row_high) { - continue; - } - - int64_t nrows_split = row_high - row_low; - - const size_t offset_split = row_low*nb1; - size_t size = ggml_nbytes_split(tensor, nrows_split); - const size_t original_size = size; - - // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses - if (ne0 % MATRIX_ROW_PADDING != 0) { - size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING); - } - - char * buf; - SYCL_CHECK(CHECK_TRY_ERROR(buf = (char *)sycl::malloc_device( - size, *stream))); - char * buf_host = (char *)data + offset_split; - - // set padding to 0 to avoid possible NaN values - if (size > original_size) { - SYCL_CHECK(CHECK_TRY_ERROR( - (*stream) - .memset(buf + original_size, 0, size - original_size) - .wait())); - } - - SYCL_CHECK(CHECK_TRY_ERROR((*stream) - .memcpy(buf, buf_host, original_size) - .wait())); - - extra->data_device[id] = buf; - - if (backend == GGML_BACKEND_GPU_SPLIT) { - for (int64_t is = 0; is < MAX_STREAMS; ++is) { - SYCL_CHECK(CHECK_TRY_ERROR(extra->events[id][is] = - new sycl::event())); - } - } - } - - tensor->extra = extra; -} -catch (sycl::exception const &exc) { - std::cerr << exc.what() << "Exception caught at file:" << __FILE__ - << ", line:" << __LINE__ << std::endl; - std::exit(1); -} - void ggml_sycl_free_data(struct ggml_tensor *tensor) try { - if (!tensor || !tensor->extra || (tensor->backend != GGML_BACKEND_GPU && tensor->backend != GGML_BACKEND_GPU_SPLIT) ) { + if (!tensor || !tensor->extra || (tensor->backend != GGML_BACKEND_TYPE_GPU && tensor->backend != GGML_BACKEND_TYPE_GPU_SPLIT) ) { return; } ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra; - for (int64_t id = 0; id < g_device_count; ++id) { - const dpct::queue_ptr stream = g_syclStreams[id][0]; - if (extra->data_device[id] != nullptr) { - SYCL_CHECK(ggml_sycl_set_device(get_device_id_by_index(id))); - SYCL_CHECK(CHECK_TRY_ERROR(sycl::free(extra->data_device[id], *stream))); + for (int i = 0; i < g_device_count; ++i) { + const dpct::queue_ptr stream = g_syclStreams[i][0]; + if (extra->data_device[i] != nullptr) { + SYCL_CHECK(ggml_sycl_set_device(i)); + SYCL_CHECK(CHECK_TRY_ERROR(sycl::free(extra->data_device[i], *stream))); } for (int64_t is = 0; is < MAX_STREAMS; ++is) { - if (extra->events[id][is] != nullptr) { - SYCL_CHECK(ggml_sycl_set_device(get_device_id_by_index(id))); + if (extra->events[i][is] != nullptr) { + SYCL_CHECK(ggml_sycl_set_device(i)); SYCL_CHECK(CHECK_TRY_ERROR( - dpct::destroy_event(extra->events[id][is]))); + dpct::destroy_event(extra->events[i][is]))); } } } @@ -14142,15 +14313,15 @@ static void ggml_sycl_assign_buffers_impl(struct ggml_tensor *tensor, return; } - tensor->backend = GGML_BACKEND_GPU; + tensor->backend = GGML_BACKEND_TYPE_GPU; - if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_CPU) { + if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU) { const ggml_op src0_op = tensor->src[0]->op; if (src0_op == GGML_OP_RESHAPE || src0_op == GGML_OP_TRANSPOSE || src0_op == GGML_OP_VIEW || src0_op == GGML_OP_PERMUTE) { ggml_sycl_assign_buffers_impl(tensor->src[0], scratch, force_inplace, no_alloc); } } - if (tensor->op == GGML_OP_CPY && tensor->src[1]->backend == GGML_BACKEND_CPU) { + if (tensor->op == GGML_OP_CPY && tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU) { ggml_sycl_assign_buffers_impl(tensor->src[1], scratch, force_inplace, no_alloc); } @@ -14166,22 +14337,22 @@ static void ggml_sycl_assign_buffers_impl(struct ggml_tensor *tensor, const size_t size = ggml_nbytes(tensor); SYCL_CHECK(ggml_sycl_set_device(g_main_device)); - const dpct::queue_ptr stream = g_syclStreams[g_main_device_index][0]; + const dpct::queue_ptr stream = g_syclStreams[g_main_device][0]; - if (inplace && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT)) { + if (inplace && (tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU || tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT)) { ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->src[0]->extra; - char * src0_ddc = (char *) src0_extra->data_device[g_main_device_index]; + char * src0_ddc = (char *) src0_extra->data_device[g_main_device]; size_t offset = 0; if (tensor->op == GGML_OP_VIEW) { memcpy(&offset, tensor->op_params, sizeof(size_t)); } extra = ggml_sycl_alloc_temp_tensor_extra(); - extra->data_device[g_main_device_index] = src0_ddc + offset; + extra->data_device[g_main_device] = src0_ddc + offset; } else if (tensor->op == GGML_OP_CPY) { ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu * ) tensor->src[1]->extra; - void * src1_ddv = src1_extra->data_device[g_main_device_index]; + void * src1_ddv = src1_extra->data_device[g_main_device]; extra = ggml_sycl_alloc_temp_tensor_extra(); - extra->data_device[g_main_device_index] = src1_ddv; + extra->data_device[g_main_device] = src1_ddv; } else if (scratch) { GGML_ASSERT(size <= g_scratch_size); if (g_scratch_offset + size > g_scratch_size) { @@ -14196,7 +14367,7 @@ static void ggml_sycl_assign_buffers_impl(struct ggml_tensor *tensor, g_scratch_buffer = data; } extra = ggml_sycl_alloc_temp_tensor_extra(); - extra->data_device[g_main_device_index] = data + g_scratch_offset; + extra->data_device[g_main_device] = data + g_scratch_offset; g_scratch_offset += size; @@ -14209,44 +14380,7 @@ static void ggml_sycl_assign_buffers_impl(struct ggml_tensor *tensor, (*stream).memset(data, 0, size).wait())); extra = new ggml_tensor_extra_gpu; memset(extra, 0, sizeof(*extra)); - extra->data_device[g_main_device_index] = data; - } - - tensor->extra = extra; -} -catch (sycl::exception const &exc) { - std::cerr << exc.what() << "Exception caught at file:" << __FILE__ - << ", line:" << __LINE__ << std::endl; - std::exit(1); -} - -void ggml_sycl_assign_scratch_offset(struct ggml_tensor *tensor, - size_t offset) try { - if (g_scratch_size == 0) { - return; - } - if (g_scratch_buffer == nullptr) { - ggml_sycl_set_device(g_main_device); - const dpct::queue_ptr stream = g_syclStreams[g_main_device_index][0]; - SYCL_CHECK( - CHECK_TRY_ERROR(g_scratch_buffer = (void *)sycl::malloc_device( - g_scratch_size, *stream))); - } - - ggml_tensor_extra_gpu * extra = ggml_sycl_alloc_temp_tensor_extra(); - - const bool inplace = tensor->view_src != nullptr; - - if (inplace && (tensor->view_src->backend == GGML_BACKEND_GPU || tensor->view_src->backend == GGML_BACKEND_GPU_SPLIT)) { - ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->view_src->extra; - char * src0_ddc = (char *) src0_extra->data_device[g_main_device_index]; - size_t view_offset = 0; - if (tensor->op == GGML_OP_VIEW) { - memcpy(&view_offset, tensor->op_params, sizeof(size_t)); - } - extra->data_device[g_main_device_index] = src0_ddc + view_offset; - } else { - extra->data_device[g_main_device_index] = (char *) g_scratch_buffer + offset; + extra->data_device[g_main_device] = data; } tensor->extra = extra; @@ -14258,14 +14392,14 @@ catch (sycl::exception const &exc) { } void ggml_sycl_copy_to_device(struct ggml_tensor *tensor) try { - GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); + GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU); GGML_ASSERT(ggml_is_contiguous(tensor)); ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra; SYCL_CHECK(ggml_sycl_set_device(g_main_device)); - const dpct::queue_ptr stream = g_syclStreams[g_main_device_index][0]; + const dpct::queue_ptr stream = g_syclStreams[g_main_device][0]; SYCL_CHECK(CHECK_TRY_ERROR((*stream) - .memcpy(extra->data_device[g_main_device_index], + .memcpy(extra->data_device[g_main_device], tensor->data, ggml_nbytes(tensor)) .wait())); } @@ -14292,21 +14426,17 @@ void ggml_sycl_assign_buffers_force_inplace(struct ggml_tensor * tensor) { } void ggml_sycl_set_main_device(const int main_device) try { + if (g_main_device == main_device) return; + check_allow_gpu_index(main_device); + g_main_device = main_device; + g_main_device_id = g_sycl_gpu_mgr->gpus[main_device]; - if (main_device >= g_all_sycl_device_count) { - fprintf(stderr, "warning: cannot set main_device=%d because there are only %d devices. Using device %d instead.\n", - main_device, g_all_sycl_device_count, g_main_device); - return; - } - - if (g_main_device != main_device && g_device_count >= 1) { - g_main_device = main_device; - g_main_device_index = get_device_index_by_id(g_main_device); + if (g_ggml_sycl_debug) { dpct::device_info prop; SYCL_CHECK(CHECK_TRY_ERROR(dpct::get_device_info( - prop, dpct::dev_mgr::instance().get_device(g_main_device)))); + prop, dpct::dev_mgr::instance().get_device(g_main_device_id)))); fprintf(stderr, "Using device %d (%s) as main device\n", - g_main_device, prop.get_name()); + g_main_device_id, prop.get_name()); } } catch (sycl::exception const &exc) { @@ -14329,7 +14459,7 @@ void ggml_sycl_free_scratch() try { return; } ggml_sycl_set_device(g_main_device); - const dpct::queue_ptr stream = g_syclStreams[g_main_device_index][0]; + const dpct::queue_ptr stream = g_syclStreams[g_main_device][0]; SYCL_CHECK(CHECK_TRY_ERROR( sycl::free(g_scratch_buffer, *stream))); @@ -14345,9 +14475,9 @@ bool ggml_sycl_compute_forward(struct ggml_compute_params * params, struct ggml_ if (!g_sycl_loaded) return false; ggml_sycl_func_t func; - const bool any_on_device = tensor->backend == GGML_BACKEND_GPU - || (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT)) - || (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_GPU); + const bool any_on_device = tensor->backend == GGML_BACKEND_TYPE_GPU + || (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU || tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT)) + || (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_TYPE_GPU); if (!any_on_device && tensor->op != GGML_OP_MUL_MAT && tensor->op != GGML_OP_MUL_MAT_ID) { return false; @@ -14401,6 +14531,12 @@ bool ggml_sycl_compute_forward(struct ggml_compute_params * params, struct ggml_ case GGML_UNARY_OP_RELU: func = ggml_sycl_relu; break; + case GGML_UNARY_OP_HARDSIGMOID: + func = ggml_sycl_hardsigmoid; + break; + case GGML_UNARY_OP_HARDSWISH: + func = ggml_sycl_hardswish; + break; default: return false; } @@ -14475,6 +14611,9 @@ bool ggml_sycl_compute_forward(struct ggml_compute_params * params, struct ggml_ case GGML_OP_IM2COL: func = ggml_sycl_im2col; break; + case GGML_OP_POOL_2D: + func = ggml_sycl_pool2d; + break; case GGML_OP_SUM_ROWS: func = ggml_sycl_sum_rows; break; @@ -14485,14 +14624,14 @@ bool ggml_sycl_compute_forward(struct ggml_compute_params * params, struct ggml_ return false; } - if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT) { + if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT) { ggml_sycl_set_peer_access(tensor->src[1]->ne[1]); } if (params->ith != 0) { return true; } - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return true; } func(tensor->src[0], tensor->src[1], tensor); @@ -14500,27 +14639,15 @@ bool ggml_sycl_compute_forward(struct ggml_compute_params * params, struct ggml_ } GGML_API GGML_CALL void ggml_sycl_get_gpu_list(int *id_list, int max_len) try { - int max_compute_units = -1; - for(int i=0;igpus.size();i++){ + if (i>=max_len) break; + id_list[i] = g_sycl_gpu_mgr->gpus[i]; } return; } @@ -14547,8 +14674,9 @@ catch (sycl::exception const &exc) { GGML_API GGML_CALL void ggml_sycl_get_device_description(int device, char *description, size_t description_size) try { dpct::device_info prop; + int device_id = g_sycl_gpu_mgr->gpus[device]; SYCL_CHECK(CHECK_TRY_ERROR(dpct::get_device_info( - prop, dpct::dev_mgr::instance().get_device(device)))); + prop, dpct::dev_mgr::instance().get_device(device_id)))); snprintf(description, description_size, "%s", prop.get_name()); } catch (sycl::exception const &exc) { @@ -14557,17 +14685,36 @@ catch (sycl::exception const &exc) { std::exit(1); } +GGML_CALL void ggml_backend_sycl_get_device_memory(int device, size_t *free, + size_t *total) try { + ggml_sycl_set_device(device); + + /* + DPCT1009:218: SYCL uses exceptions to report errors and does not use the + error codes. The original code was commented out and a warning string was + inserted. You need to rewrite this code. + */ + /* + DPCT1106:217: 'cudaMemGetInfo' was migrated with the Intel extensions for + device information which may not be supported by all compilers or runtimes. + You may need to adjust the code. + */ + int device_id = g_sycl_gpu_mgr->gpus[device]; + SYCL_CHECK(CHECK_TRY_ERROR( + dpct::dev_mgr::instance().get_device(device_id).get_memory_info(*free, *total))); +} +catch (sycl::exception const &exc) { + std::cerr << exc.what() << "Exception caught at file:" << __FILE__ + << ", line:" << __LINE__ << std::endl; + std::exit(1); +} + //////////////////////////////////////////////////////////////////////////////// // backend interface #define UNUSED GGML_UNUSED -struct ggml_backend_sycl_context { - int device; - std::string name; -}; - // sycl buffer struct ggml_backend_sycl_buffer_context { @@ -14577,7 +14724,12 @@ struct ggml_backend_sycl_buffer_context { size_t temp_tensor_extra_index = 0; std::string name; - ggml_backend_sycl_buffer_context(int device, void * dev_ptr) : device(device), dev_ptr(dev_ptr) {} + ggml_backend_sycl_buffer_context(int device, void * dev_ptr) : + device(device), dev_ptr(dev_ptr) { + check_allow_gpu_index(device); + int id = g_sycl_gpu_mgr->gpus[device]; + name = (GGML_SYCL_NAME + std::to_string(id)); + } ~ ggml_backend_sycl_buffer_context() { delete[] temp_tensor_extras; @@ -14608,10 +14760,9 @@ GGML_CALL static bool ggml_backend_buffer_is_sycl(ggml_backend_buffer_t buffer) static void ggml_backend_sycl_buffer_free_buffer(ggml_backend_buffer_t buffer) try { - ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context; + ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context; ggml_sycl_set_device(ctx->device); - int device_index = get_device_index_by_id(ctx->device); - const dpct::queue_ptr stream = g_syclStreams[device_index][0]; + const dpct::queue_ptr stream = g_syclStreams[ctx->device][0]; SYCL_CHECK( CHECK_TRY_ERROR(sycl::free(ctx->dev_ptr, *stream))); @@ -14624,13 +14775,14 @@ catch (sycl::exception const &exc) { } static void * ggml_backend_sycl_buffer_get_base(ggml_backend_buffer_t buffer) { - ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context; + ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context; return ctx->dev_ptr; } -static void ggml_backend_sycl_buffer_init_tensor(ggml_backend_buffer_t buffer, - ggml_tensor *tensor) try { - ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context; +GGML_CALL static void +ggml_backend_sycl_buffer_init_tensor(ggml_backend_buffer_t buffer, + ggml_tensor *tensor) try { + ggml_backend_sycl_buffer_context * ctx = (ggml_backend_sycl_buffer_context *)buffer->context; if (tensor->view_src != NULL && tensor->view_offs == 0) { assert(tensor->view_src->buffer->buft == buffer->buft); @@ -14642,27 +14794,20 @@ static void ggml_backend_sycl_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor_extra_gpu * extra = ctx->ggml_sycl_alloc_temp_tensor_extra(); extra->data_device[ctx->device] = tensor->data; - - tensor->backend = GGML_BACKEND_GPU; + tensor->backend = GGML_BACKEND_TYPE_GPU; tensor->extra = extra; if (ggml_is_quantized(tensor->type)) { // initialize padding to 0 to avoid possible NaN values - int64_t row_low = 0; - int64_t row_high = ggml_nrows(tensor); - int64_t nrows_split = row_high - row_low; - - size_t original_size = ggml_nbytes_split(tensor, nrows_split); + size_t original_size = ggml_nbytes(tensor); size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor); if (padded_size > original_size && tensor->view_src == nullptr) { SYCL_CHECK(CHECK_TRY_ERROR(g_syclStreams[ctx->device][0]->memset( (char *)tensor->data + original_size, 0, - padded_size - original_size))); + padded_size - original_size).wait())); } } - - UNUSED(buffer); } catch (sycl::exception const &exc) { std::cerr << exc.what() << "Exception caught at file:" << __FILE__ @@ -14674,15 +14819,14 @@ static void ggml_backend_sycl_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor *tensor, const void *data, size_t offset, size_t size) try { - GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); + GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU); - ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context; + ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context; ggml_sycl_set_device(ctx->device); - int device_index = get_device_index_by_id(ctx->device); - const dpct::queue_ptr stream = g_syclStreams[device_index][0]; + const dpct::queue_ptr stream = g_syclStreams[ctx->device][0]; SYCL_CHECK( - CHECK_TRY_ERROR(dpct::get_current_device().queues_wait_and_throw())); + CHECK_TRY_ERROR(dpct::dev_mgr::instance().get_device(ctx->device).queues_wait_and_throw())); SYCL_CHECK( CHECK_TRY_ERROR((*stream) @@ -14699,16 +14843,15 @@ static void ggml_backend_sycl_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor *tensor, void *data, size_t offset, size_t size) try { - GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); + GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU); - ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context; + ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context; ggml_sycl_set_device(ctx->device); - int device_index = get_device_index_by_id(ctx->device); - const dpct::queue_ptr stream = g_syclStreams[device_index][0]; + const dpct::queue_ptr stream = g_syclStreams[ctx->device][0]; SYCL_CHECK( - CHECK_TRY_ERROR(dpct::get_current_device().queues_wait_and_throw())); + CHECK_TRY_ERROR(dpct::dev_mgr::instance().get_device(ctx->device).queues_wait_and_throw())); SYCL_CHECK(CHECK_TRY_ERROR( (*stream) @@ -14721,13 +14864,73 @@ catch (sycl::exception const &exc) { std::exit(1); } +GGML_CALL static bool +ggml_backend_sycl_buffer_cpy_tensor(ggml_backend_buffer_t buffer, + const ggml_tensor *src, + ggml_tensor *dst) try { + if (ggml_backend_buffer_is_sycl(src->buffer)) { + ggml_backend_sycl_buffer_context * src_ctx = (ggml_backend_sycl_buffer_context *)src->buffer->context; + ggml_backend_sycl_buffer_context * dst_ctx = (ggml_backend_sycl_buffer_context *)buffer->context; + + ggml_sycl_set_device(src_ctx->device); + /* + DPCT1009:198: SYCL uses exceptions to report errors and does not use the + error codes. The original code was commented out and a warning string + was inserted. You need to rewrite this code. + */ + SYCL_CHECK(CHECK_TRY_ERROR( + dpct::dev_mgr::instance().get_device(src_ctx->device).queues_wait_and_throw())); + ggml_sycl_set_device(dst_ctx->device); + /* + DPCT1009:199: SYCL uses exceptions to report errors and does not use the + error codes. The original code was commented out and a warning string + was inserted. You need to rewrite this code. + */ + SYCL_CHECK(CHECK_TRY_ERROR( + dpct::dev_mgr::instance().get_device(dst_ctx->device).queues_wait_and_throw())); + /* + DPCT1009:200: SYCL uses exceptions to report errors and does not use the + error codes. The original code was commented out and a warning string + was inserted. You need to rewrite this code. + */ + + dpct::queue_ptr stream_dst = g_syclStreams[dst_ctx->device][0]; + dpct::queue_ptr stream_src = g_syclStreams[src_ctx->device][0]; + size_t size = ggml_nbytes(src); + + //todo. it's dirty solutino to walkaroud known issue:device2device cross GPUs. + dev2dev_memcpy(*stream_dst, *stream_src, dst->data, src->data, size); + +//todo, it's known issue:error in device2device cross GPUs. reused when the issue is fixed. DON"T remove +#if 0 + SYCL_CHECK(CHECK_TRY_ERROR((*stream).memcpy( + (char *)dst->data, (const char *)src->data, size).wait())); + + /* + DPCT1009:201: SYCL uses exceptions to report errors and does not use the + error codes. The original code was commented out and a warning string + was inserted. You need to rewrite this code. + */ + SYCL_CHECK(CHECK_TRY_ERROR( + dpct::dev_mgr::instance().get_device(dst_ctx->device).queues_wait_and_throw())); +#endif + return true; + } + return false; +} +catch (sycl::exception const &exc) { + std::cerr << exc.what() << "Exception caught at file:" << __FILE__ + << ", line:" << __LINE__ << std::endl; + std::exit(1); +} + + static void ggml_backend_sycl_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) try { ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context; ggml_sycl_set_device(ctx->device); - int device_index = get_device_index_by_id(ctx->device); - const dpct::queue_ptr stream = g_syclStreams[device_index][0]; + const dpct::queue_ptr stream = g_syclStreams[ctx->device][0]; SYCL_CHECK( CHECK_TRY_ERROR(dpct::get_current_device().queues_wait_and_throw())); @@ -14748,7 +14951,7 @@ static struct ggml_backend_buffer_i ggml_backend_sycl_buffer_interface = { /* .init_tensor = */ ggml_backend_sycl_buffer_init_tensor, /* .set_tensor = */ ggml_backend_sycl_buffer_set_tensor, /* .get_tensor = */ ggml_backend_sycl_buffer_get_tensor, - /* .cpy_tensor = */ NULL, + /* .cpy_tensor = */ ggml_backend_sycl_buffer_cpy_tensor, /* .clear = */ ggml_backend_sycl_buffer_clear, /* .reset = */ NULL, }; @@ -14759,28 +14962,28 @@ struct ggml_backend_sycl_buffer_type_context { std::string name; }; +struct ggml_backend_sycl_context { + int device; + std::string name; +}; + GGML_CALL static const char * ggml_backend_sycl_buffer_type_name(ggml_backend_buffer_type_t buft) { ggml_backend_sycl_buffer_type_context * ctx = (ggml_backend_sycl_buffer_type_context *)buft->context; return ctx->name.c_str(); } - -static ggml_backend_buffer_t +GGML_CALL static ggml_backend_buffer_t ggml_backend_sycl_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) try { - int device = (int) (intptr_t) buft->context; - - ggml_sycl_set_device(device); - int device_index = get_device_index_by_id(device); - const dpct::queue_ptr stream = g_syclStreams[device_index][0]; + ggml_backend_sycl_buffer_type_context * buft_ctx = (ggml_backend_sycl_buffer_type_context *)buft->context; + ggml_sycl_set_device(buft_ctx->device); + const dpct::queue_ptr stream = g_syclStreams[buft_ctx->device][0]; size = std::max(size, (size_t)1); // syclMalloc returns null for size 0 void * dev_ptr; SYCL_CHECK(CHECK_TRY_ERROR(dev_ptr = (void *)sycl::malloc_device( size, *stream))); - - ggml_backend_sycl_buffer_context * ctx = new ggml_backend_sycl_buffer_context(device, dev_ptr); - + ggml_backend_sycl_buffer_context * ctx = new ggml_backend_sycl_buffer_context(buft_ctx->device, dev_ptr); return ggml_backend_buffer_init(buft, ggml_backend_sycl_buffer_interface, ctx, size); } catch (sycl::exception const &exc) { @@ -14789,9 +14992,8 @@ catch (sycl::exception const &exc) { std::exit(1); } -static size_t ggml_backend_sycl_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { +GGML_CALL static size_t ggml_backend_sycl_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { return 128; - UNUSED(buft); } @@ -14801,13 +15003,8 @@ static size_t ggml_backend_sycl_buffer_type_get_max_size(ggml_backend_buffer_typ UNUSED(buft); } -static size_t ggml_backend_sycl_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) { - int64_t row_low = 0; - int64_t row_high = ggml_nrows(tensor); - int64_t nrows_split = row_high - row_low; - - size_t size = ggml_nbytes_split(tensor, nrows_split); - +GGML_CALL static size_t ggml_backend_sycl_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) { + size_t size = ggml_nbytes(tensor); int64_t ne0 = tensor->ne[0]; if (ggml_is_quantized(tensor->type)) { @@ -14821,10 +15018,13 @@ static size_t ggml_backend_sycl_buffer_type_get_alloc_size(ggml_backend_buffer_t UNUSED(buft); } -static bool ggml_backend_sycl_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) { - return ggml_backend_is_sycl(backend); - - UNUSED(buft); +GGML_CALL static bool ggml_backend_sycl_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) { + if (!ggml_backend_is_sycl(backend)) { + return false; + } + ggml_backend_sycl_buffer_type_context * buft_ctx = (ggml_backend_sycl_buffer_type_context *)buft->context; + ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context; + return buft_ctx->device == sycl_ctx->device; } static ggml_backend_buffer_type_i ggml_backend_sycl_buffer_type_interface = { @@ -14843,10 +15043,10 @@ ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device) { static bool ggml_backend_sycl_buffer_type_initialized = false; if (!ggml_backend_sycl_buffer_type_initialized) { - for (int i = 0; i < GGML_SYCL_MAX_DEVICES; i++) { + for (int i = 0; i < g_device_count; i++) { ggml_backend_sycl_buffer_types[i] = { /* .iface = */ ggml_backend_sycl_buffer_type_interface, - /* .context = */ (ggml_backend_buffer_type_context_t) (intptr_t) i, + /* .context = */ new ggml_backend_sycl_buffer_type_context{i, GGML_SYCL_NAME + std::to_string(g_sycl_gpu_mgr->gpus[i])}, }; } ggml_backend_sycl_buffer_type_initialized = true; @@ -14855,6 +15055,391 @@ ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device) { return &ggml_backend_sycl_buffer_types[device]; } +// sycl split buffer type +static void get_row_split(int64_t * row_low, int64_t * row_high, const ggml_tensor * tensor, const std::array & tensor_split, int id) { + const int64_t nrows = ggml_nrows(tensor); + const int64_t rounding = get_row_rounding(tensor->type, tensor_split); + + *row_low = id == 0 ? 0 : nrows*tensor_split[id]; + *row_low -= *row_low % rounding; + if (id == g_device_count - 1) { + *row_high = nrows; + } else { + *row_high = nrows*tensor_split[id + 1]; + *row_high -= *row_high % rounding; + } +} + +struct ggml_backend_sycl_split_buffer_context { + ~ggml_backend_sycl_split_buffer_context() try { + for (ggml_tensor_extra_gpu * extra : tensor_extras) { + for (int i = 0; i < g_device_count; ++i) { + // int id = g_sycl_gpu_mgr->gpus[i]; + for (int64_t is = 0; is < MAX_STREAMS; ++is) { + if (extra->events[i][is] != nullptr) { + /* + DPCT1009:206: SYCL uses exceptions to report errors and + does not use the error codes. The original code was + commented out and a warning string was inserted. You + need to rewrite this code. + */ + SYCL_CHECK(CHECK_TRY_ERROR( + dpct::destroy_event(extra->events[i][is]))); + } + } + if (extra->data_device[i] != nullptr) { + /* + DPCT1009:207: SYCL uses exceptions to report errors and does + not use the error codes. The original code was commented out + and a warning string was inserted. You need to rewrite this + code. + */ + ggml_sycl_set_device(i); + SYCL_CHECK(CHECK_TRY_ERROR(sycl::free( + extra->data_device[i], *g_syclStreams[i][0]))); + } + } + delete extra; + } + } + catch (sycl::exception const &exc) { + std::cerr << exc.what() << "Exception caught at file:" << __FILE__ + << ", line:" << __LINE__ << std::endl; + std::exit(1); + } + + std::vector tensor_extras; +}; + +GGML_CALL static const char * ggml_backend_sycl_split_buffer_get_name(ggml_backend_buffer_t buffer) { + return GGML_SYCL_NAME "_Split"; + + UNUSED(buffer); +} + +// unused at the moment +//static bool ggml_backend_buffer_is_sycl_split(ggml_backend_buffer_t buffer) { +// return buffer->iface.get_name == ggml_backend_sycl_split_buffer_get_name; +//} + +GGML_CALL static void ggml_backend_sycl_split_buffer_free_buffer(ggml_backend_buffer_t buffer) { + ggml_backend_sycl_split_buffer_context * ctx = (ggml_backend_sycl_split_buffer_context *)buffer->context; + delete ctx; +} + +GGML_CALL static void * ggml_backend_sycl_split_buffer_get_base(ggml_backend_buffer_t buffer) { + // the pointers are stored in the tensor extras, this is just a dummy address and never dereferenced + return (void *)0x1000; + + UNUSED(buffer); +} + +GGML_CALL static void +ggml_backend_sycl_split_buffer_init_tensor(ggml_backend_buffer_t buffer, + ggml_tensor *tensor) try { + GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported + + ggml_backend_sycl_split_buffer_context * ctx = (ggml_backend_sycl_split_buffer_context *)buffer->context; + ggml_backend_sycl_split_buffer_type_context * buft_ctx = (ggml_backend_sycl_split_buffer_type_context *)buffer->buft->context; + + const int64_t ne0 = tensor->ne[0]; + + ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu{}; + + ctx->tensor_extras.push_back(extra); + + for (int i = 0; i < g_device_count; ++i) { + // int id = g_sycl_gpu_mgr->gpus[i]; + int64_t row_low, row_high; + get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, i); + + int64_t nrows_split = row_high - row_low; + if (nrows_split == 0) { + continue; + } + + size_t size = ggml_nbytes_split(tensor, nrows_split); + const size_t original_size = size; + + // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses + if (ne0 % MATRIX_ROW_PADDING != 0) { + size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING); + } + + // FIXME: do not crash if cudaMalloc fails + // currently, init_tensor cannot fail, it needs to be fixed in ggml-backend first + ggml_sycl_set_device(i); + char * buf; + /* + DPCT1009:208: SYCL uses exceptions to report errors and does not use the + error codes. The original code was commented out and a warning string + was inserted. You need to rewrite this code. + */ + SYCL_CHECK(CHECK_TRY_ERROR(buf = (char *)sycl::malloc_device( + size, *g_syclStreams[i][0]))); + + // set padding to 0 to avoid possible NaN values + if (size > original_size) { + /* + DPCT1009:209: SYCL uses exceptions to report errors and does not use + the error codes. The original code was commented out and a warning + string was inserted. You need to rewrite this code. + */ + SYCL_CHECK(CHECK_TRY_ERROR( + (*g_syclStreams[i][0]) + .memset(buf + original_size, 0, size - original_size) + .wait())); + } + + extra->data_device[i] = buf; + + for (int64_t is = 0; is < MAX_STREAMS; ++is) { + /* + DPCT1009:210: SYCL uses exceptions to report errors and does not use + the error codes. The original code was commented out and a warning + string was inserted. You need to rewrite this code. + */ + SYCL_CHECK( + CHECK_TRY_ERROR(extra->events[i][is] = new sycl::event())); + } + } + tensor->backend = GGML_BACKEND_TYPE_GPU_SPLIT; + tensor->extra = extra; +} +catch (sycl::exception const &exc) { + std::cerr << exc.what() << "Exception caught at file:" << __FILE__ + << ", line:" << __LINE__ << std::endl; + std::exit(1); +} + +GGML_CALL static void +ggml_backend_sycl_split_buffer_set_tensor(ggml_backend_buffer_t buffer, + ggml_tensor *tensor, const void *data, + size_t offset, size_t size) try { + // split tensors must always be set in their entirety at once + GGML_ASSERT(offset == 0); + GGML_ASSERT(size == ggml_nbytes(tensor)); + + ggml_backend_sycl_split_buffer_type_context * buft_ctx = (ggml_backend_sycl_split_buffer_type_context *)buffer->buft->context; + + const int64_t ne0 = tensor->ne[0]; + const size_t nb1 = tensor->nb[1]; + ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra; + + for (int i = 0; i < g_device_count; ++i) { + // int id = g_sycl_gpu_mgr->gpus[i]; + int64_t row_low, row_high; + get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, i); + + int64_t nrows_split = row_high - row_low; + if (nrows_split == 0) { + continue; + } + + const size_t offset_split = row_low*nb1; + size_t size = ggml_nbytes_split(tensor, nrows_split); + const size_t original_size = size; + + // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses + if (ne0 % MATRIX_ROW_PADDING != 0) { + size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING); + } + + const char * buf_host = (const char *)data + offset_split; + /* + DPCT1009:211: SYCL uses exceptions to report errors and does not use the + error codes. The original code was commented out and a warning string + was inserted. You need to rewrite this code. + */ + ggml_sycl_set_device(i); + SYCL_CHECK(CHECK_TRY_ERROR( + (*g_syclStreams[i][0]) + .memcpy(extra->data_device[i], buf_host, original_size) + .wait())); + } +} +catch (sycl::exception const &exc) { + std::cerr << exc.what() << "Exception caught at file:" << __FILE__ + << ", line:" << __LINE__ << std::endl; + std::exit(1); +} + +GGML_CALL static void +ggml_backend_sycl_split_buffer_get_tensor(ggml_backend_buffer_t buffer, + const ggml_tensor *tensor, void *data, + size_t offset, size_t size) try { + // split tensors must always be set in their entirety at once + GGML_ASSERT(offset == 0); + GGML_ASSERT(size == ggml_nbytes(tensor)); + + ggml_backend_sycl_split_buffer_type_context * buft_ctx = (ggml_backend_sycl_split_buffer_type_context *)buffer->buft->context; + + const int64_t ne0 = tensor->ne[0]; + const size_t nb1 = tensor->nb[1]; + ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra; + + for (int i = 0; i < g_device_count; ++i) { + // int id = g_sycl_gpu_mgr->gpus[i]; + int64_t row_low, row_high; + get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, i); + + int64_t nrows_split = row_high - row_low; + if (nrows_split == 0) { + continue; + } + + const size_t offset_split = row_low*nb1; + size_t size = ggml_nbytes_split(tensor, nrows_split); + const size_t original_size = size; + + // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses + if (ne0 % MATRIX_ROW_PADDING != 0) { + size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING); + } + + char * buf_host = (char *)data + offset_split; + /* + DPCT1009:212: SYCL uses exceptions to report errors and does not use the + error codes. The original code was commented out and a warning string + was inserted. You need to rewrite this code. + */ + ggml_sycl_set_device(i); + SYCL_CHECK(CHECK_TRY_ERROR( + (*g_syclStreams[i][0]) + .memcpy(buf_host, extra->data_device[i], original_size) + .wait())); + } +} +catch (sycl::exception const &exc) { + std::cerr << exc.what() << "Exception caught at file:" << __FILE__ + << ", line:" << __LINE__ << std::endl; + std::exit(1); +} + +GGML_CALL static void ggml_backend_sycl_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { + UNUSED(buffer); + UNUSED(value); +} + +static struct ggml_backend_buffer_i ggml_backend_sycl_split_buffer_interface = { + /* .get_name = */ ggml_backend_sycl_split_buffer_get_name, + /* .free_buffer = */ ggml_backend_sycl_split_buffer_free_buffer, + /* .get_base = */ ggml_backend_sycl_split_buffer_get_base, + /* .init_tensor = */ ggml_backend_sycl_split_buffer_init_tensor, + /* .set_tensor = */ ggml_backend_sycl_split_buffer_set_tensor, + /* .get_tensor = */ ggml_backend_sycl_split_buffer_get_tensor, + /* .cpy_tensor = */ NULL, + /* .clear = */ ggml_backend_sycl_split_buffer_clear, + /* .reset = */ NULL, +}; + +GGML_CALL static const char * ggml_backend_sycl_split_buffer_type_name(ggml_backend_buffer_type_t buft) { + return GGML_SYCL_NAME "_Split"; + + UNUSED(buft); +} + +GGML_CALL static ggml_backend_buffer_t ggml_backend_sycl_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { + // since we don't know the exact split after rounding, we cannot allocate the device buffers at this point + // instead, we allocate them for each tensor separately in init_tensor + // however, the size still represents the maximum cumulative size of all the device buffers after the tensors are allocated, + // as returned by get_alloc_size. this limit is enforced during tensor allocation by ggml-alloc, so it must be correct. + ggml_backend_sycl_split_buffer_context * ctx = new ggml_backend_sycl_split_buffer_context(); + + return ggml_backend_buffer_init(buft, ggml_backend_sycl_split_buffer_interface, ctx, size); +} + +GGML_CALL static size_t ggml_backend_sycl_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { + return 128; + UNUSED(buft); +} + +GGML_CALL static size_t ggml_backend_sycl_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) { + ggml_backend_sycl_split_buffer_type_context * ctx = (ggml_backend_sycl_split_buffer_type_context *)buft->context; + + size_t total_size = 0; + + const int64_t ne0 = tensor->ne[0]; + + for (int i = 0; i < g_device_count; ++i) { + // int id = g_sycl_gpu_mgr->gpus[i]; + int64_t row_low, row_high; + get_row_split(&row_low, &row_high, tensor, ctx->tensor_split, i); + + int64_t nrows_split = row_high - row_low; + if (nrows_split == 0) { + continue; + } + + total_size += ggml_nbytes_split(tensor, nrows_split); + + // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses + if (ne0 % MATRIX_ROW_PADDING != 0) { + total_size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING); + } + } + + return total_size; +} + +GGML_CALL static bool ggml_backend_sycl_split_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) { + return ggml_backend_is_sycl(backend); + + UNUSED(buft); +} + +GGML_CALL static bool ggml_backend_sycl_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) { + return false; + + UNUSED(buft); +} + +static ggml_backend_buffer_type_i ggml_backend_sycl_split_buffer_type_interface = { + /* .get_name = */ ggml_backend_sycl_split_buffer_type_name, + /* .alloc_buffer = */ ggml_backend_sycl_split_buffer_type_alloc_buffer, + /* .get_alignment = */ ggml_backend_sycl_split_buffer_type_get_alignment, + /* .get_max_size = */ NULL, // defaults to SIZE_MAX + /* .get_alloc_size = */ ggml_backend_sycl_split_buffer_type_get_alloc_size, + /* .supports_backend = */ ggml_backend_sycl_split_buffer_type_supports_backend, + /* .is_host = */ ggml_backend_sycl_split_buffer_type_is_host, +}; + +GGML_CALL ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split) { + // FIXME: this is not thread safe + static std::map, struct ggml_backend_buffer_type> buft_map; + + std::array tensor_split_arr = {}; + + bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + GGML_SYCL_MAX_DEVICES, [](float x) { return x == 0.0f; }); + if (all_zero) { + tensor_split_arr = g_default_tensor_split; + } else { + float split_sum = 0.0f; + for (int i = 0; i < g_device_count; ++i) { + // int id = g_sycl_gpu_mgr->gpus[i]; + tensor_split_arr[i] = split_sum; + split_sum += tensor_split[i]; + } + for (int i = 0; i < g_device_count; ++i) { + // int id = g_sycl_gpu_mgr->gpus[i]; + tensor_split_arr[i] /= split_sum; + } + } + + auto it = buft_map.find(tensor_split_arr); + if (it != buft_map.end()) { + return &it->second; + } + + struct ggml_backend_buffer_type buft { + /* .iface = */ ggml_backend_sycl_split_buffer_type_interface, + /* .context = */ new ggml_backend_sycl_split_buffer_type_context{tensor_split_arr}, + }; + + auto result = buft_map.emplace(tensor_split_arr, buft); + return &result.first->second; +} + // host buffer type GGML_CALL static const char * ggml_backend_sycl_host_buffer_type_name(ggml_backend_buffer_type_t buft) { @@ -14884,6 +15469,7 @@ static ggml_backend_buffer_t ggml_backend_sycl_host_buffer_type_alloc_buffer(ggm // FIXME: this is a hack to avoid having to implement a new buffer type ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size); buffer->buft = buft; + buffer->iface.get_name = ggml_backend_sycl_host_buffer_name; buffer->iface.free_buffer = ggml_backend_sycl_host_buffer_free_buffer; return buffer; @@ -14908,38 +15494,33 @@ ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type() { // backend -struct ggml_backend_context_sycl { - int device; -}; +GGML_CALL static const char * ggml_backend_sycl_name(ggml_backend_t backend) { -static const char * ggml_backend_sycl_name(ggml_backend_t backend) { - return GGML_SYCL_NAME; + ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context; - UNUSED(backend); + return sycl_ctx->name.c_str(); } -static void ggml_backend_sycl_free(ggml_backend_t backend) { - ggml_backend_context_sycl * sycl_ctx = (ggml_backend_context_sycl *)backend->context; +GGML_CALL static void ggml_backend_sycl_free(ggml_backend_t backend) { + ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context; delete sycl_ctx; delete backend; } -static ggml_backend_buffer_type_t ggml_backend_sycl_get_default_buffer_type(ggml_backend_t backend) { - ggml_backend_context_sycl * sycl_ctx = (ggml_backend_context_sycl *)backend->context; +GGML_CALL static ggml_backend_buffer_type_t ggml_backend_sycl_get_default_buffer_type(ggml_backend_t backend) { + ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context; return ggml_backend_sycl_buffer_type(sycl_ctx->device); } -static void ggml_backend_sycl_set_tensor_async(ggml_backend_t backend, +GGML_CALL static void ggml_backend_sycl_set_tensor_async(ggml_backend_t backend, ggml_tensor *tensor, const void *data, size_t offset, size_t size) try { - ggml_backend_context_sycl * sycl_ctx = (ggml_backend_context_sycl *)backend->context; - + ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context; GGML_ASSERT(tensor->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) && "unsupported buffer type"); - GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); - + GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU); SYCL_CHECK(CHECK_TRY_ERROR(g_syclStreams[sycl_ctx->device][0]->memcpy( (char *)tensor->data + offset, data, size))); } @@ -14949,15 +15530,13 @@ catch (sycl::exception const &exc) { std::exit(1); } -static void ggml_backend_sycl_get_tensor_async(ggml_backend_t backend, +GGML_CALL static void ggml_backend_sycl_get_tensor_async(ggml_backend_t backend, const ggml_tensor *tensor, void *data, size_t offset, size_t size) try { - ggml_backend_context_sycl * sycl_ctx = (ggml_backend_context_sycl *)backend->context; - + ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context; GGML_ASSERT(tensor->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) && "unsupported buffer type"); - GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); - + GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU); SYCL_CHECK(CHECK_TRY_ERROR(g_syclStreams[sycl_ctx->device][0]->memcpy( data, (const char *)tensor->data + offset, size))); } @@ -14967,9 +15546,31 @@ catch (sycl::exception const &exc) { std::exit(1); } -static void ggml_backend_sycl_synchronize(ggml_backend_t backend) try { - ggml_backend_context_sycl * sycl_ctx = (ggml_backend_context_sycl *)backend->context; +GGML_CALL static bool ggml_backend_sycl_cpy_tensor_async(ggml_backend_t backend, + const ggml_tensor *src, + ggml_tensor *dst) try { + ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context; + if (dst->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) && ggml_backend_buffer_is_sycl(src->buffer)) { + /* + DPCT1009:215: SYCL uses exceptions to report errors and does not use the + error codes. The original code was commented out and a warning string + was inserted. You need to rewrite this code. + */ + SYCL_CHECK(CHECK_TRY_ERROR(g_syclStreams[sycl_ctx->device][0]->memcpy( + dst->data, src->data, ggml_nbytes(dst)))); + return true; + } + return false; +} +catch (sycl::exception const &exc) { + std::cerr << exc.what() << "Exception caught at file:" << __FILE__ + << ", line:" << __LINE__ << std::endl; + std::exit(1); +} + +static void ggml_backend_sycl_synchronize(ggml_backend_t backend) try { + ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context; SYCL_CHECK(CHECK_TRY_ERROR(g_syclStreams[sycl_ctx->device][0]->wait())); UNUSED(backend); @@ -14980,96 +15581,50 @@ catch (sycl::exception const &exc) { std::exit(1); } -static ggml_backend_graph_plan_t ggml_backend_sycl_graph_plan_create(ggml_backend_t backend, const ggml_cgraph * cgraph) { - GGML_ASSERT(!"not implemented"); - - return nullptr; - - UNUSED(backend); - UNUSED(cgraph); -} - -static void ggml_backend_sycl_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { - GGML_ASSERT(!"not implemented"); - - UNUSED(backend); - UNUSED(plan); -} - -static void ggml_backend_sycl_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { - GGML_ASSERT(!"not implemented"); - - UNUSED(backend); - UNUSED(plan); -} - -static bool ggml_backend_sycl_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) { - ggml_backend_context_sycl * sycl_ctx = (ggml_backend_context_sycl *)backend->context; - +GGML_CALL static bool ggml_backend_sycl_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) { + ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context; ggml_sycl_set_main_device(sycl_ctx->device); ggml_compute_params params = {}; - params.type = GGML_TASK_COMPUTE; + params.type = GGML_TASK_TYPE_COMPUTE; params.ith = 0; for (int i = 0; i < cgraph->n_nodes; i++) { ggml_tensor * node = cgraph->nodes[i]; - - if (node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE) + if (node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) { continue; - - assert(node->backend == GGML_BACKEND_GPU); + } +#ifndef NDEBUG + assert(node->backend == GGML_BACKEND_TYPE_GPU || node->backend == GGML_BACKEND_TYPE_GPU_SPLIT); assert(node->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device)); assert(node->extra != nullptr); for (int j = 0; j < GGML_MAX_SRC; j++) { if (node->src[j] != nullptr) { - assert(node->src[j]->backend == GGML_BACKEND_GPU); + assert(node->src[j]->backend == GGML_BACKEND_TYPE_GPU || node->src[j]->backend == GGML_BACKEND_TYPE_GPU_SPLIT); assert(node->src[j]->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device)); assert(node->src[j]->extra != nullptr); } } - +#endif bool ok = ggml_sycl_compute_forward(¶ms, node); if (!ok) { fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op)); } GGML_ASSERT(ok); - -#if 0 - if (node->type == GGML_TYPE_F32) { - syclDeviceSynchronize(); - std::vector tmp(ggml_nelements(node), 0.0f); - syclMemcpy(tmp.data(), node->data, ggml_nelements(node)*sizeof(float), syclMemcpyDeviceToHost); - printf("\n%s (%s) (%s %s) (%s %s): ", node->name, ggml_op_name(node->op), - ggml_type_name(node->src[0]->type), - node->src[1] ? ggml_type_name(node->src[1]->type) : "none", - node->src[0]->name, - node->src[1] ? node->src[1]->name : "none"); - double sum = 0.0; - double sq_sum = 0.0; - for (int i = 0; i < ggml_nelements(node); i++) { - printf("%f ", tmp[i]); - sum += tmp[i]; - sq_sum += tmp[i]*tmp[i]; - } - printf("\n"); - printf("sum: %f, ", sum); - printf("sq_sum: %f\n", sq_sum); - } -#endif } - UNUSED(backend); return true; } -static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, const ggml_tensor * op) { +GGML_CALL static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, const ggml_tensor * op) { switch (op->op) { case GGML_OP_UNARY: switch (ggml_get_unary_op(op)) { case GGML_UNARY_OP_GELU: case GGML_UNARY_OP_SILU: case GGML_UNARY_OP_RELU: + case GGML_UNARY_OP_HARDSIGMOID: + case GGML_UNARY_OP_HARDSWISH: case GGML_UNARY_OP_GELU_QUICK: case GGML_UNARY_OP_TANH: return true; @@ -15093,6 +15648,12 @@ static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, const ggml_ten return false; } + if (a->type == GGML_TYPE_IQ1_S) { + return false; + } + if (a->type == GGML_TYPE_IQ3_XXS) { + return false; + } if (a->type == GGML_TYPE_IQ2_XXS) { return false; } @@ -15139,16 +15700,17 @@ static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, const ggml_ten if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) { return true; } + if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) { + return true; + } return false; } break; + case GGML_OP_DUP: + case GGML_OP_REPEAT: case GGML_OP_CONCAT: { ggml_type src0_type = op->src[0]->type; - if (src0_type == GGML_TYPE_F32) { - return true; - } else { - return false; - } + return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16; } break; case GGML_OP_NONE: case GGML_OP_RESHAPE: @@ -15156,8 +15718,6 @@ static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, const ggml_ten case GGML_OP_PERMUTE: case GGML_OP_TRANSPOSE: case GGML_OP_NORM: - case GGML_OP_REPEAT: - case GGML_OP_DUP: case GGML_OP_ADD: case GGML_OP_MUL: case GGML_OP_DIV: @@ -15171,6 +15731,7 @@ static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, const ggml_ten case GGML_OP_ROPE: case GGML_OP_ALIBI: case GGML_OP_IM2COL: + case GGML_OP_POOL_2D: case GGML_OP_SUM_ROWS: case GGML_OP_ARGSORT: case GGML_OP_ACC: @@ -15192,31 +15753,35 @@ static ggml_backend_i ggml_backend_sycl_interface = { /* .get_default_buffer_type = */ ggml_backend_sycl_get_default_buffer_type, /* .set_tensor_async = */ ggml_backend_sycl_set_tensor_async, /* .get_tensor_async = */ ggml_backend_sycl_get_tensor_async, - /* .cpy_tensor_async = */ NULL, + /* .cpy_tensor_async = */ ggml_backend_sycl_cpy_tensor_async, /* .synchronize = */ ggml_backend_sycl_synchronize, - /* .graph_plan_create = */ ggml_backend_sycl_graph_plan_create, - /* .graph_plan_free = */ ggml_backend_sycl_graph_plan_free, - /* .graph_plan_compute = */ ggml_backend_sycl_graph_plan_compute, + /* .graph_plan_create = */ NULL, + /* .graph_plan_free = */ NULL, + /* .graph_plan_compute = */ NULL, /* .graph_compute = */ ggml_backend_sycl_graph_compute, /* .supports_op = */ ggml_backend_sycl_supports_op, }; -ggml_backend_t ggml_backend_sycl_init(int device) { +static ggml_guid_t ggml_backend_sycl_guid() { + static ggml_guid guid = { 0x58, 0x05, 0x13, 0x8f, 0xcd, 0x3a, 0x61, 0x9d, 0xe7, 0xcd, 0x98, 0xa9, 0x03, 0xfd, 0x7c, 0x53 }; + return &guid; +} + +GGML_CALL ggml_backend_t ggml_backend_sycl_init(int device) { ggml_init_sycl(); // TODO: remove from ggml.c - if (device < 0 || device >= ggml_sycl_get_device_count()) { - fprintf(stderr, "%s: error: invalid device %d\n", __func__, device); - return nullptr; - } + check_allow_gpu_index(device); // not strictly necessary, but it may reduce the overhead of the first graph_compute ggml_sycl_set_main_device(device); - - ggml_backend_context_sycl * ctx = new ggml_backend_context_sycl { - /* .device = */ device + int id = g_sycl_gpu_mgr->gpus[device]; + ggml_backend_sycl_context * ctx = new ggml_backend_sycl_context { + /* .device = */ device, + /* .name = */ GGML_SYCL_NAME + std::to_string(id), }; ggml_backend_t sycl_backend = new ggml_backend { + /* .guid = */ ggml_backend_sycl_guid(), /* .interface = */ ggml_backend_sycl_interface, /* .context = */ ctx }; @@ -15225,25 +15790,36 @@ ggml_backend_t ggml_backend_sycl_init(int device) { } bool ggml_backend_is_sycl(ggml_backend_t backend) { - return backend->iface.get_name == ggml_backend_sycl_name; + return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_sycl_guid()); } -static ggml_backend_t ggml_backend_reg_sycl_init(const char * params, void * user_data) { +GGML_CALL int ggml_backend_sycl_get_device_count() { + if (!g_sycl_gpu_mgr) g_sycl_gpu_mgr = new sycl_gpu_mgr(); + return g_sycl_gpu_mgr->get_gpu_count(); +} + +GGML_CALL static ggml_backend_t ggml_backend_reg_sycl_init(const char * params, void * user_data) { ggml_backend_t sycl_backend = ggml_backend_sycl_init((int) (intptr_t) user_data); return sycl_backend; UNUSED(params); } +GGML_API GGML_CALL int ggml_backend_sycl_get_device_index(int device_id) { + return g_sycl_gpu_mgr->get_index(device_id); +} + extern "C" int ggml_backend_sycl_reg_devices(); int ggml_backend_sycl_reg_devices() { - int device_count = ggml_sycl_get_device_count(); - - for (int i = 0; i < device_count; i++) { + if (!g_sycl_gpu_mgr) g_sycl_gpu_mgr = new sycl_gpu_mgr(); + g_device_count = g_sycl_gpu_mgr->get_gpu_count(); + assert(g_device_count>0); + for (int i = 0; i < g_device_count; i++) { + int id = g_sycl_gpu_mgr->gpus[i]; char name[128]; - snprintf(name, sizeof(name), "%s%d", GGML_SYCL_NAME, i); + snprintf(name, sizeof(name), "%s%d", GGML_SYCL_NAME, id); ggml_backend_register(name, ggml_backend_reg_sycl_init, ggml_backend_sycl_buffer_type(i), (void *) (intptr_t) i); } - return device_count; + return g_device_count; } diff --git a/ggml-sycl.h b/ggml-sycl.h index 891f2d00a..bf5b11b36 100644 --- a/ggml-sycl.h +++ b/ggml-sycl.h @@ -24,6 +24,11 @@ GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type(void); GGML_API void ggml_backend_sycl_print_sycl_devices(void); GGML_API GGML_CALL void ggml_sycl_get_gpu_list(int *id_list, int max_len); GGML_API GGML_CALL void ggml_sycl_get_device_description(int device, char *description, size_t description_size); +GGML_API GGML_CALL int ggml_backend_sycl_get_device_count(); +GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split); +GGML_API GGML_CALL void ggml_backend_sycl_get_device_memory(int device, size_t *free, size_t *total); +GGML_API GGML_CALL int ggml_backend_sycl_get_device_index(int device_id); + #ifdef __cplusplus } #endif diff --git a/ggml-vulkan.cpp b/ggml-vulkan.cpp index 4a30414df..ae9cb3c1c 100644 --- a/ggml-vulkan.cpp +++ b/ggml-vulkan.cpp @@ -1091,7 +1091,10 @@ static void ggml_vk_print_gpu_info(size_t idx) { } } -static void ggml_vk_instance_init() { +static bool ggml_vk_instance_validation_ext_available(const std::vector& instance_extensions); +static bool ggml_vk_instance_portability_enumeration_ext_available(const std::vector& instance_extensions); + +void ggml_vk_instance_init() { if (vk_instance_initialized) { return; } @@ -1100,28 +1103,48 @@ static void ggml_vk_instance_init() { #endif vk::ApplicationInfo app_info{ "ggml-vulkan", 1, nullptr, 0, VK_API_VERSION }; - const std::vector layers = { -#ifdef GGML_VULKAN_VALIDATE - "VK_LAYER_KHRONOS_validation", -#endif - }; - const std::vector extensions = { -#ifdef GGML_VULKAN_VALIDATE - "VK_EXT_validation_features", -#endif - }; - vk::InstanceCreateInfo instance_create_info(vk::InstanceCreateFlags(), &app_info, layers, extensions); -#ifdef GGML_VULKAN_VALIDATE - const std::vector features_enable = { vk::ValidationFeatureEnableEXT::eBestPractices }; - vk::ValidationFeaturesEXT validation_features = { - features_enable, - {}, - }; - validation_features.setPNext(nullptr); - instance_create_info.setPNext(&validation_features); - std::cerr << "ggml_vulkan: Validation layers enabled" << std::endl; + const std::vector instance_extensions = vk::enumerateInstanceExtensionProperties(); + const bool validation_ext = ggml_vk_instance_validation_ext_available(instance_extensions); +#ifdef __APPLE__ + const bool portability_enumeration_ext = ggml_vk_instance_portability_enumeration_ext_available(instance_extensions); #endif + + std::vector layers; + + if (validation_ext) { + layers.push_back("VK_LAYER_KHRONOS_validation"); + } + std::vector extensions; + if (validation_ext) { + extensions.push_back("VK_EXT_validation_features"); + } +#ifdef __APPLE__ + if (portability_enumeration_ext) { + extensions.push_back("VK_KHR_portability_enumeration"); + } +#endif + vk::InstanceCreateInfo instance_create_info(vk::InstanceCreateFlags{}, &app_info, layers, extensions); +#ifdef __APPLE__ + if (portability_enumeration_ext) { + instance_create_info.flags |= vk::InstanceCreateFlagBits::eEnumeratePortabilityKHR; + } +#endif + + std::vector features_enable; + vk::ValidationFeaturesEXT validation_features; + + if (validation_ext) { + features_enable = { vk::ValidationFeatureEnableEXT::eBestPractices }; + validation_features = { + features_enable, + {}, + }; + validation_features.setPNext(nullptr); + instance_create_info.setPNext(&validation_features); + + std::cerr << "ggml_vulkan: Validation layers enabled" << std::endl; + } vk_instance.instance = vk::createInstance(instance_create_info); memset(vk_instance.initialized, 0, sizeof(bool) * GGML_VK_MAX_DEVICES); @@ -1168,12 +1191,12 @@ static void ggml_vk_init(ggml_backend_vk_context * ctx, size_t idx) { vk_instance.devices[idx] = std::make_shared(); ctx->device = vk_instance.devices[idx]; ctx->device.lock()->physical_device = devices[dev_num]; - std::vector ext_props = ctx->device.lock()->physical_device.enumerateDeviceExtensionProperties(); + const std::vector ext_props = ctx->device.lock()->physical_device.enumerateDeviceExtensionProperties(); bool maintenance4_support = false; // Check if maintenance4 is supported - for (auto properties : ext_props) { + for (const auto& properties : ext_props) { if (strcmp("VK_KHR_maintenance4", properties.extensionName) == 0) { maintenance4_support = true; } @@ -1204,7 +1227,7 @@ static void ggml_vk_init(ggml_backend_vk_context * ctx, size_t idx) { bool fp16_storage = false; bool fp16_compute = false; - for (auto properties : ext_props) { + for (const auto& properties : ext_props) { if (strcmp("VK_KHR_16bit_storage", properties.extensionName) == 0) { fp16_storage = true; } else if (strcmp("VK_KHR_shader_float16_int8", properties.extensionName) == 0) { @@ -2303,8 +2326,8 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context * su src1_uma = d_Qy != nullptr; } - const bool load_x = src0->backend != GGML_BACKEND_GPU && !src0_uma; - const bool load_y = src1->backend != GGML_BACKEND_GPU && !src1_uma; + const bool load_x = src0->backend != GGML_BACKEND_TYPE_GPU && !src0_uma; + const bool load_y = src1->backend != GGML_BACKEND_TYPE_GPU && !src1_uma; const bool x_non_contig = !load_x && !ggml_vk_dim01_contiguous(src0); const bool y_non_contig = !load_y && !ggml_vk_dim01_contiguous(src1); @@ -2436,7 +2459,7 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context * su // compute ggml_vk_matmul(ctx, subctx, *pipeline, { d_X, x_buf_offset, x_sz * ne02 * ne03 }, { d_Y, y_buf_offset, y_sz * ne12 * ne13 }, { d_D, d_buf_offset, d_sz * ne12 * ne13 }, { ctx->prealloc_split_k, 0, d_sz * ne12 * ne13 * split_k }, ne01, ne11, ne10, ne10, ne10, ne01, split_k, ne12*ne13, ne02, ne12, r2, r3, stride_batch_x, stride_batch_y, ne20*ne21); // NOLINT - if (dst->backend == GGML_BACKEND_CPU) { + if (dst->backend == GGML_BACKEND_TYPE_CPU) { // copy dst to host float * d = (float *) ((char *) dst->data); ggml_vk_buffer_read_async(ctx, subctx, d_D, 0, d, sizeof(float) * d_ne * ne12 * ne13); @@ -2489,8 +2512,8 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context src1_uma = d_Qy != nullptr; } - const bool load_x = src0->backend != GGML_BACKEND_GPU && !src0_uma; - const bool load_y = src1->backend != GGML_BACKEND_GPU && !src1_uma; + const bool load_x = src0->backend != GGML_BACKEND_TYPE_GPU && !src0_uma; + const bool load_y = src1->backend != GGML_BACKEND_TYPE_GPU && !src1_uma; const bool x_non_contig = !load_x && !ggml_vk_dim01_contiguous(src0); const bool y_non_contig = !load_y && !ggml_vk_dim01_contiguous(src1); @@ -2613,7 +2636,7 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, *dmmv, { { d_X, x_offset, x_sz }, { d_Y, y_buffer_offset, y_sz + y_shader_offset }, { d_D, d_buffer_offset, d_sz + d_shader_offset } }, 3 * sizeof(int), &pc, { (uint32_t)ne01, 1, 1}); - if (dst->backend == GGML_BACKEND_CPU) { + if (dst->backend == GGML_BACKEND_TYPE_CPU) { // copy dst to host float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3); ggml_vk_sync_buffers(subctx); @@ -2630,7 +2653,7 @@ static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_c std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", backend=" << dst->backend << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)" << std::endl; #endif GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1)); - GGML_ASSERT(src0->backend == GGML_BACKEND_GPU); + GGML_ASSERT(src0->backend == GGML_BACKEND_TYPE_GPU); GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // NOLINT GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // NOLINT GGML_ASSERT(src0->type == GGML_TYPE_F16); @@ -2662,7 +2685,7 @@ static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_c src1_uma = d_Qy != nullptr; } - const bool load_y = src1->backend != GGML_BACKEND_GPU && !src1_uma; + const bool load_y = src1->backend != GGML_BACKEND_TYPE_GPU && !src1_uma; const uint64_t x_ne = ne00 * ne01 * ne02; const uint64_t y_ne = ne10 * ne11 * ne12; @@ -2704,7 +2727,7 @@ static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_c ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, ctx->pipeline_mul_mat_vec_p021_f16_f32, { { d_Qx, qx_buf_offset, qx_sz }, { d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, { d_D, d_buffer_offset, d_sz + d_shader_offset } }, 6 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 }); - if (dst->backend == GGML_BACKEND_CPU) { + if (dst->backend == GGML_BACKEND_TYPE_CPU) { // copy dst to host float * d = (float *) dst->data; ggml_vk_sync_buffers(subctx); @@ -2721,7 +2744,7 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con GGML_ASSERT(!ggml_is_transposed(src0)); GGML_ASSERT(!ggml_is_transposed(src1)); GGML_ASSERT(!ggml_is_permuted(src0)); - GGML_ASSERT(src0->backend == GGML_BACKEND_GPU); + GGML_ASSERT(src0->backend == GGML_BACKEND_TYPE_GPU); GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F32); @@ -2754,7 +2777,7 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con src1_uma = d_Qy != nullptr; } - const bool load_y = src1->backend != GGML_BACKEND_GPU && !src1_uma; + const bool load_y = src1->backend != GGML_BACKEND_TYPE_GPU && !src1_uma; const uint64_t d_ne = ne01 * ne11 * ne12; @@ -2797,7 +2820,7 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, ctx->pipeline_mul_mat_vec_nc_f16_f32, { { d_Qx, qx_buf_offset, qx_sz }, { d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, { d_D, d_buffer_offset, d_sz + d_shader_offset } }, 7 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 }); - if (dst->backend == GGML_BACKEND_CPU) { + if (dst->backend == GGML_BACKEND_TYPE_CPU) { // copy dst to host float * d = (float *) dst->data; ggml_vk_sync_buffers(subctx); @@ -2815,7 +2838,7 @@ static bool ggml_vk_can_mul_mat(const ggml_tensor * src0, const ggml_tensor * sr return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && (src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16 || ggml_is_quantized(src1->type)) && dst->type == GGML_TYPE_F32 && - ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_GPU); + ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_TYPE_GPU); } static void ggml_vk_mul_mat(ggml_backend_vk_context * ctx, vk_context * subctx, const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { @@ -2863,8 +2886,8 @@ static void ggml_vk_op_repeat(ggml_backend_vk_context * ctx, vk_context * subctx // TODO: support for transposed / permuted tensors GGML_ASSERT(nb0 == sizeof(float)); GGML_ASSERT(nb00 == sizeof(float)); - GGML_ASSERT(src0->backend == GGML_BACKEND_GPU); - GGML_ASSERT(dst->backend == GGML_BACKEND_GPU); + GGML_ASSERT(src0->backend == GGML_BACKEND_TYPE_GPU); + GGML_ASSERT(dst->backend == GGML_BACKEND_TYPE_GPU); ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra; ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra; @@ -3093,8 +3116,8 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c } } - const bool transfer_src0 = src0->backend != GGML_BACKEND_GPU && !src0_uma; - const bool transfer_src1 = use_src1 && src1->backend != GGML_BACKEND_GPU && !src1_uma; + const bool transfer_src0 = src0->backend != GGML_BACKEND_TYPE_GPU && !src0_uma; + const bool transfer_src1 = use_src1 && src1->backend != GGML_BACKEND_TYPE_GPU && !src1_uma; uint64_t x_sz = ggml_vk_align_size(ggml_type_size(src0->type) * ne0, ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment); uint64_t y_sz = use_src1 ? ggml_vk_align_size(ggml_type_size(src1->type) * ne1, ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment) : 0; @@ -3103,7 +3126,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c vk_buffer d_D = extra->buffer_gpu.lock(); // Workaround for tiny tensor inputs on ROPE - if (use_src1 && src1->backend == GGML_BACKEND_GPU && y_sz > d_D->size) { + if (use_src1 && src1->backend == GGML_BACKEND_TYPE_GPU && y_sz > d_D->size) { y_sz = VK_WHOLE_SIZE; } @@ -3192,9 +3215,9 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, *pipeline, { { d_X, x_buf_offset, x_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); } - if (dst->backend == GGML_BACKEND_CPU && op == GGML_OP_CPY) { + if (dst->backend == GGML_BACKEND_TYPE_CPU && op == GGML_OP_CPY) { ggml_vk_d2h_tensor_2d(ctx, subctx, d_D, 0, dst); - } else if(dst->backend == GGML_BACKEND_CPU) { + } else if(dst->backend == GGML_BACKEND_TYPE_CPU) { // copy dst to host float * d = (float *) dst->data; ggml_vk_buffer_read_async(ctx, subctx, d_D, 0, d, d_sz); @@ -3236,7 +3259,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, *pipeline, { { d_X, x_buf_offset + x_offset, x_sz }, { d_D, d_buf_offset + d_offset, d_sz } }, sizeof(PC), &pc, elements); } - if (dst->backend == GGML_BACKEND_CPU) { + if (dst->backend == GGML_BACKEND_TYPE_CPU) { // copy dst to host ggml_vk_buffer_read_async(ctx, subctx, d_D, d_buf_offset + d_offset, (char *) dst->data + i02*nb2 + i03*nb3, d_sz); } @@ -3342,7 +3365,7 @@ static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context * subctx, con static void ggml_vk_nop(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { // If backend is CPU, data from src0 has to be copied off the device - if (dst->backend == GGML_BACKEND_CPU) { + if (dst->backend == GGML_BACKEND_TYPE_CPU) { ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra; vk_buffer d_D = extra_src0->buffer_gpu.lock(); ggml_vk_sync_buffers(subctx); @@ -3977,9 +4000,9 @@ static void ggml_vk_preallocate_buffers_graph(ggml_backend_vk_context * ctx, ggm #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_preallocate_buffers_graph(" << node << ")" << std::endl; #endif - const bool any_on_device = node->backend == GGML_BACKEND_GPU - || (node->src[0] != nullptr && (node->src[0]->backend == GGML_BACKEND_GPU || node->src[0]->backend == GGML_BACKEND_GPU_SPLIT)) - || (node->src[1] != nullptr && (node->src[1]->backend == GGML_BACKEND_GPU)); + const bool any_on_device = node->backend == GGML_BACKEND_TYPE_GPU + || (node->src[0] != nullptr && (node->src[0]->backend == GGML_BACKEND_TYPE_GPU || node->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT)) + || (node->src[1] != nullptr && (node->src[1]->backend == GGML_BACKEND_TYPE_GPU)); if (ctx->disable || (!any_on_device && node->op != GGML_OP_MUL_MAT)) { return; @@ -4198,9 +4221,9 @@ static void ggml_vk_preallocate_buffers(ggml_backend_vk_context * ctx) { } static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * node, bool last_node){ - const bool any_on_device = node->backend == GGML_BACKEND_GPU - || (node->src[0] != nullptr && (node->src[0]->backend == GGML_BACKEND_GPU || node->src[0]->backend == GGML_BACKEND_GPU_SPLIT)) - || (node->src[1] != nullptr && node->src[1]->backend == GGML_BACKEND_GPU); + const bool any_on_device = node->backend == GGML_BACKEND_TYPE_GPU + || (node->src[0] != nullptr && (node->src[0]->backend == GGML_BACKEND_TYPE_GPU || node->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT)) + || (node->src[1] != nullptr && node->src[1]->backend == GGML_BACKEND_TYPE_GPU); if (ctx->disable || (!any_on_device && node->op != GGML_OP_MUL_MAT) || (node->op == GGML_OP_MUL_MAT && !any_on_device && !ggml_vk_can_mul_mat(node->src[0], node->src[1], node))) { return; @@ -4354,7 +4377,7 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod last_node = true; #endif - if (node->backend == GGML_BACKEND_CPU || last_node) { + if (node->backend == GGML_BACKEND_TYPE_CPU || last_node) { ggml_vk_ctx_end(ctx->compute_ctx); ctx->compute_ctx->exit_tensor = node; ctx->compute_ctx = nullptr; @@ -4362,9 +4385,9 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod } static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_compute_params * params, ggml_tensor * tensor){ - const bool any_on_device = tensor->backend == GGML_BACKEND_GPU - || (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT)) - || (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_GPU); + const bool any_on_device = tensor->backend == GGML_BACKEND_TYPE_GPU + || (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU || tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT)) + || (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_TYPE_GPU); if (ctx->disable || (!any_on_device && tensor->op != GGML_OP_MUL_MAT)) { return false; @@ -4425,7 +4448,7 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_compute_ if (params->ith != 0) { return true; } - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return true; } @@ -4728,7 +4751,7 @@ GGML_CALL static void ggml_backend_vk_buffer_init_tensor(ggml_backend_buffer_t b extra->offset = (uint8_t *) tensor->data - (uint8_t *) vk_ptr_base; } - tensor->backend = GGML_BACKEND_GPU; + tensor->backend = GGML_BACKEND_TYPE_GPU; tensor->extra = extra; } @@ -4736,7 +4759,7 @@ GGML_CALL static void ggml_backend_vk_buffer_set_tensor(ggml_backend_buffer_t bu #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_backend_vk_buffer_set_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")" << std::endl; #endif - GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); + GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU); ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context; @@ -4751,7 +4774,7 @@ GGML_CALL static void ggml_backend_vk_buffer_get_tensor(ggml_backend_buffer_t bu #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_backend_vk_buffer_get_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")" << std::endl; #endif - GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); + GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU); ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context; @@ -4982,7 +5005,7 @@ GGML_CALL static void ggml_backend_vk_set_tensor_async(ggml_backend_t backend, g #endif ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context; GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_buffer_type(ctx->idx) || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type"); - GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); + GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU); ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra; @@ -5003,7 +5026,7 @@ GGML_CALL static void ggml_backend_vk_get_tensor_async(ggml_backend_t backend, c #endif ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context; GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_buffer_type(ctx->idx) || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type"); - GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); + GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU); ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra; @@ -5080,7 +5103,7 @@ GGML_CALL static bool ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml int last_node = cgraph->n_nodes - 1; // If the last op in the cgraph isn't backend GPU, the command buffer doesn't get closed properly - while (last_node > 0 && cgraph->nodes[last_node]->backend != GGML_BACKEND_GPU) { + while (last_node > 0 && cgraph->nodes[last_node]->backend != GGML_BACKEND_TYPE_GPU) { last_node -= 1; } @@ -5089,7 +5112,7 @@ GGML_CALL static bool ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml } ggml_compute_params params = {}; - params.type = GGML_TASK_COMPUTE; + params.type = GGML_TASK_TYPE_COMPUTE; params.ith = 0; for (int i = 0; i < cgraph->n_nodes; i++) { ggml_tensor * node = cgraph->nodes[i]; @@ -5227,6 +5250,11 @@ static ggml_backend_i ggml_backend_vk_interface = { /* .supports_op = */ ggml_backend_vk_supports_op, }; +static ggml_guid_t ggml_backend_vk_guid() { + static ggml_guid guid = { 0xb8, 0xf7, 0x4f, 0x86, 0x40, 0x3c, 0xe1, 0x02, 0x91, 0xc8, 0xdd, 0xe9, 0x02, 0x3f, 0xc0, 0x2b }; + return &guid; +} + GGML_CALL ggml_backend_t ggml_backend_vk_init(size_t idx) { if (vk_instance.initialized[idx]) { return vk_instance.backends[idx]; @@ -5245,6 +5273,7 @@ GGML_CALL ggml_backend_t ggml_backend_vk_init(size_t idx) { vk_instance.initialized[idx] = true; ggml_backend_t vk_backend = new ggml_backend { + /* .guid = */ ggml_backend_vk_guid(), /* .interface = */ ggml_backend_vk_interface, /* .context = */ &vk_instance.contexts[ctx->idx], }; @@ -5255,7 +5284,7 @@ GGML_CALL ggml_backend_t ggml_backend_vk_init(size_t idx) { } GGML_CALL bool ggml_backend_is_vk(ggml_backend_t backend) { - return backend && backend->iface.get_name == ggml_backend_vk_name; + return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_vk_guid()); } GGML_CALL int ggml_backend_vk_get_device_count() { @@ -5301,6 +5330,42 @@ GGML_CALL int ggml_backend_vk_reg_devices() { return vk_instance.device_indices.size(); } +// Extension availability +static bool ggml_vk_instance_validation_ext_available(const std::vector& instance_extensions) { +#ifdef GGML_VULKAN_VALIDATE + bool portability_enumeration_ext = false; + // Check for portability enumeration extension for MoltenVK support + for (const auto& properties : instance_extensions) { + if (strcmp("VK_KHR_portability_enumeration", properties.extensionName) == 0) { + return true; + } + } + if (!portability_enumeration_ext) { + std::cerr << "ggml_vulkan: WARNING: Instance extension VK_KHR_portability_enumeration not found." << std::endl; + } +#endif + return false; + + UNUSED(instance_extensions); +} +static bool ggml_vk_instance_portability_enumeration_ext_available(const std::vector& instance_extensions) { +#ifdef __APPLE__ + bool portability_enumeration_ext = false; + // Check for portability enumeration extension for MoltenVK support + for (const auto& properties : instance_extensions) { + if (strcmp("VK_KHR_portability_enumeration", properties.extensionName) == 0) { + return true; + } + } + if (!portability_enumeration_ext) { + std::cerr << "ggml_vulkan: WARNING: Instance extension VK_KHR_portability_enumeration not found." << std::endl; + } +#endif + return false; + + UNUSED(instance_extensions); +} + // checks #ifdef GGML_VULKAN_CHECK_RESULTS @@ -5357,13 +5422,14 @@ static void ggml_vk_print_tensor_area(const ggml_tensor * tensor, const void * d static void ggml_vk_print_tensor(ggml_backend_vk_context * ctx, const ggml_tensor * tensor, const char * name) { void * tensor_data = tensor->data; - if (tensor->backend == GGML_BACKEND_GPU) { + if (tensor->backend == GGML_BACKEND_TYPE_GPU) { const size_t tensor_size = ggml_nbytes(tensor); tensor_data = malloc(tensor_size); ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra; - ggml_vk_buffer_read(ctx, extra->buffer_gpu, extra->offset, tensor_data, tensor_size); + vk_buffer buffer_gpu = extra->buffer_gpu.lock(); + ggml_vk_buffer_read(ctx, buffer_gpu, extra->offset, tensor_data, tensor_size); } std::cerr << "TENSOR CHECK " << name << " (" << tensor->name << "): " << ggml_op_name(tensor->op) << std::endl; @@ -5383,14 +5449,14 @@ static void ggml_vk_print_tensor(ggml_backend_vk_context * ctx, const ggml_tenso std::vector done; ggml_vk_print_graph_origin(tensor, done); - if (tensor->backend == GGML_BACKEND_GPU) { + if (tensor->backend == GGML_BACKEND_TYPE_GPU) { free(tensor_data); } } static void ggml_vk_check_tensor(const std::string& name, const ggml_tensor * tensor) { return; - GGML_ASSERT(tensor->backend == GGML_BACKEND_CPU); + GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_CPU); if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16) { return; } @@ -5428,7 +5494,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_ if (params->ith != 0) { return; } - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE || tensor->op == GGML_OP_TRANSPOSE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE || tensor->op == GGML_OP_TRANSPOSE) { return; } @@ -5465,17 +5531,18 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_ src0_buffer = malloc(src0_size); src0_clone->data = src0_buffer; - if (src0->backend == GGML_BACKEND_CPU) { + if (src0->backend == GGML_BACKEND_TYPE_CPU) { memcpy(src0_clone->data, src0->data, src0_size); memcpy(src0_clone->nb, src0->nb, sizeof(size_t) * GGML_MAX_DIMS); - } else if (src0->backend == GGML_BACKEND_GPU) { + } else if (src0->backend == GGML_BACKEND_TYPE_GPU) { ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src0->extra; uint64_t offset = extra->offset; if (!ggml_is_contiguous(src0) && ggml_vk_dim01_contiguous(src0)) { for (int i3 = 0; i3 < src0->ne[3]; i3++) { for (int i2 = 0; i2 < src0->ne[2]; i2++) { const int idx = i3*src0->ne[2] + i2; - ggml_vk_buffer_read(ctx, extra->buffer_gpu, offset + idx * src0->nb[2], ((char *)src0_clone->data + idx * src0_clone->nb[2]), src0->ne[1] * src0->nb[1]); + vk_buffer buffer_gpu = extra->buffer_gpu.lock(); + ggml_vk_buffer_read(ctx, buffer_gpu, offset + idx * src0->nb[2], ((char *)src0_clone->data + idx * src0_clone->nb[2]), src0->ne[1] * src0->nb[1]); } } @@ -5485,10 +5552,11 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_ src0_clone->nb[i] = src0_clone->nb[i - 1]*src0_clone->ne[i - 1]; } } else { - if (offset + src0_size >= extra->buffer_gpu->size) { - src0_size = extra->buffer_gpu->size - offset; + vk_buffer buffer_gpu = extra->buffer_gpu.lock(); + if (offset + src0_size >= buffer_gpu->size) { + src0_size = buffer_gpu->size - offset; } - ggml_vk_buffer_read(ctx, extra->buffer_gpu, offset, src0_clone->data, src0_size); + ggml_vk_buffer_read(ctx, buffer_gpu, offset, src0_clone->data, src0_size); memcpy(src0_clone->nb, src0->nb, sizeof(size_t) * GGML_MAX_DIMS); } } else { @@ -5508,17 +5576,18 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_ src1_buffer = malloc(src1_size); src1_clone->data = src1_buffer; - if (src1->backend == GGML_BACKEND_CPU) { + if (src1->backend == GGML_BACKEND_TYPE_CPU) { memcpy(src1_clone->data, src1->data, src1_size); memcpy(src1_clone->nb, src1->nb, sizeof(size_t) * GGML_MAX_DIMS); - } else if (src1->backend == GGML_BACKEND_GPU) { + } else if (src1->backend == GGML_BACKEND_TYPE_GPU) { ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src1->extra; uint64_t offset = extra->offset; if (!ggml_is_contiguous(src1) && ggml_vk_dim01_contiguous(src1)) { for (int i3 = 0; i3 < src1->ne[3]; i3++) { for (int i2 = 0; i2 < src1->ne[2]; i2++) { const int idx = i3*src1->ne[2] + i2; - ggml_vk_buffer_read(ctx, extra->buffer_gpu, offset + idx * src1->nb[2], ((char *)src1_clone->data + idx * src1_clone->nb[2]), src1->ne[1] * src1->nb[1]); + vk_buffer buffer_gpu = extra->buffer_gpu.lock(); + ggml_vk_buffer_read(ctx, buffer_gpu, offset + idx * src1->nb[2], ((char *)src1_clone->data + idx * src1_clone->nb[2]), src1->ne[1] * src1->nb[1]); } } @@ -5528,10 +5597,11 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_ src1_clone->nb[i] = src1_clone->nb[i - 1]*src1_clone->ne[i - 1]; } } else { - if (offset + src1_size >= extra->buffer_gpu->size) { - src1_size = extra->buffer_gpu->size - offset; + vk_buffer buffer_gpu = extra->buffer_gpu.lock(); + if (offset + src1_size >= buffer_gpu->size) { + src1_size = buffer_gpu->size - offset; } - ggml_vk_buffer_read(ctx, extra->buffer_gpu, offset, src1_clone->data, src1_size); + ggml_vk_buffer_read(ctx, buffer_gpu, offset, src1_clone->data, src1_size); memcpy(src1_clone->nb, src1->nb, sizeof(size_t) * GGML_MAX_DIMS); } } else { @@ -5578,11 +5648,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_ } else if (tensor->op == GGML_OP_RMS_NORM) { tensor_clone = ggml_rms_norm(ggml_ctx, src0_clone, *(float *)tensor->op_params); } else if (tensor->op == GGML_OP_SOFT_MAX) { - if (src1 != nullptr) { - tensor_clone = ggml_soft_max_ext(ggml_ctx, src0_clone, src1_clone, *(float *)tensor->op_params); - } else { tensor_clone = ggml_soft_max(ggml_ctx, src0_clone); - } } else if (tensor->op == GGML_OP_DIAG_MASK_INF) { tensor_clone = ggml_diag_mask_inf(ggml_ctx, src0_clone, *(float *)tensor->op_params); } else if (tensor->op == GGML_OP_ROPE) { @@ -5670,7 +5736,7 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_ if (params->ith != 0) { return; } - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE || tensor->op == GGML_OP_TRANSPOSE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE || tensor->op == GGML_OP_TRANSPOSE) { return; } if (!(vk_output_tensor > 0 && vk_output_tensor == check_counter) && check_counter <= vk_skip_checks) { @@ -5682,17 +5748,18 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_ void * tensor_data = tensor->data; - if (tensor->backend == GGML_BACKEND_GPU) { + if (tensor->backend == GGML_BACKEND_TYPE_GPU) { size_t tensor_size = ggml_nbytes(tensor); tensor_data = malloc(tensor_size); ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra; - if (extra->offset + tensor_size >= extra->buffer_gpu->size) { - tensor_size = extra->buffer_gpu->size - (extra->offset); + vk_buffer buffer_gpu = extra->buffer_gpu.lock(); + if (extra->offset + tensor_size >= buffer_gpu->size) { + tensor_size = buffer_gpu->size - (extra->offset); } - ggml_vk_buffer_read(ctx, extra->buffer_gpu, extra->offset, tensor_data, tensor_size); + ggml_vk_buffer_read(ctx, buffer_gpu, extra->offset, tensor_data, tensor_size); } float first_error_result = -1.0f; @@ -5815,7 +5882,7 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_ comp_result = nullptr; comp_size = 0; - if (tensor->backend == GGML_BACKEND_GPU) { + if (tensor->backend == GGML_BACKEND_TYPE_GPU) { free(tensor_data); } } diff --git a/ggml.c b/ggml.c index 9a2ae6264..b9ec7e350 100644 --- a/ggml.c +++ b/ggml.c @@ -273,6 +273,8 @@ inline static void * ggml_calloc(size_t num, size_t size) { #include #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions #include "ggml-opencl.h" +#elif defined(GGML_USE_VULKAN) +#include "ggml-vulkan.h" #endif #elif defined(GGML_USE_OPENBLAS) #if defined(GGML_BLAS_USE_MKL) @@ -321,7 +323,7 @@ float ggml_table_f32_f16[1 << 16]; // note: do not use these inside ggml.c // these are meant to be used via the ggml.h API float ggml_fp16_to_fp32(ggml_fp16_t x) { - return (float) GGML_FP16_TO_FP32(x); + return GGML_FP16_TO_FP32(x); } ggml_fp16_t ggml_fp32_to_fp16(float x) { @@ -353,6 +355,10 @@ void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) { } } +bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) { + return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0; +} + // // timing // @@ -676,6 +682,30 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = { .vec_dot_type = GGML_TYPE_Q8_K, .nrows = 1, }, + [GGML_TYPE_IQ3_S] = { + .type_name = "iq3_s", + .blck_size = QK_K, + .type_size = sizeof(block_iq3_s), + .is_quantized = true, + .to_float = (ggml_to_float_t) dequantize_row_iq3_s, + .from_float = quantize_row_iq3_s, + .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference, + .vec_dot = ggml_vec_dot_iq3_s_q8_K, + .vec_dot_type = GGML_TYPE_Q8_K, + .nrows = 1, + }, + [GGML_TYPE_IQ2_S] = { + .type_name = "iq2_s", + .blck_size = QK_K, + .type_size = sizeof(block_iq2_s), + .is_quantized = true, + .to_float = (ggml_to_float_t) dequantize_row_iq2_s, + .from_float = quantize_row_iq2_s, + .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference, + .vec_dot = ggml_vec_dot_iq2_s_q8_K, + .vec_dot_type = GGML_TYPE_Q8_K, + .nrows = 1, + }, [GGML_TYPE_IQ1_S] = { .type_name = "iq1_s", .blck_size = QK_K, @@ -688,6 +718,38 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = { .vec_dot_type = GGML_TYPE_Q8_K, .nrows = 1, }, + [GGML_TYPE_IQ4_NL] = { + .type_name = "iq4_nl", + .blck_size = QK4_NL, + .type_size = sizeof(block_iq4_nl), + .is_quantized = true, + .to_float = (ggml_to_float_t) dequantize_row_iq4_nl, + .from_float = quantize_row_iq4_nl, + .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference, + .vec_dot = ggml_vec_dot_iq4_nl_q8_0, + .vec_dot_type = GGML_TYPE_Q8_0, + .nrows = 1, + }, + [GGML_TYPE_IQ4_XS] = { + .type_name = "iq4_xs", +#if QK_K == 64 + .blck_size = QK4_NL, +#else + .blck_size = QK_K, +#endif + .type_size = sizeof(block_iq4_xs), + .is_quantized = true, + .to_float = (ggml_to_float_t) dequantize_row_iq4_xs, + .from_float = quantize_row_iq4_xs, + .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference, + .vec_dot = ggml_vec_dot_iq4_xs_q8_K, +#if QK_K == 64 + .vec_dot_type = GGML_TYPE_Q8_0, +#else + .vec_dot_type = GGML_TYPE_Q8_K, +#endif + .nrows = 1, + }, [GGML_TYPE_Q8_K] = { .type_name = "q8_K", .blck_size = QK_K, @@ -784,7 +846,7 @@ inline static float vaddvq_f32(float32x4_t v) { #define GGML_F16x8 float16x8_t #define GGML_F16x8_ZERO vdupq_n_f16(0.0f) #define GGML_F16x8_SET1(x) vdupq_n_f16(x) - #define GGML_F16x8_LOAD vld1q_f16 + #define GGML_F16x8_LOAD(x) vld1q_f16((const __fp16 *)(x)) #define GGML_F16x8_STORE vst1q_f16 #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c) #define GGML_F16x8_ADD vaddq_f16 @@ -827,7 +889,7 @@ inline static float vaddvq_f32(float32x4_t v) { #define GGML_F32Cx4 float32x4_t #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f) #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x) - #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x)) + #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const __fp16 *)(x))) #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y)) #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c) #define GGML_F32Cx4_ADD vaddq_f32 @@ -1606,9 +1668,15 @@ inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) { uint16_t t; for (int i = 0; i < n; ++i) { - ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]); - memcpy(&t, &fp16, sizeof(uint16_t)); - y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]); + if (x[i] <= -10.0f) { + y[i] = 0.0f; + } else if (x[i] >= 10.0f) { + y[i] = x[i]; + } else { + ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]); + memcpy(&t, &fp16, sizeof(uint16_t)); + y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]); + } } } #else @@ -2351,6 +2419,10 @@ enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) { case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break; case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break; case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break; + case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break; + case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break; + case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break; + case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break; case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break; case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break; } @@ -2755,7 +2827,7 @@ static struct ggml_tensor * ggml_new_tensor_impl( } } - struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size); + struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size); // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here @@ -2763,7 +2835,7 @@ static struct ggml_tensor * ggml_new_tensor_impl( *result = (struct ggml_tensor) { /*.type =*/ type, - /*.backend =*/ GGML_BACKEND_CPU, + /*.backend =*/ GGML_BACKEND_TYPE_CPU, /*.buffer =*/ NULL, /*.ne =*/ { 1, 1, 1, 1 }, /*.nb =*/ { 0, 0, 0, 0 }, @@ -3336,7 +3408,7 @@ struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) { char * const mem_buffer = ctx->mem_buffer; while (obj != NULL) { - if (obj->type == GGML_OBJECT_TENSOR) { + if (obj->type == GGML_OBJECT_TYPE_TENSOR) { return (struct ggml_tensor *)(mem_buffer + obj->offs); } @@ -3353,7 +3425,7 @@ struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struc char * const mem_buffer = ctx->mem_buffer; while (obj != NULL) { - if (obj->type == GGML_OBJECT_TENSOR) { + if (obj->type == GGML_OBJECT_TYPE_TENSOR) { return (struct ggml_tensor *)(mem_buffer + obj->offs); } @@ -3369,7 +3441,7 @@ struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * nam char * const mem_buffer = ctx->mem_buffer; while (obj != NULL) { - if (obj->type == GGML_OBJECT_TENSOR) { + if (obj->type == GGML_OBJECT_TYPE_TENSOR) { struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs); if (strcmp(cur->name, name) == 0) { return cur; @@ -5694,7 +5766,9 @@ struct ggml_tensor * ggml_conv_2d( ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW] ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW] - result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], a->ne[3], im2col->ne[3]); // [N, OC, OH, OW] + result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW] + result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW] + return result; } @@ -5777,11 +5851,13 @@ struct ggml_tensor * ggml_pool_1d( is_node = true; } - const int64_t ne[2] = { + const int64_t ne[4] = { ggml_calc_pool_output_size(a->ne[0], k0, s0, p0), a->ne[1], + a->ne[2], + a->ne[3], }; - struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne); + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); int32_t params[] = { op, k0, s0, p0 }; ggml_set_op_params(result, params, sizeof(params)); @@ -5914,7 +5990,7 @@ struct ggml_tensor * ggml_top_k( int k) { GGML_ASSERT(a->ne[0] >= k); - struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_DESC); + struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC); result = ggml_view_4d(ctx, result, k, result->ne[1], result->ne[2], result->ne[3], @@ -6753,13 +6829,15 @@ void ggml_set_param( static void ggml_compute_forward_dup_same_cont( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0)); GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0)); GGML_ASSERT(src0->type == dst->type); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -6785,11 +6863,13 @@ static void ggml_compute_forward_dup_same_cont( } static void ggml_compute_forward_dup_f16( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -6799,7 +6879,7 @@ static void ggml_compute_forward_dup_f16( const int nth = params->nth; // number of threads if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) { - ggml_compute_forward_dup_same_cont(params, src0, dst); + ggml_compute_forward_dup_same_cont(params, dst); return; } @@ -7056,11 +7136,13 @@ static void ggml_compute_forward_dup_f16( static void ggml_compute_forward_dup_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -7070,7 +7152,7 @@ static void ggml_compute_forward_dup_f32( const int nth = params->nth; // number of threads if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) { - ggml_compute_forward_dup_same_cont(params, src0, dst); + ggml_compute_forward_dup_same_cont(params, dst); return; } @@ -7306,17 +7388,19 @@ static void ggml_compute_forward_dup_f32( // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy. static void ggml_compute_forward_dup_bytes( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0)); GGML_ASSERT(src0->type == dst->type); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) { - ggml_compute_forward_dup_same_cont(params, src0, dst); + ggml_compute_forward_dup_same_cont(params, dst); return; } @@ -7455,21 +7539,23 @@ static void ggml_compute_forward_dup_bytes( static void ggml_compute_forward_dup( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + if (src0->type == dst->type) { - ggml_compute_forward_dup_bytes(params, src0, dst); + ggml_compute_forward_dup_bytes(params, dst); return; } switch (src0->type) { case GGML_TYPE_F16: { - ggml_compute_forward_dup_f16(params, src0, dst); + ggml_compute_forward_dup_f16(params, dst); } break; case GGML_TYPE_F32: { - ggml_compute_forward_dup_f32(params, src0, dst); + ggml_compute_forward_dup_f32(params, dst); } break; default: { @@ -7482,12 +7568,14 @@ static void ggml_compute_forward_dup( static void ggml_compute_forward_add_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -7495,7 +7583,7 @@ static void ggml_compute_forward_add_f32( const int nth = params->nth; #ifdef GGML_USE_CLBLAST - if (src1->backend == GGML_BACKEND_GPU) { + if (src1->backend == GGML_BACKEND_TYPE_GPU) { // TODO: OpenCL kernel support full broadcast GGML_ASSERT(ggml_can_repeat_rows(src1, src0)); if (ith == 0) { @@ -7570,12 +7658,14 @@ static void ggml_compute_forward_add_f32( static void ggml_compute_forward_add_f16_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -7647,12 +7737,14 @@ static void ggml_compute_forward_add_f16_f32( static void ggml_compute_forward_add_f16_f16( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -7701,12 +7793,14 @@ static void ggml_compute_forward_add_f16_f16( static void ggml_compute_forward_add_q_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -7779,14 +7873,16 @@ static void ggml_compute_forward_add_q_f32( static void ggml_compute_forward_add( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + switch (src0->type) { case GGML_TYPE_F32: { if (src1->type == GGML_TYPE_F32) { - ggml_compute_forward_add_f32(params, src0, src1, dst); + ggml_compute_forward_add_f32(params, dst); } else { GGML_ASSERT(false); @@ -7795,10 +7891,10 @@ static void ggml_compute_forward_add( case GGML_TYPE_F16: { if (src1->type == GGML_TYPE_F16) { - ggml_compute_forward_add_f16_f16(params, src0, src1, dst); + ggml_compute_forward_add_f16_f16(params, dst); } else if (src1->type == GGML_TYPE_F32) { - ggml_compute_forward_add_f16_f32(params, src0, src1, dst); + ggml_compute_forward_add_f16_f32(params, dst); } else { GGML_ASSERT(false); @@ -7818,8 +7914,12 @@ static void ggml_compute_forward_add( case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ1_S: + case GGML_TYPE_IQ4_NL: + case GGML_TYPE_IQ4_XS: + case GGML_TYPE_IQ3_S: + case GGML_TYPE_IQ2_S: { - ggml_compute_forward_add_q_f32(params, src0, src1, dst); + ggml_compute_forward_add_q_f32(params, dst); } break; default: { @@ -7832,13 +7932,15 @@ static void ggml_compute_forward_add( static void ggml_compute_forward_add1_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(ggml_are_same_shape(src0, dst)); GGML_ASSERT(ggml_is_scalar(src1)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -7884,13 +7986,15 @@ static void ggml_compute_forward_add1_f32( static void ggml_compute_forward_add1_f16_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(ggml_are_same_shape(src0, dst)); GGML_ASSERT(ggml_is_scalar(src1)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -7934,13 +8038,15 @@ static void ggml_compute_forward_add1_f16_f32( static void ggml_compute_forward_add1_f16_f16( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(ggml_are_same_shape(src0, dst)); GGML_ASSERT(ggml_is_scalar(src1)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -7984,13 +8090,15 @@ static void ggml_compute_forward_add1_f16_f16( static void ggml_compute_forward_add1_q_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(ggml_are_same_shape(src0, dst)); GGML_ASSERT(ggml_is_scalar(src1)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -8051,21 +8159,23 @@ static void ggml_compute_forward_add1_q_f32( static void ggml_compute_forward_add1( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_add1_f32(params, src0, src1, dst); + ggml_compute_forward_add1_f32(params, dst); } break; case GGML_TYPE_F16: { if (src1->type == GGML_TYPE_F16) { - ggml_compute_forward_add1_f16_f16(params, src0, src1, dst); + ggml_compute_forward_add1_f16_f16(params, dst); } else if (src1->type == GGML_TYPE_F32) { - ggml_compute_forward_add1_f16_f32(params, src0, src1, dst); + ggml_compute_forward_add1_f16_f32(params, dst); } else { GGML_ASSERT(false); @@ -8086,8 +8196,12 @@ static void ggml_compute_forward_add1( case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ1_S: + case GGML_TYPE_IQ4_NL: + case GGML_TYPE_IQ4_XS: + case GGML_TYPE_IQ3_S: + case GGML_TYPE_IQ2_S: { - ggml_compute_forward_add1_q_f32(params, src0, src1, dst); + ggml_compute_forward_add1_q_f32(params, dst); } break; default: { @@ -8100,9 +8214,11 @@ static void ggml_compute_forward_add1( static void ggml_compute_forward_acc_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(ggml_are_same_shape(src0, dst)); GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0)); @@ -8114,7 +8230,7 @@ static void ggml_compute_forward_acc_f32( size_t offset = ((int32_t *) dst->op_params)[3]; bool inplace = (bool) ((int32_t *) dst->op_params)[4]; - if (!inplace && (params->type == GGML_TASK_INIT)) { + if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) { if (params->ith != 0) { return; } @@ -8126,7 +8242,7 @@ static void ggml_compute_forward_acc_f32( ggml_nbytes(dst)); } - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -8182,14 +8298,14 @@ static void ggml_compute_forward_acc_f32( static void ggml_compute_forward_acc( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_acc_f32(params, src0, src1, dst); + ggml_compute_forward_acc_f32(params, dst); } break; case GGML_TYPE_F16: case GGML_TYPE_Q4_0: @@ -8207,6 +8323,10 @@ static void ggml_compute_forward_acc( case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ1_S: + case GGML_TYPE_IQ4_NL: + case GGML_TYPE_IQ4_XS: + case GGML_TYPE_IQ3_S: + case GGML_TYPE_IQ2_S: default: { GGML_ASSERT(false); @@ -8218,13 +8338,15 @@ static void ggml_compute_forward_acc( static void ggml_compute_forward_sub_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + assert(params->ith == 0); assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -8278,13 +8400,14 @@ static void ggml_compute_forward_sub_f32( static void ggml_compute_forward_sub( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_sub_f32(params, src0, src1, dst); + ggml_compute_forward_sub_f32(params, dst); } break; default: { @@ -8297,19 +8420,21 @@ static void ggml_compute_forward_sub( static void ggml_compute_forward_mul_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } const int ith = params->ith; const int nth = params->nth; #if defined(GGML_USE_CLBLAST) - if (src1->backend == GGML_BACKEND_GPU) { + if (src1->backend == GGML_BACKEND_TYPE_GPU) { // TODO: OpenCL kernel support full broadcast GGML_ASSERT(ggml_can_repeat_rows(src1, src0)); if (ith == 0) { @@ -8380,15 +8505,17 @@ static void ggml_compute_forward_mul_f32( static void ggml_compute_forward_mul( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now"); switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_mul_f32(params, src0, src1, dst); + ggml_compute_forward_mul_f32(params, dst); } break; default: { @@ -8401,12 +8528,14 @@ static void ggml_compute_forward_mul( static void ggml_compute_forward_div_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -8474,13 +8603,14 @@ static void ggml_compute_forward_div_f32( static void ggml_compute_forward_div( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_div_f32(params, src0, src1, dst); + ggml_compute_forward_div_f32(params, dst); } break; default: { @@ -8493,12 +8623,14 @@ static void ggml_compute_forward_div( static void ggml_compute_forward_sqr_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + assert(params->ith == 0); assert(ggml_are_same_shape(src0, dst)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -8517,12 +8649,14 @@ static void ggml_compute_forward_sqr_f32( static void ggml_compute_forward_sqr( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_sqr_f32(params, src0, dst); + ggml_compute_forward_sqr_f32(params, dst); } break; default: { @@ -8535,12 +8669,14 @@ static void ggml_compute_forward_sqr( static void ggml_compute_forward_sqrt_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + assert(params->ith == 0); assert(ggml_are_same_shape(src0, dst)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -8559,12 +8695,14 @@ static void ggml_compute_forward_sqrt_f32( static void ggml_compute_forward_sqrt( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_sqrt_f32(params, src0, dst); + ggml_compute_forward_sqrt_f32(params, dst); } break; default: { @@ -8577,12 +8715,14 @@ static void ggml_compute_forward_sqrt( static void ggml_compute_forward_log_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + GGML_ASSERT(params->ith == 0); GGML_ASSERT(ggml_are_same_shape(src0, dst)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -8601,12 +8741,14 @@ static void ggml_compute_forward_log_f32( static void ggml_compute_forward_log( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_log_f32(params, src0, dst); + ggml_compute_forward_log_f32(params, dst); } break; default: { @@ -8619,12 +8761,14 @@ static void ggml_compute_forward_log( static void ggml_compute_forward_sum_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + assert(params->ith == 0); assert(ggml_is_scalar(dst)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -8652,12 +8796,14 @@ static void ggml_compute_forward_sum_f32( static void ggml_compute_forward_sum_f16( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + assert(params->ith == 0); assert(ggml_is_scalar(dst)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -8684,16 +8830,18 @@ static void ggml_compute_forward_sum_f16( static void ggml_compute_forward_sum( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_sum_f32(params, src0, dst); + ggml_compute_forward_sum_f32(params, dst); } break; case GGML_TYPE_F16: { - ggml_compute_forward_sum_f16(params, src0, dst); + ggml_compute_forward_sum_f16(params, dst); } break; default: { @@ -8706,11 +8854,13 @@ static void ggml_compute_forward_sum( static void ggml_compute_forward_sum_rows_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + GGML_ASSERT(params->ith == 0); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -8739,12 +8889,14 @@ static void ggml_compute_forward_sum_rows_f32( static void ggml_compute_forward_sum_rows( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_sum_rows_f32(params, src0, dst); + ggml_compute_forward_sum_rows_f32(params, dst); } break; default: { @@ -8757,11 +8909,13 @@ static void ggml_compute_forward_sum_rows( static void ggml_compute_forward_mean_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + assert(params->ith == 0); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -8794,12 +8948,14 @@ static void ggml_compute_forward_mean_f32( static void ggml_compute_forward_mean( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_mean_f32(params, src0, dst); + ggml_compute_forward_mean_f32(params, dst); } break; default: { @@ -8812,11 +8968,13 @@ static void ggml_compute_forward_mean( static void ggml_compute_forward_argmax_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + assert(params->ith == 0); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -8840,12 +8998,14 @@ static void ggml_compute_forward_argmax_f32( static void ggml_compute_forward_argmax( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_argmax_f32(params, src0, dst); + ggml_compute_forward_argmax_f32(params, dst); } break; default: { @@ -8858,12 +9018,14 @@ static void ggml_compute_forward_argmax( static void ggml_compute_forward_repeat_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + GGML_ASSERT(params->ith == 0); GGML_ASSERT(ggml_can_repeat(src0, dst)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -8901,12 +9063,14 @@ static void ggml_compute_forward_repeat_f32( static void ggml_compute_forward_repeat_f16( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + GGML_ASSERT(params->ith == 0); GGML_ASSERT(ggml_can_repeat(src0, dst)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -8947,18 +9111,20 @@ static void ggml_compute_forward_repeat_f16( static void ggml_compute_forward_repeat( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F16: case GGML_TYPE_I16: { - ggml_compute_forward_repeat_f16(params, src0, dst); + ggml_compute_forward_repeat_f16(params, dst); } break; case GGML_TYPE_F32: case GGML_TYPE_I32: { - ggml_compute_forward_repeat_f32(params, src0, dst); + ggml_compute_forward_repeat_f32(params, dst); } break; default: { @@ -8971,12 +9137,14 @@ static void ggml_compute_forward_repeat( static void ggml_compute_forward_repeat_back_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + GGML_ASSERT(params->ith == 0); GGML_ASSERT(ggml_can_repeat(dst, src0)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -9028,12 +9196,14 @@ static void ggml_compute_forward_repeat_back_f32( static void ggml_compute_forward_repeat_back( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_repeat_back_f32(params, src0, dst); + ggml_compute_forward_repeat_back_f32(params, dst); } break; default: { @@ -9046,11 +9216,12 @@ static void ggml_compute_forward_repeat_back( static void ggml_compute_forward_concat_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -9094,14 +9265,15 @@ static void ggml_compute_forward_concat_f32( static void ggml_compute_forward_concat( const struct ggml_compute_params* params, - const struct ggml_tensor* src0, - const struct ggml_tensor* src1, struct ggml_tensor* dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: case GGML_TYPE_I32: { - ggml_compute_forward_concat_f32(params, src0, src1, dst); + ggml_compute_forward_concat_f32(params, dst); } break; default: { @@ -9114,12 +9286,14 @@ static void ggml_compute_forward_concat( static void ggml_compute_forward_abs_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + assert(params->ith == 0); assert(ggml_are_same_shape(src0, dst)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -9138,12 +9312,14 @@ static void ggml_compute_forward_abs_f32( static void ggml_compute_forward_abs( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_abs_f32(params, src0, dst); + ggml_compute_forward_abs_f32(params, dst); } break; default: { @@ -9156,12 +9332,14 @@ static void ggml_compute_forward_abs( static void ggml_compute_forward_sgn_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + assert(params->ith == 0); assert(ggml_are_same_shape(src0, dst)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -9180,12 +9358,14 @@ static void ggml_compute_forward_sgn_f32( static void ggml_compute_forward_sgn( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_sgn_f32(params, src0, dst); + ggml_compute_forward_sgn_f32(params, dst); } break; default: { @@ -9198,12 +9378,14 @@ static void ggml_compute_forward_sgn( static void ggml_compute_forward_neg_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + assert(params->ith == 0); assert(ggml_are_same_shape(src0, dst)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -9222,12 +9404,14 @@ static void ggml_compute_forward_neg_f32( static void ggml_compute_forward_neg( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_neg_f32(params, src0, dst); + ggml_compute_forward_neg_f32(params, dst); } break; default: { @@ -9240,12 +9424,14 @@ static void ggml_compute_forward_neg( static void ggml_compute_forward_step_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + assert(params->ith == 0); assert(ggml_are_same_shape(src0, dst)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -9264,12 +9450,14 @@ static void ggml_compute_forward_step_f32( static void ggml_compute_forward_step( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_step_f32(params, src0, dst); + ggml_compute_forward_step_f32(params, dst); } break; default: { @@ -9282,12 +9470,14 @@ static void ggml_compute_forward_step( static void ggml_compute_forward_tanh_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + assert(params->ith == 0); assert(ggml_are_same_shape(src0, dst)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -9306,12 +9496,14 @@ static void ggml_compute_forward_tanh_f32( static void ggml_compute_forward_tanh( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_tanh_f32(params, src0, dst); + ggml_compute_forward_tanh_f32(params, dst); } break; default: { @@ -9324,12 +9516,14 @@ static void ggml_compute_forward_tanh( static void ggml_compute_forward_elu_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + assert(params->ith == 0); assert(ggml_are_same_shape(src0, dst)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -9348,12 +9542,14 @@ static void ggml_compute_forward_elu_f32( static void ggml_compute_forward_elu( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_elu_f32(params, src0, dst); + ggml_compute_forward_elu_f32(params, dst); } break; default: { @@ -9366,12 +9562,14 @@ static void ggml_compute_forward_elu( static void ggml_compute_forward_relu_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + assert(params->ith == 0); assert(ggml_are_same_shape(src0, dst)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -9390,12 +9588,14 @@ static void ggml_compute_forward_relu_f32( static void ggml_compute_forward_relu( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_relu_f32(params, src0, dst); + ggml_compute_forward_relu_f32(params, dst); } break; default: { @@ -9408,13 +9608,15 @@ static void ggml_compute_forward_relu( static void ggml_compute_forward_gelu_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0)); GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst)); GGML_ASSERT(ggml_are_same_shape(src0, dst)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -9449,12 +9651,14 @@ static void ggml_compute_forward_gelu_f32( static void ggml_compute_forward_gelu( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_gelu_f32(params, src0, dst); + ggml_compute_forward_gelu_f32(params, dst); } break; default: { @@ -9467,13 +9671,15 @@ static void ggml_compute_forward_gelu( static void ggml_compute_forward_gelu_quick_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0)); GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst)); GGML_ASSERT(ggml_are_same_shape(src0, dst)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -9508,12 +9714,14 @@ static void ggml_compute_forward_gelu_quick_f32( static void ggml_compute_forward_gelu_quick( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_gelu_quick_f32(params, src0, dst); + ggml_compute_forward_gelu_quick_f32(params, dst); } break; default: { @@ -9526,13 +9734,15 @@ static void ggml_compute_forward_gelu_quick( static void ggml_compute_forward_silu_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0)); GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst)); GGML_ASSERT(ggml_are_same_shape(src0, dst)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -9567,12 +9777,14 @@ static void ggml_compute_forward_silu_f32( static void ggml_compute_forward_silu( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_silu_f32(params, src0, dst); + ggml_compute_forward_silu_f32(params, dst); } break; default: { @@ -9584,12 +9796,14 @@ static void ggml_compute_forward_silu( static void ggml_compute_forward_leaky_relu_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + assert(params->ith == 0); assert(ggml_are_same_shape(src0, dst)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -9611,12 +9825,14 @@ static void ggml_compute_forward_leaky_relu_f32( static void ggml_compute_forward_leaky_relu( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_leaky_relu_f32(params, src0, dst); + ggml_compute_forward_leaky_relu_f32(params, dst); } break; default: { @@ -9629,16 +9845,18 @@ static void ggml_compute_forward_leaky_relu( static void ggml_compute_forward_silu_back_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * grad, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * grad = dst->src[1]; + GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad)); GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0)); GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst)); GGML_ASSERT(ggml_are_same_shape(src0, dst)); GGML_ASSERT(ggml_are_same_shape(src0, grad)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -9674,13 +9892,14 @@ static void ggml_compute_forward_silu_back_f32( static void ggml_compute_forward_silu_back( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * grad, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_silu_back_f32(params, src0, grad, dst); + ggml_compute_forward_silu_back_f32(params, dst); } break; default: { @@ -9692,12 +9911,14 @@ static void ggml_compute_forward_silu_back( static void ggml_compute_forward_hardswish_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + assert(params->ith == 0); assert(ggml_are_same_shape(src0, dst)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -9715,12 +9936,14 @@ static void ggml_compute_forward_hardswish_f32( } static void ggml_compute_forward_hardswish( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_hardswish_f32(params, src0, dst); + ggml_compute_forward_hardswish_f32(params, dst); } break; default: { @@ -9731,12 +9954,14 @@ static void ggml_compute_forward_hardswish( static void ggml_compute_forward_hardsigmoid_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + assert(params->ith == 0); assert(ggml_are_same_shape(src0, dst)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -9755,12 +9980,14 @@ static void ggml_compute_forward_hardsigmoid_f32( static void ggml_compute_forward_hardsigmoid( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_hardsigmoid_f32(params, src0, dst); + ggml_compute_forward_hardsigmoid_f32(params, dst); } break; default: { @@ -9774,11 +10001,13 @@ static void ggml_compute_forward_hardsigmoid( static void ggml_compute_forward_norm_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + GGML_ASSERT(ggml_are_same_shape(src0, dst)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -9827,12 +10056,14 @@ static void ggml_compute_forward_norm_f32( static void ggml_compute_forward_norm( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_norm_f32(params, src0, dst); + ggml_compute_forward_norm_f32(params, dst); } break; default: { @@ -9845,11 +10076,13 @@ static void ggml_compute_forward_norm( static void ggml_compute_forward_rms_norm_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + GGML_ASSERT(ggml_are_same_shape(src0, dst)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -9895,12 +10128,14 @@ static void ggml_compute_forward_rms_norm_f32( static void ggml_compute_forward_rms_norm( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_rms_norm_f32(params, src0, dst); + ggml_compute_forward_rms_norm_f32(params, dst); } break; default: { @@ -9911,12 +10146,14 @@ static void ggml_compute_forward_rms_norm( static void ggml_compute_forward_rms_norm_back_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -10068,13 +10305,14 @@ static void ggml_compute_forward_rms_norm_back_f32( static void ggml_compute_forward_rms_norm_back( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst); + ggml_compute_forward_rms_norm_back_f32(params, dst); } break; default: { @@ -10087,11 +10325,13 @@ static void ggml_compute_forward_rms_norm_back( static void ggml_compute_forward_group_norm_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + GGML_ASSERT(ggml_are_same_shape(src0, dst)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -10159,12 +10399,14 @@ static void ggml_compute_forward_group_norm_f32( static void ggml_compute_forward_group_norm( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_group_norm_f32(params, src0, dst); + ggml_compute_forward_group_norm_f32(params, dst); } break; default: { @@ -10210,9 +10452,11 @@ static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) { static void ggml_compute_forward_mul_mat( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + int64_t t0 = ggml_perf_time_us(); UNUSED(t0); @@ -10254,7 +10498,7 @@ static void ggml_compute_forward_mul_mat( #if defined(GGML_USE_CLBLAST) if (ggml_cl_can_mul_mat(src0, src1, dst)) { - if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) { + if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) { ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize); } return; @@ -10267,7 +10511,7 @@ static void ggml_compute_forward_mul_mat( const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float); UNUSED(desired_wsize); - if (params->type == GGML_TASK_INIT) { + if (params->type == GGML_TASK_TYPE_INIT) { if (type != GGML_TYPE_F32) { assert(params->wsize >= desired_wsize); // parallelize by src0 rows @@ -10290,7 +10534,7 @@ static void ggml_compute_forward_mul_mat( return; } - if (params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -10328,7 +10572,7 @@ static void ggml_compute_forward_mul_mat( } #endif - if (params->type == GGML_TASK_INIT) { + if (params->type == GGML_TASK_TYPE_INIT) { if (ith != 0) { return; } @@ -10352,7 +10596,7 @@ static void ggml_compute_forward_mul_mat( return; } - if (params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -10457,10 +10701,11 @@ static void ggml_compute_forward_mul_mat( static void ggml_compute_forward_mul_mat_id( const struct ggml_compute_params * params, - const struct ggml_tensor * ids, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + const struct ggml_tensor * ids = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS GGML_TENSOR_BINARY_OP_LOCALS @@ -10508,7 +10753,7 @@ static void ggml_compute_forward_mul_mat_id( #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)] - if (params->type == GGML_TASK_INIT) { + if (params->type == GGML_TASK_TYPE_INIT) { if (ith != 0) { return; } @@ -10545,7 +10790,7 @@ static void ggml_compute_forward_mul_mat_id( return; } - if (params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -10651,9 +10896,11 @@ static void ggml_compute_forward_mul_mat_id( static void ggml_compute_forward_out_prod_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + // int64_t t0 = ggml_perf_time_us(); // UNUSED(t0); @@ -10691,7 +10938,7 @@ static void ggml_compute_forward_out_prod_f32( (ggml_is_contiguous(src1) || ggml_is_transposed(src1)); #endif - if (params->type == GGML_TASK_INIT) { + if (params->type == GGML_TASK_TYPE_INIT) { #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst if (use_blas) { return; @@ -10704,7 +10951,7 @@ static void ggml_compute_forward_out_prod_f32( return; } - if (params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -10843,9 +11090,11 @@ static void ggml_compute_forward_out_prod_f32( static void ggml_compute_forward_out_prod_q_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + // int64_t t0 = ggml_perf_time_us(); // UNUSED(t0); @@ -10882,7 +11131,7 @@ static void ggml_compute_forward_out_prod_q_f32( // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST) - if (params->type == GGML_TASK_INIT) { + if (params->type == GGML_TASK_TYPE_INIT) { if (ith != 0) { return; } @@ -10890,7 +11139,7 @@ static void ggml_compute_forward_out_prod_q_f32( return; } - if (params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -10956,9 +11205,10 @@ static void ggml_compute_forward_out_prod_q_f32( static void ggml_compute_forward_out_prod( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: @@ -10974,17 +11224,21 @@ static void ggml_compute_forward_out_prod( case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ1_S: + case GGML_TYPE_IQ4_NL: + case GGML_TYPE_IQ4_XS: + case GGML_TYPE_IQ3_S: + case GGML_TYPE_IQ2_S: { - ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst); + ggml_compute_forward_out_prod_q_f32(params, dst); } break; case GGML_TYPE_F16: { GGML_ASSERT(false); // todo - // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst); + // ggml_compute_forward_out_prod_f16_f32(params, dst); } break; case GGML_TYPE_F32: { - ggml_compute_forward_out_prod_f32(params, src0, src1, dst); + ggml_compute_forward_out_prod_f32(params, dst); } break; default: { @@ -10997,13 +11251,15 @@ static void ggml_compute_forward_out_prod( static void ggml_compute_forward_scale_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(ggml_is_contiguous(dst)); GGML_ASSERT(ggml_are_same_shape(src0, dst)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -11039,12 +11295,14 @@ static void ggml_compute_forward_scale_f32( static void ggml_compute_forward_scale( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_scale_f32(params, src0, dst); + ggml_compute_forward_scale_f32(params, dst); } break; default: { @@ -11057,9 +11315,11 @@ static void ggml_compute_forward_scale( static void ggml_compute_forward_set_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(ggml_are_same_shape(src0, dst)); GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0)); @@ -11071,7 +11331,7 @@ static void ggml_compute_forward_set_f32( size_t offset = ((int32_t *) dst->op_params)[3]; bool inplace = (bool) ((int32_t *) dst->op_params)[4]; - if (!inplace && (params->type == GGML_TASK_INIT)) { + if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) { if (params->ith != 0) { return; } @@ -11083,7 +11343,7 @@ static void ggml_compute_forward_set_f32( ggml_nbytes(dst)); } - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -11130,14 +11390,14 @@ static void ggml_compute_forward_set_f32( static void ggml_compute_forward_set( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_set_f32(params, src0, src1, dst); + ggml_compute_forward_set_f32(params, dst); } break; case GGML_TYPE_F16: case GGML_TYPE_Q4_0: @@ -11155,6 +11415,10 @@ static void ggml_compute_forward_set( case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ1_S: + case GGML_TYPE_IQ4_NL: + case GGML_TYPE_IQ4_XS: + case GGML_TYPE_IQ3_S: + case GGML_TYPE_IQ2_S: default: { GGML_ASSERT(false); @@ -11166,29 +11430,25 @@ static void ggml_compute_forward_set( static void ggml_compute_forward_cpy( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { - ggml_compute_forward_dup(params, src0, dst); + ggml_compute_forward_dup(params, dst); } // ggml_compute_forward_cont static void ggml_compute_forward_cont( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { - ggml_compute_forward_dup(params, src0, dst); + ggml_compute_forward_dup(params, dst); } // ggml_compute_forward_reshape static void ggml_compute_forward_reshape( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { // NOP UNUSED(params); - UNUSED(src0); UNUSED(dst); } @@ -11196,42 +11456,44 @@ static void ggml_compute_forward_reshape( static void ggml_compute_forward_view( const struct ggml_compute_params * params, - const struct ggml_tensor * src0) { + const struct ggml_tensor * dst) { // NOP UNUSED(params); - UNUSED(src0); + UNUSED(dst); } // ggml_compute_forward_permute static void ggml_compute_forward_permute( const struct ggml_compute_params * params, - const struct ggml_tensor * src0) { + const struct ggml_tensor * dst) { // NOP UNUSED(params); - UNUSED(src0); + UNUSED(dst); } // ggml_compute_forward_transpose static void ggml_compute_forward_transpose( const struct ggml_compute_params * params, - const struct ggml_tensor * src0) { + const struct ggml_tensor * dst) { // NOP UNUSED(params); - UNUSED(src0); + UNUSED(dst); } // ggml_compute_forward_get_rows static void ggml_compute_forward_get_rows_q( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + assert(params->ith == 0); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -11264,12 +11526,14 @@ static void ggml_compute_forward_get_rows_q( static void ggml_compute_forward_get_rows_f16( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + assert(params->ith == 0); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -11299,12 +11563,14 @@ static void ggml_compute_forward_get_rows_f16( static void ggml_compute_forward_get_rows_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + assert(params->ith == 0); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -11334,9 +11600,10 @@ static void ggml_compute_forward_get_rows_f32( static void ggml_compute_forward_get_rows( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: @@ -11353,17 +11620,21 @@ static void ggml_compute_forward_get_rows( case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ1_S: + case GGML_TYPE_IQ4_NL: + case GGML_TYPE_IQ4_XS: + case GGML_TYPE_IQ3_S: + case GGML_TYPE_IQ2_S: { - ggml_compute_forward_get_rows_q(params, src0, src1, dst); + ggml_compute_forward_get_rows_q(params, dst); } break; case GGML_TYPE_F16: { - ggml_compute_forward_get_rows_f16(params, src0, src1, dst); + ggml_compute_forward_get_rows_f16(params, dst); } break; case GGML_TYPE_F32: case GGML_TYPE_I32: { - ggml_compute_forward_get_rows_f32(params, src0, src1, dst); + ggml_compute_forward_get_rows_f32(params, dst); } break; default: { @@ -11394,22 +11665,24 @@ static void ggml_compute_forward_get_rows( static void ggml_compute_forward_get_rows_back_f32_f16( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(params->ith == 0); GGML_ASSERT(ggml_is_contiguous(dst)); // ggml_compute_forward_dup_same_cont(params, opt0, dst); - if (params->type == GGML_TASK_INIT) { + if (params->type == GGML_TASK_TYPE_INIT) { if (params->ith != 0) { return; } memset(dst->data, 0, ggml_nbytes(dst)); } - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -11431,22 +11704,24 @@ static void ggml_compute_forward_get_rows_back_f32_f16( static void ggml_compute_forward_get_rows_back_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(params->ith == 0); GGML_ASSERT(ggml_is_contiguous(dst)); // ggml_compute_forward_dup_same_cont(params, opt0, dst); - if (params->type == GGML_TASK_INIT) { + if (params->type == GGML_TASK_TYPE_INIT) { if (params->ith != 0) { return; } memset(dst->data, 0, ggml_nbytes(dst)); } - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -11468,17 +11743,18 @@ static void ggml_compute_forward_get_rows_back_f32( static void ggml_compute_forward_get_rows_back( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F16: { - ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst); + ggml_compute_forward_get_rows_back_f32_f16(params, dst); } break; case GGML_TYPE_F32: { - ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst); + ggml_compute_forward_get_rows_back_f32(params, dst); } break; default: { @@ -11509,11 +11785,13 @@ static void ggml_compute_forward_get_rows_back( static void ggml_compute_forward_diag_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + GGML_ASSERT(params->ith == 0); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -11549,12 +11827,14 @@ static void ggml_compute_forward_diag_f32( static void ggml_compute_forward_diag( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_diag_f32(params, src0, dst); + ggml_compute_forward_diag_f32(params, dst); } break; default: { @@ -11567,10 +11847,11 @@ static void ggml_compute_forward_diag( static void ggml_compute_forward_diag_mask_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst, const float value) { + const struct ggml_tensor * src0 = dst->src[0]; + const int ith = params->ith; const int nth = params->nth; @@ -11579,7 +11860,7 @@ static void ggml_compute_forward_diag_mask_f32( GGML_ASSERT(n_past >= 0); - if (!inplace && (params->type == GGML_TASK_INIT)) { + if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) { if (ith != 0) { return; } @@ -11593,7 +11874,7 @@ static void ggml_compute_forward_diag_mask_f32( ggml_nbytes(dst)); } - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -11620,12 +11901,14 @@ static void ggml_compute_forward_diag_mask_f32( static void ggml_compute_forward_diag_mask_inf( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY); + ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY); } break; default: { @@ -11636,12 +11919,14 @@ static void ggml_compute_forward_diag_mask_inf( static void ggml_compute_forward_diag_mask_zero( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_diag_mask_f32(params, src0, dst, 0); + ggml_compute_forward_diag_mask_f32(params, dst, 0); } break; default: { @@ -11654,14 +11939,16 @@ static void ggml_compute_forward_diag_mask_zero( static void ggml_compute_forward_soft_max_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, - const struct ggml_tensor * src2, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + const struct ggml_tensor * src2 = dst->src[2]; + assert(ggml_is_contiguous(dst)); assert(ggml_are_same_shape(src0, dst)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -11770,14 +12057,14 @@ static void ggml_compute_forward_soft_max_f32( static void ggml_compute_forward_soft_max( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, - const struct ggml_tensor * src2, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_soft_max_f32(params, src0, src1, src2, dst); + ggml_compute_forward_soft_max_f32(params, dst); } break; default: { @@ -11790,16 +12077,18 @@ static void ggml_compute_forward_soft_max( static void ggml_compute_forward_soft_max_back_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(ggml_is_contiguous(src1)); GGML_ASSERT(ggml_is_contiguous(dst)); GGML_ASSERT(ggml_are_same_shape(src0, dst)); GGML_ASSERT(ggml_are_same_shape(src1, dst)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -11867,13 +12156,14 @@ static void ggml_compute_forward_soft_max_back_f32( static void ggml_compute_forward_soft_max_back( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst); + ggml_compute_forward_soft_max_back_f32(params, dst); } break; default: { @@ -11886,11 +12176,13 @@ static void ggml_compute_forward_soft_max_back( static void ggml_compute_forward_alibi_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + assert(params->ith == 0); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -11943,11 +12235,13 @@ static void ggml_compute_forward_alibi_f32( static void ggml_compute_forward_alibi_f16( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + assert(params->ith == 0); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -12003,16 +12297,18 @@ static void ggml_compute_forward_alibi_f16( static void ggml_compute_forward_alibi( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F16: { - ggml_compute_forward_alibi_f16(params, src0, dst); + ggml_compute_forward_alibi_f16(params, dst); } break; case GGML_TYPE_F32: { - ggml_compute_forward_alibi_f32(params, src0, dst); + ggml_compute_forward_alibi_f32(params, dst); } break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: @@ -12029,6 +12325,10 @@ static void ggml_compute_forward_alibi( case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ1_S: + case GGML_TYPE_IQ4_NL: + case GGML_TYPE_IQ4_XS: + case GGML_TYPE_IQ3_S: + case GGML_TYPE_IQ2_S: case GGML_TYPE_Q8_K: case GGML_TYPE_I8: case GGML_TYPE_I16: @@ -12044,11 +12344,13 @@ static void ggml_compute_forward_alibi( static void ggml_compute_forward_clamp_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + assert(params->ith == 0); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -12084,12 +12386,14 @@ static void ggml_compute_forward_clamp_f32( static void ggml_compute_forward_clamp( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_clamp_f32(params, src0, dst); + ggml_compute_forward_clamp_f32(params, dst); } break; case GGML_TYPE_F16: case GGML_TYPE_Q4_0: @@ -12107,6 +12411,10 @@ static void ggml_compute_forward_clamp( case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ1_S: + case GGML_TYPE_IQ4_NL: + case GGML_TYPE_IQ4_XS: + case GGML_TYPE_IQ3_S: + case GGML_TYPE_IQ2_S: case GGML_TYPE_Q8_K: case GGML_TYPE_I8: case GGML_TYPE_I16: @@ -12178,11 +12486,13 @@ GGML_CALL void ggml_rope_yarn_corr_dims( static void ggml_compute_forward_rope_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst, const bool forward) { - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -12354,11 +12664,13 @@ static void ggml_compute_forward_rope_f32( static void ggml_compute_forward_rope_f16( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst, const bool forward) { - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -12519,17 +12831,18 @@ static void ggml_compute_forward_rope_f16( static void ggml_compute_forward_rope( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F16: { - ggml_compute_forward_rope_f16(params, src0, src1, dst, true); + ggml_compute_forward_rope_f16(params, dst, true); } break; case GGML_TYPE_F32: { - ggml_compute_forward_rope_f32(params, src0, src1, dst, true); + ggml_compute_forward_rope_f32(params, dst, true); } break; default: { @@ -12542,17 +12855,18 @@ static void ggml_compute_forward_rope( static void ggml_compute_forward_rope_back( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F16: { - ggml_compute_forward_rope_f16(params, src0, src1, dst, false); + ggml_compute_forward_rope_f16(params, dst, false); } break; case GGML_TYPE_F32: { - ggml_compute_forward_rope_f32(params, src0, src1, dst, false); + ggml_compute_forward_rope_f32(params, dst, false); } break; default: { @@ -12565,9 +12879,11 @@ static void ggml_compute_forward_rope_back( static void ggml_compute_forward_conv_transpose_1d_f16_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); @@ -12585,7 +12901,7 @@ static void ggml_compute_forward_conv_transpose_1d_f16_f32( GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); GGML_ASSERT(nb10 == sizeof(float)); - if (params->type == GGML_TASK_INIT) { + if (params->type == GGML_TASK_TYPE_INIT) { if (ith != 0) { return; } @@ -12625,7 +12941,7 @@ static void ggml_compute_forward_conv_transpose_1d_f16_f32( return; } - if (params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -12662,9 +12978,11 @@ static void ggml_compute_forward_conv_transpose_1d_f16_f32( static void ggml_compute_forward_conv_transpose_1d_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(src1->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); @@ -12682,7 +13000,7 @@ static void ggml_compute_forward_conv_transpose_1d_f32( GGML_ASSERT(nb00 == sizeof(float)); GGML_ASSERT(nb10 == sizeof(float)); - if (params->type == GGML_TASK_INIT) { + if (params->type == GGML_TASK_TYPE_INIT) { if (ith != 0) { return; } @@ -12722,7 +13040,7 @@ static void ggml_compute_forward_conv_transpose_1d_f32( return; } - if (params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -12759,17 +13077,18 @@ static void ggml_compute_forward_conv_transpose_1d_f32( static void ggml_compute_forward_conv_transpose_1d( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F16: { - ggml_compute_forward_conv_transpose_1d_f16_f32(params, src0, src1, dst); + ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst); } break; case GGML_TYPE_F32: { - ggml_compute_forward_conv_transpose_1d_f32(params, src0, src1, dst); + ggml_compute_forward_conv_transpose_1d_f32(params, dst); } break; default: { @@ -12783,9 +13102,11 @@ static void ggml_compute_forward_conv_transpose_1d( // dst: result [N, OH, OW, IC*KH*KW] static void ggml_compute_forward_im2col_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); @@ -12823,11 +13144,11 @@ static void ggml_compute_forward_im2col_f32( GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); GGML_ASSERT(nb10 == sizeof(float)); - if (params->type == GGML_TASK_INIT) { + if (params->type == GGML_TASK_TYPE_INIT) { return; } - if (params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -12869,9 +13190,11 @@ static void ggml_compute_forward_im2col_f32( // dst: result [N, OH, OW, IC*KH*KW] static void ggml_compute_forward_im2col_f16( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F16); @@ -12909,11 +13232,11 @@ static void ggml_compute_forward_im2col_f16( GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); GGML_ASSERT(nb10 == sizeof(float)); - if (params->type == GGML_TASK_INIT) { + if (params->type == GGML_TASK_TYPE_INIT) { return; } - if (params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -12951,17 +13274,15 @@ static void ggml_compute_forward_im2col_f16( static void ggml_compute_forward_im2col( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { switch (dst->type) { case GGML_TYPE_F16: { - ggml_compute_forward_im2col_f16(params, src0, src1, dst); + ggml_compute_forward_im2col_f16(params, dst); } break; case GGML_TYPE_F32: { - ggml_compute_forward_im2col_f32(params, src0, src1, dst); + ggml_compute_forward_im2col_f32(params, dst); } break; default: { @@ -12975,9 +13296,11 @@ static void ggml_compute_forward_im2col( static void ggml_compute_forward_conv_transpose_2d( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); @@ -12995,7 +13318,7 @@ static void ggml_compute_forward_conv_transpose_2d( GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); GGML_ASSERT(nb10 == sizeof(float)); - if (params->type == GGML_TASK_INIT) { + if (params->type == GGML_TASK_TYPE_INIT) { if (ith != 0) { return; } @@ -13037,7 +13360,7 @@ static void ggml_compute_forward_conv_transpose_2d( return; } - if (params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -13081,13 +13404,15 @@ static void ggml_compute_forward_conv_transpose_2d( static void ggml_compute_forward_pool_1d_sk_p0( const struct ggml_compute_params * params, const enum ggml_op_pool op, - const struct ggml_tensor * src, const int k, struct ggml_tensor * dst) { + + const struct ggml_tensor * src = dst->src[0]; + assert(src->type == GGML_TYPE_F32); assert(params->ith == 0); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -13132,7 +13457,6 @@ static void ggml_compute_forward_pool_1d_sk_p0( static void ggml_compute_forward_pool_1d( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { const int32_t * opts = (const int32_t *)dst->op_params; @@ -13143,19 +13467,21 @@ static void ggml_compute_forward_pool_1d( GGML_ASSERT(p0 == 0); // padding not supported GGML_ASSERT(k0 == s0); // only s = k supported - ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst); + ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst); } // ggml_compute_forward_pool_2d static void ggml_compute_forward_pool_2d( const struct ggml_compute_params * params, - const struct ggml_tensor * src, struct ggml_tensor * dst) { + + const struct ggml_tensor * src = dst->src[0]; + GGML_ASSERT(src->type == GGML_TYPE_F32); GGML_ASSERT(params->ith == 0); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -13224,10 +13550,11 @@ static void ggml_compute_forward_pool_2d( static void ggml_compute_forward_upscale_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + const struct ggml_tensor * src0 = dst->src[0]; + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -13263,12 +13590,14 @@ static void ggml_compute_forward_upscale_f32( static void ggml_compute_forward_upscale( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_upscale_f32(params, src0, dst); + ggml_compute_forward_upscale_f32(params, dst); } break; default: { @@ -13281,10 +13610,11 @@ static void ggml_compute_forward_upscale( static void ggml_compute_forward_pad_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + const struct ggml_tensor * src0 = dst->src[0]; + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -13321,12 +13651,14 @@ static void ggml_compute_forward_pad_f32( static void ggml_compute_forward_pad( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_pad_f32(params, src0, dst); + ggml_compute_forward_pad_f32(params, dst); } break; default: { @@ -13339,10 +13671,11 @@ static void ggml_compute_forward_pad( static void ggml_compute_forward_argsort_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + const struct ggml_tensor * src0 = dst->src[0]; + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -13368,8 +13701,8 @@ static void ggml_compute_forward_argsort_f32( // C doesn't have a functional sort, so we do a bubble sort instead for (int64_t j = 0; j < ne0; j++) { for (int64_t k = j + 1; k < ne0; k++) { - if ((order == GGML_SORT_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) || - (order == GGML_SORT_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) { + if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) || + (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) { int32_t tmp = dst_data[j]; dst_data[j] = dst_data[k]; dst_data[k] = tmp; @@ -13381,13 +13714,14 @@ static void ggml_compute_forward_argsort_f32( static void ggml_compute_forward_argsort( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_argsort_f32(params, src0, dst); + ggml_compute_forward_argsort_f32(params, dst); } break; default: { @@ -13400,11 +13734,13 @@ static void ggml_compute_forward_argsort( static void ggml_compute_forward_flash_attn_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * q, - const struct ggml_tensor * k, - const struct ggml_tensor * v, const bool masked, struct ggml_tensor * dst) { + + const struct ggml_tensor * q = dst->src[0]; + const struct ggml_tensor * k = dst->src[1]; + const struct ggml_tensor * v = dst->src[2]; + int64_t t0 = ggml_perf_time_us(); UNUSED(t0); @@ -13449,11 +13785,11 @@ static void ggml_compute_forward_flash_attn_f32( GGML_ASSERT(nb1 <= nb2); GGML_ASSERT(nb2 <= nb3); - if (params->type == GGML_TASK_INIT) { + if (params->type == GGML_TASK_TYPE_INIT) { return; } - if (params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -13590,11 +13926,13 @@ static void ggml_compute_forward_flash_attn_f32( static void ggml_compute_forward_flash_attn_f16( const struct ggml_compute_params * params, - const struct ggml_tensor * q, - const struct ggml_tensor * k, - const struct ggml_tensor * v, const bool masked, struct ggml_tensor * dst) { + + const struct ggml_tensor * q = dst->src[0]; + const struct ggml_tensor * k = dst->src[1]; + const struct ggml_tensor * v = dst->src[2]; + int64_t t0 = ggml_perf_time_us(); UNUSED(t0); @@ -13639,11 +13977,11 @@ static void ggml_compute_forward_flash_attn_f16( GGML_ASSERT(nb1 <= nb2); GGML_ASSERT(nb2 <= nb3); - if (params->type == GGML_TASK_INIT) { + if (params->type == GGML_TASK_TYPE_INIT) { return; } - if (params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -13816,19 +14154,19 @@ static void ggml_compute_forward_flash_attn_f16( static void ggml_compute_forward_flash_attn( const struct ggml_compute_params * params, - const struct ggml_tensor * q, - const struct ggml_tensor * k, - const struct ggml_tensor * v, const bool masked, struct ggml_tensor * dst) { + + const struct ggml_tensor * q = dst->src[0]; + switch (q->type) { case GGML_TYPE_F16: { - ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst); + ggml_compute_forward_flash_attn_f16(params, masked, dst); } break; case GGML_TYPE_F32: { - ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst); + ggml_compute_forward_flash_attn_f32(params, masked, dst); } break; default: { @@ -13891,11 +14229,11 @@ static void ggml_compute_forward_flash_attn_ext_f16( const int64_t rv2 = neq2/nev2; const int64_t rv3 = neq3/nev3; - if (params->type == GGML_TASK_INIT) { + if (params->type == GGML_TASK_TYPE_INIT) { return; } - if (params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -14032,12 +14370,14 @@ static void ggml_compute_forward_flash_attn_ext( static void ggml_compute_forward_flash_ff_f16( const struct ggml_compute_params * params, - const struct ggml_tensor * a, // F16 - const struct ggml_tensor * b0, // F16 fc_w - const struct ggml_tensor * b1, // F32 fc_b - const struct ggml_tensor * c0, // F16 proj_w - const struct ggml_tensor * c1, // F32 proj_b struct ggml_tensor * dst) { + + const struct ggml_tensor * a = dst->src[0]; // F16 + const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w + const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b + const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w + const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b + int64_t t0 = ggml_perf_time_us(); UNUSED(t0); @@ -14087,11 +14427,11 @@ static void ggml_compute_forward_flash_ff_f16( GGML_ASSERT(nb1 <= nb2); GGML_ASSERT(nb2 <= nb3); - if (params->type == GGML_TASK_INIT) { + if (params->type == GGML_TASK_TYPE_INIT) { return; } - if (params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -14165,16 +14505,14 @@ static void ggml_compute_forward_flash_ff_f16( static void ggml_compute_forward_flash_ff( const struct ggml_compute_params * params, - const struct ggml_tensor * a, - const struct ggml_tensor * b0, - const struct ggml_tensor * b1, - const struct ggml_tensor * c0, - const struct ggml_tensor * c1, struct ggml_tensor * dst) { + + const struct ggml_tensor * b0 = dst->src[1]; + switch (b0->type) { case GGML_TYPE_F16: { - ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst); + ggml_compute_forward_flash_ff_f16(params, dst); } break; case GGML_TYPE_F32: { @@ -14191,12 +14529,14 @@ static void ggml_compute_forward_flash_ff( static void ggml_compute_forward_flash_attn_back_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * q, - const struct ggml_tensor * k, - const struct ggml_tensor * v, - const struct ggml_tensor * d, const bool masked, struct ggml_tensor * dst) { + + const struct ggml_tensor * q = dst->src[0]; + const struct ggml_tensor * k = dst->src[1]; + const struct ggml_tensor * v = dst->src[2]; + const struct ggml_tensor * d = dst->src[3]; + int64_t t0 = ggml_perf_time_us(); UNUSED(t0); @@ -14246,14 +14586,14 @@ static void ggml_compute_forward_flash_attn_back_f32( GGML_ASSERT(nb1 <= nb2); GGML_ASSERT(nb2 <= nb3); - if (params->type == GGML_TASK_INIT) { + if (params->type == GGML_TASK_TYPE_INIT) { if (ith == 0) { memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3); } return; } - if (params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -14544,16 +14884,15 @@ static void ggml_compute_forward_flash_attn_back_f32( static void ggml_compute_forward_flash_attn_back( const struct ggml_compute_params * params, - const struct ggml_tensor * q, - const struct ggml_tensor * k, - const struct ggml_tensor * v, - const struct ggml_tensor * d, const bool masked, struct ggml_tensor * dst) { + + const struct ggml_tensor * q = dst->src[0]; + switch (q->type) { case GGML_TYPE_F32: { - ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst); + ggml_compute_forward_flash_attn_back_f32(params, masked, dst); } break; default: { @@ -14566,9 +14905,11 @@ static void ggml_compute_forward_flash_attn_back( static void ggml_compute_forward_win_part_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + + const struct ggml_tensor * src0 = dst->src[0]; + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -14610,12 +14951,14 @@ static void ggml_compute_forward_win_part_f32( static void ggml_compute_forward_win_part( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_win_part_f32(params, src0, dst); + ggml_compute_forward_win_part_f32(params, dst); } break; default: { @@ -14628,9 +14971,11 @@ static void ggml_compute_forward_win_part( static void ggml_compute_forward_win_unpart_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + + const struct ggml_tensor * src0 = dst->src[0]; + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -14670,12 +15015,14 @@ static void ggml_compute_forward_win_unpart_f32( static void ggml_compute_forward_win_unpart( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_win_unpart_f32(params, src0, dst); + ggml_compute_forward_win_unpart_f32(params, dst); } break; default: { @@ -14688,58 +15035,58 @@ static void ggml_compute_forward_win_unpart( static void ggml_compute_forward_unary( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + const enum ggml_unary_op op = ggml_get_unary_op(dst); switch (op) { case GGML_UNARY_OP_ABS: { - ggml_compute_forward_abs(params, src0, dst); + ggml_compute_forward_abs(params, dst); } break; case GGML_UNARY_OP_SGN: { - ggml_compute_forward_sgn(params, src0, dst); + ggml_compute_forward_sgn(params, dst); } break; case GGML_UNARY_OP_NEG: { - ggml_compute_forward_neg(params, src0, dst); + ggml_compute_forward_neg(params, dst); } break; case GGML_UNARY_OP_STEP: { - ggml_compute_forward_step(params, src0, dst); + ggml_compute_forward_step(params, dst); } break; case GGML_UNARY_OP_TANH: { - ggml_compute_forward_tanh(params, src0, dst); + ggml_compute_forward_tanh(params, dst); } break; case GGML_UNARY_OP_ELU: { - ggml_compute_forward_elu(params, src0, dst); + ggml_compute_forward_elu(params, dst); } break; case GGML_UNARY_OP_RELU: { - ggml_compute_forward_relu(params, src0, dst); + ggml_compute_forward_relu(params, dst); } break; case GGML_UNARY_OP_GELU: { - ggml_compute_forward_gelu(params, src0, dst); + ggml_compute_forward_gelu(params, dst); } break; case GGML_UNARY_OP_GELU_QUICK: { - ggml_compute_forward_gelu_quick(params, src0, dst); + ggml_compute_forward_gelu_quick(params, dst); } break; case GGML_UNARY_OP_SILU: { - ggml_compute_forward_silu(params, src0, dst); + ggml_compute_forward_silu(params, dst); } break; case GGML_UNARY_OP_HARDSWISH: { - ggml_compute_forward_hardswish(params, src0, dst); + ggml_compute_forward_hardswish(params, dst); } break; case GGML_UNARY_OP_HARDSIGMOID: { - ggml_compute_forward_hardsigmoid(params, src0, dst); + ggml_compute_forward_hardsigmoid(params, dst); } break; default: { @@ -14752,9 +15099,11 @@ static void ggml_compute_forward_unary( static void ggml_compute_forward_get_rel_pos_f16( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + + const struct ggml_tensor * src0 = dst->src[0]; + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -14779,12 +15128,14 @@ static void ggml_compute_forward_get_rel_pos_f16( static void ggml_compute_forward_get_rel_pos( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F16: { - ggml_compute_forward_get_rel_pos_f16(params, src0, dst); + ggml_compute_forward_get_rel_pos_f16(params, dst); } break; default: { @@ -14797,20 +15148,21 @@ static void ggml_compute_forward_get_rel_pos( static void ggml_compute_forward_add_rel_pos_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, - const struct ggml_tensor * src2, struct ggml_tensor * dst) { + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + const struct ggml_tensor * src2 = dst->src[2]; + const bool inplace = (bool) ((int32_t *) dst->op_params)[0]; - if (!inplace && params->type == GGML_TASK_INIT) { + if (!inplace && params->type == GGML_TASK_TYPE_INIT) { if (params->ith != 0) { return; } memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst)); return; } - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -14865,14 +15217,14 @@ static void ggml_compute_forward_add_rel_pos_f32( static void ggml_compute_forward_add_rel_pos( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, - const struct ggml_tensor * src2, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst); + ggml_compute_forward_add_rel_pos_f32(params, dst); } break; default: { @@ -14885,12 +15237,14 @@ static void ggml_compute_forward_add_rel_pos( static void ggml_compute_forward_map_unary_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst, const ggml_unary_op_f32_t fun) { + + const struct ggml_tensor * src0 = dst->src[0]; + GGML_ASSERT(ggml_are_same_shape(src0, dst)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -14909,13 +15263,15 @@ static void ggml_compute_forward_map_unary_f32( static void ggml_compute_forward_map_unary( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst, const ggml_unary_op_f32_t fun) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_map_unary_f32(params, src0, dst, fun); + ggml_compute_forward_map_unary_f32(params, dst, fun); } break; default: { @@ -14928,14 +15284,16 @@ static void ggml_compute_forward_map_unary( static void ggml_compute_forward_map_binary_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst, const ggml_binary_op_f32_t fun) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + assert(params->ith == 0); assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst)); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -14956,14 +15314,15 @@ static void ggml_compute_forward_map_binary_f32( static void ggml_compute_forward_map_binary( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst, const ggml_binary_op_f32_t fun) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun); + ggml_compute_forward_map_binary_f32(params, dst, fun); } break; default: { @@ -14976,12 +15335,14 @@ static void ggml_compute_forward_map_binary( static void ggml_compute_forward_map_custom1_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * a, struct ggml_tensor * dst, const ggml_custom1_op_f32_t fun) { + + const struct ggml_tensor * a = dst->src[0]; + assert(params->ith == 0); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -14992,13 +15353,15 @@ static void ggml_compute_forward_map_custom1_f32( static void ggml_compute_forward_map_custom2_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * a, - const struct ggml_tensor * b, struct ggml_tensor * dst, const ggml_custom2_op_f32_t fun) { + + const struct ggml_tensor * a = dst->src[0]; + const struct ggml_tensor * b = dst->src[1]; + assert(params->ith == 0); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -15009,14 +15372,16 @@ static void ggml_compute_forward_map_custom2_f32( static void ggml_compute_forward_map_custom3_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * a, - const struct ggml_tensor * b, - const struct ggml_tensor * c, struct ggml_tensor * dst, const ggml_custom3_op_f32_t fun) { + + const struct ggml_tensor * a = dst->src[0]; + const struct ggml_tensor * b = dst->src[1]; + const struct ggml_tensor * c = dst->src[1]; + assert(params->ith == 0); - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -15027,57 +15392,68 @@ static void ggml_compute_forward_map_custom3_f32( static void ggml_compute_forward_map_custom1( const struct ggml_compute_params * params, - const struct ggml_tensor * a, struct ggml_tensor * dst) { - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + + const struct ggml_tensor * a = dst->src[0]; + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } - struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params; + struct ggml_map_custom1_op_params p; + memcpy(&p, dst->op_params, sizeof(p)); - p->fun(dst, a, params->ith, params->nth, p->userdata); + p.fun(dst, a, params->ith, params->nth, p.userdata); } // ggml_compute_forward_map_custom2 static void ggml_compute_forward_map_custom2( const struct ggml_compute_params * params, - const struct ggml_tensor * a, - const struct ggml_tensor * b, struct ggml_tensor * dst) { - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + + const struct ggml_tensor * a = dst->src[0]; + const struct ggml_tensor * b = dst->src[1]; + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } - struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params; + struct ggml_map_custom2_op_params p; + memcpy(&p, dst->op_params, sizeof(p)); - p->fun(dst, a, b, params->ith, params->nth, p->userdata); + p.fun(dst, a, b, params->ith, params->nth, p.userdata); } // ggml_compute_forward_map_custom3 static void ggml_compute_forward_map_custom3( const struct ggml_compute_params * params, - const struct ggml_tensor * a, - const struct ggml_tensor * b, - const struct ggml_tensor * c, struct ggml_tensor * dst) { - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + + const struct ggml_tensor * a = dst->src[0]; + const struct ggml_tensor * b = dst->src[1]; + const struct ggml_tensor * c = dst->src[2]; + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } - struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params; + struct ggml_map_custom3_op_params p; + memcpy(&p, dst->op_params, sizeof(p)); - p->fun(dst, a, b, c, params->ith, params->nth, p->userdata); + p.fun(dst, a, b, c, params->ith, params->nth, p.userdata); } // ggml_compute_forward_cross_entropy_loss static void ggml_compute_forward_cross_entropy_loss_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(ggml_is_contiguous(src1)); GGML_ASSERT(ggml_is_scalar(dst)); @@ -15094,14 +15470,14 @@ static void ggml_compute_forward_cross_entropy_loss_f32( GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc)); - if (params->type == GGML_TASK_INIT) { + if (params->type == GGML_TASK_TYPE_INIT) { if (ith == 0) { memset(sums, 0, sizeof(float) * (nth + nth * nc)); } return; } - if (params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_FINALIZE) { if (ith == 0) { float * dp = (float *) dst->data; ggml_vec_sum_f32(nth, dp, sums); @@ -15181,13 +15557,14 @@ static void ggml_compute_forward_cross_entropy_loss_f32( static void ggml_compute_forward_cross_entropy_loss( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst); + ggml_compute_forward_cross_entropy_loss_f32(params, dst); } break; default: { @@ -15200,10 +15577,12 @@ static void ggml_compute_forward_cross_entropy_loss( static void ggml_compute_forward_cross_entropy_loss_back_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, - const struct ggml_tensor * opt0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + const struct ggml_tensor * opt0 = dst->src[2]; + GGML_ASSERT(ggml_is_contiguous(dst)); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(ggml_is_contiguous(src1)); @@ -15213,7 +15592,7 @@ static void ggml_compute_forward_cross_entropy_loss_back_f32( const int64_t ith = params->ith; const int64_t nth = params->nth; - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return; } @@ -15290,14 +15669,14 @@ static void ggml_compute_forward_cross_entropy_loss_back_f32( static void ggml_compute_forward_cross_entropy_loss_back( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, - const struct ggml_tensor * opt0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst); + ggml_compute_forward_cross_entropy_loss_back_f32(params, dst); } break; default: { @@ -15320,8 +15699,8 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm if (skip_cpu) { return; } - GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU); - GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU); + GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU); + GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU); #elif defined(GGML_USE_VULKAN) const bool skip_cpu = ggml_vk_compute_forward_cpu_assist(params, tensor); #ifdef GGML_VULKAN_CHECK_RESULTS @@ -15332,8 +15711,8 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm if (skip_cpu) { return; } - GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU); - GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU); + GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU); + GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU); #endif // GGML_USE_CUBLAS #ifdef GGML_USE_SYCL @@ -15345,222 +15724,222 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm switch (tensor->op) { case GGML_OP_DUP: { - ggml_compute_forward_dup(params, tensor->src[0], tensor); + ggml_compute_forward_dup(params, tensor); } break; case GGML_OP_ADD: { - ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_add(params, tensor); } break; case GGML_OP_ADD1: { - ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_add1(params, tensor); } break; case GGML_OP_ACC: { - ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_acc(params, tensor); } break; case GGML_OP_SUB: { - ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_sub(params, tensor); } break; case GGML_OP_MUL: { - ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_mul(params, tensor); } break; case GGML_OP_DIV: { - ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_div(params, tensor); } break; case GGML_OP_SQR: { - ggml_compute_forward_sqr(params, tensor->src[0], tensor); + ggml_compute_forward_sqr(params, tensor); } break; case GGML_OP_SQRT: { - ggml_compute_forward_sqrt(params, tensor->src[0], tensor); + ggml_compute_forward_sqrt(params, tensor); } break; case GGML_OP_LOG: { - ggml_compute_forward_log(params, tensor->src[0], tensor); + ggml_compute_forward_log(params, tensor); } break; case GGML_OP_SUM: { - ggml_compute_forward_sum(params, tensor->src[0], tensor); + ggml_compute_forward_sum(params, tensor); } break; case GGML_OP_SUM_ROWS: { - ggml_compute_forward_sum_rows(params, tensor->src[0], tensor); + ggml_compute_forward_sum_rows(params, tensor); } break; case GGML_OP_MEAN: { - ggml_compute_forward_mean(params, tensor->src[0], tensor); + ggml_compute_forward_mean(params, tensor); } break; case GGML_OP_ARGMAX: { - ggml_compute_forward_argmax(params, tensor->src[0], tensor); + ggml_compute_forward_argmax(params, tensor); } break; case GGML_OP_REPEAT: { - ggml_compute_forward_repeat(params, tensor->src[0], tensor); + ggml_compute_forward_repeat(params, tensor); } break; case GGML_OP_REPEAT_BACK: { - ggml_compute_forward_repeat_back(params, tensor->src[0], tensor); + ggml_compute_forward_repeat_back(params, tensor); } break; case GGML_OP_CONCAT: { - ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_concat(params, tensor); } break; case GGML_OP_SILU_BACK: { - ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_silu_back(params, tensor); } break; case GGML_OP_NORM: { - ggml_compute_forward_norm(params, tensor->src[0], tensor); + ggml_compute_forward_norm(params, tensor); } break; case GGML_OP_RMS_NORM: { - ggml_compute_forward_rms_norm(params, tensor->src[0], tensor); + ggml_compute_forward_rms_norm(params, tensor); } break; case GGML_OP_RMS_NORM_BACK: { - ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_rms_norm_back(params, tensor); } break; case GGML_OP_GROUP_NORM: { - ggml_compute_forward_group_norm(params, tensor->src[0], tensor); + ggml_compute_forward_group_norm(params, tensor); } break; case GGML_OP_MUL_MAT: { - ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_mul_mat(params, tensor); } break; case GGML_OP_MUL_MAT_ID: { - ggml_compute_forward_mul_mat_id(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_mul_mat_id(params, tensor); } break; case GGML_OP_OUT_PROD: { - ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_out_prod(params, tensor); } break; case GGML_OP_SCALE: { - ggml_compute_forward_scale(params, tensor->src[0], tensor); + ggml_compute_forward_scale(params, tensor); } break; case GGML_OP_SET: { - ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_set(params, tensor); } break; case GGML_OP_CPY: { - ggml_compute_forward_cpy(params, tensor->src[0], tensor); + ggml_compute_forward_cpy(params, tensor); } break; case GGML_OP_CONT: { - ggml_compute_forward_cont(params, tensor->src[0], tensor); + ggml_compute_forward_cont(params, tensor); } break; case GGML_OP_RESHAPE: { - ggml_compute_forward_reshape(params, tensor->src[0], tensor); + ggml_compute_forward_reshape(params, tensor); } break; case GGML_OP_VIEW: { - ggml_compute_forward_view(params, tensor->src[0]); + ggml_compute_forward_view(params, tensor); } break; case GGML_OP_PERMUTE: { - ggml_compute_forward_permute(params, tensor->src[0]); + ggml_compute_forward_permute(params, tensor); } break; case GGML_OP_TRANSPOSE: { - ggml_compute_forward_transpose(params, tensor->src[0]); + ggml_compute_forward_transpose(params, tensor); } break; case GGML_OP_GET_ROWS: { - ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_get_rows(params, tensor); } break; case GGML_OP_GET_ROWS_BACK: { - ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_get_rows_back(params, tensor); } break; case GGML_OP_DIAG: { - ggml_compute_forward_diag(params, tensor->src[0], tensor); + ggml_compute_forward_diag(params, tensor); } break; case GGML_OP_DIAG_MASK_INF: { - ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor); + ggml_compute_forward_diag_mask_inf(params, tensor); } break; case GGML_OP_DIAG_MASK_ZERO: { - ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor); + ggml_compute_forward_diag_mask_zero(params, tensor); } break; case GGML_OP_SOFT_MAX: { - ggml_compute_forward_soft_max(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor); + ggml_compute_forward_soft_max(params, tensor); } break; case GGML_OP_SOFT_MAX_BACK: { - ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_soft_max_back(params, tensor); } break; case GGML_OP_ROPE: { - ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_rope(params, tensor); } break; case GGML_OP_ROPE_BACK: { - ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_rope_back(params, tensor); } break; case GGML_OP_ALIBI: { - ggml_compute_forward_alibi(params, tensor->src[0], tensor); + ggml_compute_forward_alibi(params, tensor); } break; case GGML_OP_CLAMP: { - ggml_compute_forward_clamp(params, tensor->src[0], tensor); + ggml_compute_forward_clamp(params, tensor); } break; case GGML_OP_CONV_TRANSPOSE_1D: { - ggml_compute_forward_conv_transpose_1d(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_conv_transpose_1d(params, tensor); } break; case GGML_OP_IM2COL: { - ggml_compute_forward_im2col(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_im2col(params, tensor); } break; case GGML_OP_CONV_TRANSPOSE_2D: { - ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_conv_transpose_2d(params, tensor); } break; case GGML_OP_POOL_1D: { - ggml_compute_forward_pool_1d(params, tensor->src[0], tensor); + ggml_compute_forward_pool_1d(params, tensor); } break; case GGML_OP_POOL_2D: { - ggml_compute_forward_pool_2d(params, tensor->src[0], tensor); + ggml_compute_forward_pool_2d(params, tensor); } break; case GGML_OP_UPSCALE: { - ggml_compute_forward_upscale(params, tensor->src[0], tensor); + ggml_compute_forward_upscale(params, tensor); } break; case GGML_OP_PAD: { - ggml_compute_forward_pad(params, tensor->src[0], tensor); + ggml_compute_forward_pad(params, tensor); } break; case GGML_OP_ARGSORT: { - ggml_compute_forward_argsort(params, tensor->src[0], tensor); + ggml_compute_forward_argsort(params, tensor); } break; case GGML_OP_LEAKY_RELU: { - ggml_compute_forward_leaky_relu(params, tensor->src[0], tensor); + ggml_compute_forward_leaky_relu(params, tensor); } break; case GGML_OP_FLASH_ATTN: { const int32_t t = ggml_get_op_params_i32(tensor, 0); GGML_ASSERT(t == 0 || t == 1); const bool masked = t != 0; - ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor); + ggml_compute_forward_flash_attn(params, masked, tensor); } break; case GGML_OP_FLASH_ATTN_EXT: { @@ -15568,93 +15947,93 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm } break; case GGML_OP_FLASH_FF: { - ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor); + ggml_compute_forward_flash_ff(params, tensor); } break; case GGML_OP_FLASH_ATTN_BACK: { int32_t t = ggml_get_op_params_i32(tensor, 0); GGML_ASSERT(t == 0 || t == 1); bool masked = t != 0; - ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor); + ggml_compute_forward_flash_attn_back(params, masked, tensor); } break; case GGML_OP_WIN_PART: { - ggml_compute_forward_win_part(params, tensor->src[0], tensor); + ggml_compute_forward_win_part(params, tensor); } break; case GGML_OP_WIN_UNPART: { - ggml_compute_forward_win_unpart(params, tensor->src[0], tensor); + ggml_compute_forward_win_unpart(params, tensor); } break; case GGML_OP_UNARY: { - ggml_compute_forward_unary(params, tensor->src[0], tensor); + ggml_compute_forward_unary(params, tensor); } break; case GGML_OP_GET_REL_POS: { - ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor); + ggml_compute_forward_get_rel_pos(params, tensor); } break; case GGML_OP_ADD_REL_POS: { - ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor); + ggml_compute_forward_add_rel_pos(params, tensor); } break; case GGML_OP_MAP_UNARY: { ggml_unary_op_f32_t fun; memcpy(&fun, tensor->op_params, sizeof(fun)); - ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun); + ggml_compute_forward_map_unary(params, tensor, fun); } break; case GGML_OP_MAP_BINARY: { ggml_binary_op_f32_t fun; memcpy(&fun, tensor->op_params, sizeof(fun)); - ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun); + ggml_compute_forward_map_binary(params, tensor, fun); } break; case GGML_OP_MAP_CUSTOM1_F32: { ggml_custom1_op_f32_t fun; memcpy(&fun, tensor->op_params, sizeof(fun)); - ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun); + ggml_compute_forward_map_custom1_f32(params, tensor, fun); } break; case GGML_OP_MAP_CUSTOM2_F32: { ggml_custom2_op_f32_t fun; memcpy(&fun, tensor->op_params, sizeof(fun)); - ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun); + ggml_compute_forward_map_custom2_f32(params, tensor, fun); } break; case GGML_OP_MAP_CUSTOM3_F32: { ggml_custom3_op_f32_t fun; memcpy(&fun, tensor->op_params, sizeof(fun)); - ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun); + ggml_compute_forward_map_custom3_f32(params, tensor, fun); } break; case GGML_OP_MAP_CUSTOM1: { - ggml_compute_forward_map_custom1(params, tensor->src[0], tensor); + ggml_compute_forward_map_custom1(params, tensor); } break; case GGML_OP_MAP_CUSTOM2: { - ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_map_custom2(params, tensor); } break; case GGML_OP_MAP_CUSTOM3: { - ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor); + ggml_compute_forward_map_custom3(params, tensor); } break; case GGML_OP_CROSS_ENTROPY_LOSS: { - ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_cross_entropy_loss(params, tensor); } break; case GGML_OP_CROSS_ENTROPY_LOSS_BACK: { - ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor); + ggml_compute_forward_cross_entropy_loss_back(params, tensor); } break; case GGML_OP_NONE: @@ -16884,7 +17263,7 @@ size_t ggml_graph_overhead(void) { struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) { const size_t obj_size = ggml_graph_nbytes(size, grads); - struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, obj_size); + struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size); struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs); struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1); @@ -17335,29 +17714,32 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) { } break; case GGML_OP_MAP_CUSTOM1: { - struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params; - if (p->n_tasks == GGML_N_TASKS_MAX) { + struct ggml_map_custom1_op_params p; + memcpy(&p, node->op_params, sizeof(p)); + if (p.n_tasks == GGML_N_TASKS_MAX) { n_tasks = n_threads; } else { - n_tasks = MIN(p->n_tasks, n_threads); + n_tasks = MIN(p.n_tasks, n_threads); } } break; case GGML_OP_MAP_CUSTOM2: { - struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params; - if (p->n_tasks == GGML_N_TASKS_MAX) { + struct ggml_map_custom2_op_params p; + memcpy(&p, node->op_params, sizeof(p)); + if (p.n_tasks == GGML_N_TASKS_MAX) { n_tasks = n_threads; } else { - n_tasks = MIN(p->n_tasks, n_threads); + n_tasks = MIN(p.n_tasks, n_threads); } } break; case GGML_OP_MAP_CUSTOM3: { - struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params; - if (p->n_tasks == GGML_N_TASKS_MAX) { + struct ggml_map_custom3_op_params p; + memcpy(&p, node->op_params, sizeof(p)); + if (p.n_tasks == GGML_N_TASKS_MAX) { n_tasks = n_threads; } else { - n_tasks = MIN(p->n_tasks, n_threads); + n_tasks = MIN(p.n_tasks, n_threads); } } break; case GGML_OP_CROSS_ENTROPY_LOSS: @@ -17432,7 +17814,7 @@ static thread_ret_t ggml_graph_compute_thread(void * data) { set_numa_thread_affinity(state->ith); int node_n = -1; - int task_phase = GGML_TASK_FINALIZE; + int task_phase = GGML_TASK_TYPE_FINALIZE; while (true) { if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) { @@ -17444,7 +17826,7 @@ static thread_ret_t ggml_graph_compute_thread(void * data) { // all other threads are finished and spinning // do finalize and init here so we don't have synchronize again struct ggml_compute_params params = { - /*.type =*/ GGML_TASK_FINALIZE, + /*.type =*/ GGML_TASK_TYPE_FINALIZE, /*.ith =*/ 0, /*.nth =*/ 0, /*.wsize =*/ cplan->work_size, @@ -17475,17 +17857,17 @@ static thread_ret_t ggml_graph_compute_thread(void * data) { if (n_tasks == 1) { /* INIT */ if (GGML_OP_HAS_INIT[node->op]) { - params.type = GGML_TASK_INIT; + params.type = GGML_TASK_TYPE_INIT; ggml_compute_forward(¶ms, node); } // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1, // they do something more efficient than spinning (?) - params.type = GGML_TASK_COMPUTE; + params.type = GGML_TASK_TYPE_COMPUTE; ggml_compute_forward(¶ms, node); if (GGML_OP_HAS_FINALIZE[node->op]) { - params.type = GGML_TASK_FINALIZE; + params.type = GGML_TASK_TYPE_FINALIZE; ggml_compute_forward(¶ms, node); } @@ -17499,7 +17881,7 @@ static thread_ret_t ggml_graph_compute_thread(void * data) { } } - task_phase = GGML_TASK_INIT; + task_phase = GGML_TASK_TYPE_INIT; atomic_store(&state->shared->n_active, n_threads); atomic_store(&state->shared->node_n, node_n); atomic_store(&state->shared->node_task, task_phase); @@ -17516,7 +17898,7 @@ static thread_ret_t ggml_graph_compute_thread(void * data) { const int n_tasks = ggml_get_n_tasks(node, n_threads); struct ggml_compute_params params = { - /*.type =*/ GGML_TASK_INIT, + /*.type =*/ GGML_TASK_TYPE_INIT, /*.ith =*/ state->ith, /*.nth =*/ n_tasks, /*.wsize =*/ cplan->work_size, @@ -17530,7 +17912,7 @@ static thread_ret_t ggml_graph_compute_thread(void * data) { } if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) { - task_phase = GGML_TASK_COMPUTE; + task_phase = GGML_TASK_TYPE_COMPUTE; atomic_store(&state->shared->n_active, n_threads); atomic_store(&state->shared->node_task, task_phase); } @@ -17545,12 +17927,12 @@ static thread_ret_t ggml_graph_compute_thread(void * data) { } if (state->ith < n_tasks) { - params.type = GGML_TASK_COMPUTE; + params.type = GGML_TASK_TYPE_COMPUTE; ggml_compute_forward(¶ms, node); } if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) { - task_phase = GGML_TASK_FINALIZE; + task_phase = GGML_TASK_TYPE_FINALIZE; atomic_store(&state->shared->n_active, n_threads); atomic_store(&state->shared->node_task, task_phase); } @@ -17792,7 +18174,7 @@ int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) { /*.n_threads =*/ n_threads, /*.n_active =*/ n_threads, /*.node_n =*/ -1, - /*.node_task =*/ GGML_TASK_FINALIZE, + /*.node_task =*/ GGML_TASK_TYPE_FINALIZE, /*.abort_callback =*/ NULL, /*.abort_callback_data =*/ NULL, }; @@ -17860,7 +18242,7 @@ int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) { void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) { struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads); - struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size); + struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size); cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs; @@ -18668,7 +19050,7 @@ static enum ggml_opt_result ggml_opt_adam( float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads); - struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size); + struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size); cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs; bool cancel = false; @@ -18680,7 +19062,7 @@ static enum ggml_opt_result ggml_opt_adam( if (callback) { callback(callback_data, accum_step, &sched, &cancel); if (cancel) { - return GGML_OPT_CANCEL; + return GGML_OPT_RESULT_CANCEL; } } // ggml_graph_reset (gf); @@ -18771,7 +19153,7 @@ static enum ggml_opt_result ggml_opt_adam( if (callback) { callback(callback_data, accum_step, &sched, &cancel); if (cancel) { - return GGML_OPT_CANCEL;; + return GGML_OPT_RESULT_CANCEL;; } } // ggml_graph_reset (gf); @@ -18788,7 +19170,7 @@ static enum ggml_opt_result ggml_opt_adam( if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) { GGML_PRINT_DEBUG("converged\n"); - return GGML_OPT_OK; + return GGML_OPT_RESULT_OK; } // delta-based convergence test @@ -18798,7 +19180,7 @@ static enum ggml_opt_result ggml_opt_adam( const float rate = (pf[(iter0 + t)%params.past] - fx)/fx; if (fabsf(rate) < params.delta) { - return GGML_OPT_OK; + return GGML_OPT_RESULT_OK; } } @@ -18814,7 +19196,7 @@ static enum ggml_opt_result ggml_opt_adam( ++n_no_improvement[0]; if (n_no_improvement[0] >= params.max_no_improvement) { - return GGML_OPT_OK; + return GGML_OPT_RESULT_OK; } } } @@ -18832,7 +19214,7 @@ static enum ggml_opt_result ggml_opt_adam( } } - return GGML_OPT_DID_NOT_CONVERGE; + return GGML_OPT_RESULT_DID_NOT_CONVERGE; } // @@ -18913,7 +19295,7 @@ static enum ggml_opt_result linesearch_backtracking( float sched = 0; callback(callback_data, accum_step, &sched, cancel); if (*cancel) { - return GGML_OPT_CANCEL; + return GGML_OPT_RESULT_CANCEL; } } // ggml_graph_reset (gf); @@ -18986,7 +19368,7 @@ static enum ggml_opt_result ggml_opt_lbfgs( if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE || params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) { if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) { - return GGML_OPT_INVALID_WOLFE; + return GGML_OPT_RESULT_INVALID_WOLFE; } } @@ -19015,7 +19397,7 @@ static enum ggml_opt_result ggml_opt_lbfgs( } struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads); - struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size); + struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size); cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs; float * x = opt->lbfgs.x->data; // current parameters @@ -19056,7 +19438,7 @@ static enum ggml_opt_result ggml_opt_lbfgs( float sched = 0; callback(callback_data, accum_step, &sched, &cancel); if (cancel) { - return GGML_OPT_CANCEL; + return GGML_OPT_RESULT_CANCEL; } } // ggml_graph_reset (gf); @@ -19084,7 +19466,7 @@ static enum ggml_opt_result ggml_opt_lbfgs( // already optimized if (gnorm/xnorm <= params.lbfgs.eps) { - return GGML_OPT_OK; + return GGML_OPT_RESULT_OK; } if (opt->just_initialized) { @@ -19129,7 +19511,7 @@ static enum ggml_opt_result ggml_opt_lbfgs( // way to test and don't want to break something with so many changes lined up ls = linesearch_backtracking(¶ms, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data); if (cancel) { - return GGML_OPT_CANCEL; + return GGML_OPT_RESULT_CANCEL; } if (ls < 0) { @@ -19152,7 +19534,7 @@ static enum ggml_opt_result ggml_opt_lbfgs( } if (gnorm/xnorm <= params.lbfgs.eps) { // converged - return GGML_OPT_OK; + return GGML_OPT_RESULT_OK; } // delta-based convergence test @@ -19162,7 +19544,7 @@ static enum ggml_opt_result ggml_opt_lbfgs( const float rate = (pf[k[0]%params.past] - fx)/fx; if (fabsf(rate) < params.delta) { - return GGML_OPT_OK; + return GGML_OPT_RESULT_OK; } } @@ -19178,14 +19560,14 @@ static enum ggml_opt_result ggml_opt_lbfgs( n_no_improvement[0]++; if (n_no_improvement[0] >= params.max_no_improvement) { - return GGML_OPT_OK; + return GGML_OPT_RESULT_OK; } } } if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) { // reached the maximum number of iterations - return GGML_OPT_DID_NOT_CONVERGE; + return GGML_OPT_RESULT_DID_NOT_CONVERGE; } // update vectors s and y: @@ -19241,17 +19623,17 @@ static enum ggml_opt_result ggml_opt_lbfgs( GGML_ASSERT(false && "lbfgs failed"); - return GGML_OPT_DID_NOT_CONVERGE; + return GGML_OPT_RESULT_DID_NOT_CONVERGE; } struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) { struct ggml_opt_params result; switch (type) { - case GGML_OPT_ADAM: + case GGML_OPT_TYPE_ADAM: { result = (struct ggml_opt_params) { - .type = GGML_OPT_ADAM, + .type = GGML_OPT_TYPE_ADAM, .graph_size = GGML_DEFAULT_GRAPH_SIZE, .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ? .past = 0, @@ -19279,10 +19661,10 @@ struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) { }, }; } break; - case GGML_OPT_LBFGS: + case GGML_OPT_TYPE_LBFGS: { result = (struct ggml_opt_params) { - .type = GGML_OPT_LBFGS, + .type = GGML_OPT_TYPE_LBFGS, .graph_size = GGML_DEFAULT_GRAPH_SIZE, .n_threads = 1, .past = 0, @@ -19327,12 +19709,12 @@ GGML_API void ggml_opt_init( opt->just_initialized = true; if (opt->ctx == NULL) { struct ggml_init_params ctx_opt_params; - if (opt->params.type == GGML_OPT_ADAM) { + if (opt->params.type == GGML_OPT_TYPE_ADAM) { ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3; if (opt->params.past > 0) { ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past; } - } else if (opt->params.type == GGML_OPT_LBFGS) { + } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) { ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2); if (opt->params.past > 0) { ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past; @@ -19344,7 +19726,7 @@ GGML_API void ggml_opt_init( opt->ctx = ggml_init(ctx_opt_params); } switch (opt->params.type) { - case GGML_OPT_ADAM: + case GGML_OPT_TYPE_ADAM: { opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx); opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx); @@ -19358,7 +19740,7 @@ GGML_API void ggml_opt_init( ggml_set_zero(opt->adam.pf); } } break; - case GGML_OPT_LBFGS: + case GGML_OPT_TYPE_LBFGS: { opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx); opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx); @@ -19402,13 +19784,13 @@ enum ggml_opt_result ggml_opt( ctx = ggml_init(params_ctx); if (ctx == NULL) { - return GGML_OPT_NO_CONTEXT; + return GGML_OPT_RESULT_NO_CONTEXT; } free_ctx = true; } - enum ggml_opt_result result = GGML_OPT_OK; + enum ggml_opt_result result = GGML_OPT_RESULT_OK; struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context)); @@ -19447,14 +19829,14 @@ enum ggml_opt_result ggml_opt_resume_g( void * callback_data) { // build forward + backward compute graphs - enum ggml_opt_result result = GGML_OPT_OK; + enum ggml_opt_result result = GGML_OPT_RESULT_OK; switch (opt->params.type) { - case GGML_OPT_ADAM: + case GGML_OPT_TYPE_ADAM: { result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data); } break; - case GGML_OPT_LBFGS: + case GGML_OPT_TYPE_LBFGS: { result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data); } break; @@ -19491,8 +19873,10 @@ void ggml_quantize_init(enum ggml_type type) { switch (type) { case GGML_TYPE_IQ2_XXS: case GGML_TYPE_IQ2_XS: + case GGML_TYPE_IQ2_S: case GGML_TYPE_IQ1_S: iq2xs_init_impl(type); break; case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break; + case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break; default: // nothing break; } @@ -19767,6 +20151,24 @@ size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, i result = quantize_iq3_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix); GGML_ASSERT(result == row_size * nrows); } break; + case GGML_TYPE_IQ3_S: + { + GGML_ASSERT(start % QK_K == 0); + GGML_ASSERT(start % n_per_row == 0); + size_t start_row = start / n_per_row; + size_t row_size = ggml_row_size(type, n_per_row); + result = quantize_iq3_s(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix); + GGML_ASSERT(result == row_size * nrows); + } break; + case GGML_TYPE_IQ2_S: + { + GGML_ASSERT(start % QK_K == 0); + GGML_ASSERT(start % n_per_row == 0); + size_t start_row = start / n_per_row; + size_t row_size = ggml_row_size(type, n_per_row); + result = quantize_iq2_s(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix); + GGML_ASSERT(result == row_size * nrows); + } break; case GGML_TYPE_IQ1_S: { GGML_ASSERT(start % QK_K == 0); @@ -19776,6 +20178,29 @@ size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, i result = quantize_iq1_s(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix); GGML_ASSERT(result == row_size * nrows); } break; + case GGML_TYPE_IQ4_NL: +#if QK_K == 64 + case GGML_TYPE_IQ4_XS: +#endif + { + GGML_ASSERT(start % QK4_NL == 0); + GGML_ASSERT(start % n_per_row == 0); + size_t start_row = start / n_per_row; + size_t row_size = ggml_row_size(type, n_per_row); + result = quantize_iq4_nl(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix); + GGML_ASSERT(result == row_size * nrows); + } break; +#if QK_K != 64 + case GGML_TYPE_IQ4_XS: + { + GGML_ASSERT(start % QK_K == 0); + GGML_ASSERT(start % n_per_row == 0); + size_t start_row = start / n_per_row; + size_t row_size = ggml_row_size(type, n_per_row); + result = quantize_iq4_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix); + GGML_ASSERT(result == row_size * nrows); + } break; +#endif case GGML_TYPE_F16: { size_t elemsize = sizeof(ggml_fp16_t); diff --git a/ggml.h b/ggml.h index 0f9b63a1c..53d097dc6 100644 --- a/ggml.h +++ b/ggml.h @@ -315,13 +315,7 @@ extern "C" { #endif -#if defined(__ARM_NEON) && defined(__CUDACC__) - typedef half ggml_fp16_t; -#elif defined(__ARM_NEON) && !defined(_MSC_VER) - typedef __fp16 ggml_fp16_t; -#else typedef uint16_t ggml_fp16_t; -#endif // convert FP16 <-> FP32 GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x); @@ -355,6 +349,10 @@ extern "C" { GGML_TYPE_IQ2_XS = 17, GGML_TYPE_IQ3_XXS = 18, GGML_TYPE_IQ1_S = 19, + GGML_TYPE_IQ4_NL = 20, + GGML_TYPE_IQ3_S = 21, + GGML_TYPE_IQ2_S = 22, + GGML_TYPE_IQ4_XS = 23, GGML_TYPE_I8, GGML_TYPE_I16, GGML_TYPE_I32, @@ -368,9 +366,9 @@ extern "C" { }; enum ggml_backend_type { - GGML_BACKEND_CPU = 0, - GGML_BACKEND_GPU = 10, - GGML_BACKEND_GPU_SPLIT = 20, + GGML_BACKEND_TYPE_CPU = 0, + GGML_BACKEND_TYPE_GPU = 10, + GGML_BACKEND_TYPE_GPU_SPLIT = 20, }; // model file types @@ -393,6 +391,10 @@ extern "C" { GGML_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors GGML_FTYPE_MOSTLY_IQ3_XXS = 17, // except 1d tensors GGML_FTYPE_MOSTLY_IQ1_S = 18, // except 1d tensors + GGML_FTYPE_MOSTLY_IQ4_NL = 19, // except 1d tensors + GGML_FTYPE_MOSTLY_IQ3_S = 20, // except 1d tensors + GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors + GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors }; // available tensor operations: @@ -501,9 +503,9 @@ extern "C" { }; enum ggml_object_type { - GGML_OBJECT_TENSOR, - GGML_OBJECT_GRAPH, - GGML_OBJECT_WORK_BUFFER + GGML_OBJECT_TYPE_TENSOR, + GGML_OBJECT_TYPE_GRAPH, + GGML_OBJECT_TYPE_WORK_BUFFER }; enum ggml_log_level { @@ -645,9 +647,9 @@ extern "C" { // NOTE: the INIT or FINALIZE pass is not scheduled unless explicitly enabled. // This behavior was changed since https://github.com/ggerganov/llama.cpp/pull/1995. enum ggml_task_type { - GGML_TASK_INIT = 0, - GGML_TASK_COMPUTE, - GGML_TASK_FINALIZE, + GGML_TASK_TYPE_INIT = 0, + GGML_TASK_TYPE_COMPUTE, + GGML_TASK_TYPE_FINALIZE, }; struct ggml_compute_params { @@ -671,6 +673,16 @@ extern "C" { GGML_NUMA_STRATEGY_COUNT }; + // + // GUID + // + + // GUID types + typedef uint8_t ggml_guid[16]; + typedef ggml_guid * ggml_guid_t; + + GGML_API bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b); + // misc GGML_API void ggml_time_init(void); // call this once at the beginning of the program @@ -1652,8 +1664,8 @@ extern "C" { // sort rows enum ggml_sort_order { - GGML_SORT_ASC, - GGML_SORT_DESC, + GGML_SORT_ORDER_ASC, + GGML_SORT_ORDER_DESC, }; GGML_API struct ggml_tensor * ggml_argsort( @@ -1965,8 +1977,8 @@ extern "C" { // optimization methods enum ggml_opt_type { - GGML_OPT_ADAM, - GGML_OPT_LBFGS, + GGML_OPT_TYPE_ADAM, + GGML_OPT_TYPE_LBFGS, }; // linesearch methods @@ -1980,12 +1992,12 @@ extern "C" { // optimization return values enum ggml_opt_result { - GGML_OPT_OK = 0, - GGML_OPT_DID_NOT_CONVERGE, - GGML_OPT_NO_CONTEXT, - GGML_OPT_INVALID_WOLFE, - GGML_OPT_FAIL, - GGML_OPT_CANCEL, + GGML_OPT_RESULT_OK = 0, + GGML_OPT_RESULT_DID_NOT_CONVERGE, + GGML_OPT_RESULT_NO_CONTEXT, + GGML_OPT_RESULT_INVALID_WOLFE, + GGML_OPT_RESULT_FAIL, + GGML_OPT_RESULT_CANCEL, GGML_LINESEARCH_FAIL = -128, GGML_LINESEARCH_MINIMUM_STEP, diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index 114a9a974..a62139811 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -111,6 +111,8 @@ class MODEL_ARCH(IntEnum): ORION = auto() INTERNLM2 = auto() MINICPM = auto() + GEMMA = auto() + STARCODER2 = auto() class MODEL_TENSOR(IntEnum): @@ -167,6 +169,8 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH.ORION: "orion", MODEL_ARCH.INTERNLM2: "internlm2", MODEL_ARCH.MINICPM: "minicpm", + MODEL_ARCH.GEMMA: "gemma", + MODEL_ARCH.STARCODER2: "starcoder2", } TENSOR_NAMES: dict[MODEL_TENSOR, str] = { @@ -511,6 +515,34 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.FFN_DOWN_EXP, MODEL_TENSOR.FFN_UP_EXP, ], + MODEL_ARCH.GEMMA: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_Q, + MODEL_TENSOR.ATTN_K, + MODEL_TENSOR.ATTN_V, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.FFN_GATE, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + MODEL_TENSOR.FFN_NORM, + ], + MODEL_ARCH.STARCODER2: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.ROPE_FREQS, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_Q, + MODEL_TENSOR.ATTN_K, + MODEL_TENSOR.ATTN_V, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.ATTN_ROT_EMBD, + MODEL_TENSOR.FFN_NORM, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + ], # TODO } @@ -539,6 +571,10 @@ MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.ROPE_FREQS, MODEL_TENSOR.ATTN_ROT_EMBD, ], + MODEL_ARCH.STARCODER2: [ + MODEL_TENSOR.ROPE_FREQS, + MODEL_TENSOR.ATTN_ROT_EMBD, + ], } # @@ -568,20 +604,28 @@ class PoolingType(IntEnum): class GGMLQuantizationType(IntEnum): - F32 = 0 - F16 = 1 - Q4_0 = 2 - Q4_1 = 3 - Q5_0 = 6 - Q5_1 = 7 - Q8_0 = 8 - Q8_1 = 9 - Q2_K = 10 - Q3_K = 11 - Q4_K = 12 - Q5_K = 13 - Q6_K = 14 - Q8_K = 15 + F32 = 0 + F16 = 1 + Q4_0 = 2 + Q4_1 = 3 + Q5_0 = 6 + Q5_1 = 7 + Q8_0 = 8 + Q8_1 = 9 + Q2_K = 10 + Q3_K = 11 + Q4_K = 12 + Q5_K = 13 + Q6_K = 14 + Q8_K = 15 + IQ2_XXS = 16 + IQ2_XS = 17 + IQ3_XXS = 18 + IQ1_S = 19 + IQ4_NL = 20 + IQ3_S = 21 + IQ2_S = 22 + IQ4_XS = 23 class GGUFEndian(IntEnum): @@ -626,20 +670,28 @@ class GGUFValueType(IntEnum): QK_K = 256 # Items here are (block size, type size) GGML_QUANT_SIZES = { - GGMLQuantizationType.F32: (1, 4), - GGMLQuantizationType.F16: (1, 2), - GGMLQuantizationType.Q4_0: (32, 2 + 16), - GGMLQuantizationType.Q4_1: (32, 2 + 2 + 16), - GGMLQuantizationType.Q5_0: (32, 2 + 4 + 16), - GGMLQuantizationType.Q5_1: (32, 2 + 2 + 4 + 16), - GGMLQuantizationType.Q8_0: (32, 2 + 32), - GGMLQuantizationType.Q8_1: (32, 4 + 4 + 32), - GGMLQuantizationType.Q2_K: (256, 2 + 2 + QK_K // 16 + QK_K // 4), - GGMLQuantizationType.Q3_K: (256, 2 + QK_K // 4 + QK_K // 8 + 12), - GGMLQuantizationType.Q4_K: (256, 2 + 2 + QK_K // 2 + 12), - GGMLQuantizationType.Q5_K: (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12), - GGMLQuantizationType.Q6_K: (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16), - GGMLQuantizationType.Q8_K: (256, 4 + QK_K + QK_K // 8), + GGMLQuantizationType.F32: (1, 4), + GGMLQuantizationType.F16: (1, 2), + GGMLQuantizationType.Q4_0: (32, 2 + 16), + GGMLQuantizationType.Q4_1: (32, 2 + 2 + 16), + GGMLQuantizationType.Q5_0: (32, 2 + 4 + 16), + GGMLQuantizationType.Q5_1: (32, 2 + 2 + 4 + 16), + GGMLQuantizationType.Q8_0: (32, 2 + 32), + GGMLQuantizationType.Q8_1: (32, 4 + 4 + 32), + GGMLQuantizationType.Q2_K: (256, 2 + 2 + QK_K // 16 + QK_K // 4), + GGMLQuantizationType.Q3_K: (256, 2 + QK_K // 4 + QK_K // 8 + 12), + GGMLQuantizationType.Q4_K: (256, 2 + 2 + QK_K // 2 + 12), + GGMLQuantizationType.Q5_K: (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12), + GGMLQuantizationType.Q6_K: (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16), + GGMLQuantizationType.Q8_K: (256, 4 + QK_K + QK_K // 8), + GGMLQuantizationType.IQ2_XXS: (256, 2 + QK_K // 4), + GGMLQuantizationType.IQ2_XS: (256, 2 + QK_K // 4 + QK_K // 32), + GGMLQuantizationType.IQ3_XXS: (256, 2 + QK_K // 4 + QK_K // 8), + GGMLQuantizationType.IQ1_S: (256, 2 + QK_K // 8 + QK_K // 16), + GGMLQuantizationType.IQ4_NL: (32, 2 + 16), + GGMLQuantizationType.IQ3_S: (256, 2 + QK_K // 4 + QK_K // 8 + QK_K // 32 + 4), + GGMLQuantizationType.IQ2_S: (256, 2 + QK_K // 4 + QK_K // 16), + GGMLQuantizationType.IQ4_XS: (256, 2 + 2 + QK_K // 2 + QK_K // 64), } diff --git a/gguf-py/gguf/gguf_writer.py b/gguf-py/gguf/gguf_writer.py index e4681475c..801160832 100644 --- a/gguf-py/gguf/gguf_writer.py +++ b/gguf-py/gguf/gguf_writer.py @@ -362,7 +362,7 @@ class GGUFWriter: self.add_bool(Keys.Attention.CAUSAL.format(arch=self.arch), value) def add_pooling_type(self, value: PoolingType) -> None: - self.add_uint32(Keys.LLM.POOLING_TYPE.format(arch=self.arch), value) + self.add_uint32(Keys.LLM.POOLING_TYPE.format(arch=self.arch), value.value) def add_rope_dimension_count(self, count: int) -> None: self.add_uint32(Keys.Rope.DIMENSION_COUNT.format(arch=self.arch), count) diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py index 861003776..db2ec9704 100644 --- a/gguf-py/gguf/tensor_mapping.py +++ b/gguf-py/gguf/tensor_mapping.py @@ -210,6 +210,7 @@ class TensorNameMap: "model.layers.layers.{bid}.mlp.up_proj", # plamo "model.layers.{bid}.feed_forward.w3", # internlm2 "encoder.layers.{bid}.mlp.fc11", # nomic-bert + "model.layers.{bid}.mlp.c_fc", # starcoder2 ), MODEL_TENSOR.FFN_UP_EXP: ( @@ -256,6 +257,7 @@ class TensorNameMap: "model.layers.layers.{bid}.mlp.down_proj", # plamo "model.layers.{bid}.feed_forward.w2", # internlm2 "encoder.layers.{bid}.mlp.fc2", # nomic-bert + "model.layers.{bid}.mlp.c_proj", # starcoder2 ), MODEL_TENSOR.FFN_DOWN_EXP: ( diff --git a/llama.cpp b/llama.cpp index 5aa3a508d..1a099adcb 100644 --- a/llama.cpp +++ b/llama.cpp @@ -68,10 +68,12 @@ #include #include #include +#include #include #include #include #include +#include #include #include #include @@ -102,7 +104,7 @@ #define LLAMA_MAX_NODES 8192 #define LLAMA_MAX_EXPERTS 8 -//#define LLAMA_FLASH_ATTN +#define LLAMA_FLASH_ATTN // // logging @@ -210,10 +212,12 @@ enum llm_arch { LLM_ARCH_ORION, LLM_ARCH_INTERNLM2, LLM_ARCH_MINICPM, + LLM_ARCH_GEMMA, + LLM_ARCH_STARCODER2, LLM_ARCH_UNKNOWN, }; -static std::map LLM_ARCH_NAMES = { +static const std::map LLM_ARCH_NAMES = { { LLM_ARCH_LLAMA, "llama" }, { LLM_ARCH_FALCON, "falcon" }, { LLM_ARCH_GPT2, "gpt2" }, @@ -236,6 +240,9 @@ static std::map LLM_ARCH_NAMES = { { LLM_ARCH_ORION, "orion" }, { LLM_ARCH_INTERNLM2, "internlm2" }, { LLM_ARCH_MINICPM, "minicpm" }, + { LLM_ARCH_GEMMA, "gemma" }, + { LLM_ARCH_STARCODER2, "starcoder2" }, + { LLM_ARCH_UNKNOWN, "(unknown)" }, }; enum llm_kv { @@ -296,7 +303,7 @@ enum llm_kv { LLM_KV_TOKENIZER_RWKV, }; -static std::map LLM_KV_NAMES = { +static const std::map LLM_KV_NAMES = { { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" }, { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" }, { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" }, @@ -360,7 +367,7 @@ struct LLM_KV { llm_arch arch; std::string operator()(llm_kv kv) const { - return ::format(LLM_KV_NAMES[kv], LLM_ARCH_NAMES[arch]); + return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch)); } }; @@ -395,7 +402,7 @@ enum llm_tensor { LLM_TENSOR_LAYER_OUT_NORM, }; -static std::map> LLM_TENSOR_NAMES = { +static const std::map> LLM_TENSOR_NAMES = { { LLM_ARCH_LLAMA, { @@ -509,7 +516,6 @@ static std::map> LLM_TENSOR_NAMES = { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, - { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, @@ -762,6 +768,40 @@ static std::map> LLM_TENSOR_NAMES = { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" }, }, }, + { + LLM_ARCH_GEMMA, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, + { + LLM_ARCH_STARCODER2, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, { LLM_ARCH_UNKNOWN, { @@ -795,38 +835,38 @@ struct LLM_TN { llm_arch arch; std::string operator()(llm_tensor tensor) const { - if (LLM_TENSOR_NAMES[arch].find(tensor) == LLM_TENSOR_NAMES[arch].end()) { + if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) { return "__missing__"; } - return LLM_TENSOR_NAMES[arch].at(tensor); + return LLM_TENSOR_NAMES.at(arch).at(tensor); } std::string operator()(llm_tensor tensor, const std::string & suffix) const { - if (LLM_TENSOR_NAMES[arch].find(tensor) == LLM_TENSOR_NAMES[arch].end()) { + if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) { return "__missing__"; } - return LLM_TENSOR_NAMES[arch].at(tensor) + "." + suffix; + return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix; } std::string operator()(llm_tensor tensor, int bid) const { - if (LLM_TENSOR_NAMES[arch].find(tensor) == LLM_TENSOR_NAMES[arch].end()) { + if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) { return "__missing__"; } - return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid); + return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid); } std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const { - if (LLM_TENSOR_NAMES[arch].find(tensor) == LLM_TENSOR_NAMES[arch].end()) { + if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) { return "__missing__"; } - return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid) + "." + suffix; + return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix; } std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const { - if (LLM_TENSOR_NAMES[arch].find(tensor) == LLM_TENSOR_NAMES[arch].end()) { + if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) { return "__missing__"; } - return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid, xid) + "." + suffix; + return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix; } }; @@ -834,20 +874,20 @@ struct LLM_TN { // gguf helpers // -static std::map LLAMA_ROPE_SCALING_TYPES = { - { LLAMA_ROPE_SCALING_NONE, "none" }, - { LLAMA_ROPE_SCALING_LINEAR, "linear" }, - { LLAMA_ROPE_SCALING_YARN, "yarn" }, +static const std::map LLAMA_ROPE_SCALING_TYPES = { + { LLAMA_ROPE_SCALING_TYPE_NONE, "none" }, + { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" }, + { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" }, }; -static int32_t llama_rope_scaling_type_from_string(const std::string & name) { +static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) { for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) { if (kv.second == name) { - return kv.first; + return (llama_rope_scaling_type) kv.first; } } - return LLAMA_ROPE_SCALING_UNSPECIFIED; + return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED; } static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) { @@ -1392,7 +1432,9 @@ static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer buft = ggml_backend_cuda_host_buffer_type(); } #elif defined(GGML_USE_SYCL) - buft = ggml_backend_sycl_host_buffer_type(); + if (host_buffer) { + buft = ggml_backend_sycl_host_buffer_type(); + } #elif defined(GGML_USE_CPU_HBM) buft = ggml_backend_cpu_hbm_buffer_type(); #elif defined(GGML_USE_VULKAN) @@ -1446,6 +1488,12 @@ static ggml_backend_buffer_type_t llama_default_buffer_type_split(int fallback_g } #endif +#ifdef GGML_USE_SYCL + if (ggml_backend_sycl_get_device_count() > 1) { + buft = ggml_backend_sycl_split_buffer_type(tensor_split); + } +#endif + if (buft == nullptr) { buft = llama_default_buffer_type_offload(fallback_gpu); } @@ -1457,6 +1505,8 @@ static ggml_backend_buffer_type_t llama_default_buffer_type_split(int fallback_g static size_t llama_get_device_count() { #if defined(GGML_USE_CUBLAS) return ggml_backend_cuda_get_device_count(); +#elif defined(GGML_USE_SYCL) + return ggml_backend_sycl_get_device_count(); #elif defined(GGML_USE_VULKAN) return ggml_backend_vk_get_device_count(); #else @@ -1470,6 +1520,11 @@ static size_t llama_get_device_memory(int device) { size_t free; ggml_backend_cuda_get_device_memory(device, &total, &free); return free; +#elif defined(GGML_USE_SYCL) + size_t total; + size_t free; + ggml_backend_sycl_get_device_memory(device, &total, &free); + return free; #elif defined(GGML_USE_VULKAN) size_t total; size_t free; @@ -1535,8 +1590,9 @@ static const size_t MiB = 1024*kiB; static const size_t GiB = 1024*MiB; struct llama_hparams { - bool vocab_only; - bool rope_finetuned; + bool vocab_only; + bool rope_finetuned; + uint32_t n_vocab; uint32_t n_ctx_train; // context size the model was trained on uint32_t n_embd; @@ -1557,7 +1613,6 @@ struct llama_hparams { float rope_freq_base_train; float rope_freq_scale_train; uint32_t n_yarn_orig_ctx; - int32_t rope_scaling_type_train; float f_clamp_kqv = 0.0f; float f_max_alibi_bias = 0.0f; @@ -1565,7 +1620,9 @@ struct llama_hparams { bool causal_attn = true; bool need_kq_pos = false; - uint32_t pooling_type = LLAMA_POOLING_NONE; + enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE; + enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE; + enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE; bool operator!=(const llama_hparams & other) const { if (this->vocab_only != other.vocab_only) return true; @@ -1614,8 +1671,8 @@ struct llama_cparams { uint32_t n_threads; // number of threads to use for generation uint32_t n_threads_batch; // number of threads to use for batch processing - float rope_freq_base; - float rope_freq_scale; + float rope_freq_base; + float rope_freq_scale; uint32_t n_yarn_orig_ctx; // These hyperparameters are not exposed in GGUF, because all @@ -1624,10 +1681,10 @@ struct llama_cparams { float yarn_attn_factor; float yarn_beta_fast; float yarn_beta_slow; + float defrag_thold; - bool mul_mat_q; bool offload_kqv; - bool do_pooling; + enum llama_pooling_type pooling_type; ggml_backend_sched_eval_callback cb_eval; void * cb_eval_user_data; @@ -1692,11 +1749,20 @@ struct llama_kv_cell { bool has_seq_id(const llama_seq_id & id) const { return seq_id.find(id) != seq_id.end(); } + + bool is_empty() const { + return seq_id.empty(); + } + + bool is_same_seq(const llama_kv_cell & other) const { + return seq_id == other.seq_id; + } }; // ring-buffer of cached KV data struct llama_kv_cache { bool has_shift = false; + bool do_defrag = false; // Note: The value of head isn't only used to optimize searching // for a free KV slot. llama_decode_internal also uses it, so it @@ -1708,6 +1774,9 @@ struct llama_kv_cache { // computed before each graph build uint32_t n = 0; + ggml_type type_k = GGML_TYPE_F16; + ggml_type type_v = GGML_TYPE_F16; + std::vector cells; std::vector k_l; // per layer @@ -1919,6 +1988,9 @@ struct llama_context { std::vector buf_compute_meta; ggml_backend_sched_t sched = nullptr; + ggml_abort_callback abort_callback = nullptr; + void * abort_callback_data = nullptr; + // input tensors ggml_backend_buffer_t buf_input = nullptr; ggml_context * ctx_input = nullptr; @@ -1943,8 +2015,8 @@ struct llama_context { static bool llama_kv_cache_init( struct llama_kv_cache & cache, const llama_model & model, - ggml_type ktype, - ggml_type vtype, + ggml_type type_k, + ggml_type type_v, uint32_t n_ctx, bool offload) { const struct llama_hparams & hparams = model.hparams; @@ -1959,6 +2031,9 @@ static bool llama_kv_cache_init( cache.size = n_ctx; cache.used = 0; + cache.type_k = type_k; + cache.type_v = type_v; + cache.cells.clear(); cache.cells.resize(n_ctx); @@ -1999,8 +2074,8 @@ static bool llama_kv_cache_init( for (int i = 0; i < (int) n_layer; i++) { struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front(); - ggml_tensor * k = ggml_new_tensor_1d(ctx, ktype, n_embd_k_gqa*n_ctx); - ggml_tensor * v = ggml_new_tensor_1d(ctx, vtype, n_embd_v_gqa*n_ctx); + ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*n_ctx); + ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*n_ctx); ggml_format_name(k, "cache_k_l%d", i); ggml_format_name(v, "cache_v_l%d", i); cache.k_l.push_back(k); @@ -2082,10 +2157,12 @@ static bool llama_kv_cache_find_slot( } // find how many cells are currently in use -static int32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) { - for (uint32_t i = cache.size - 1; i > 0; --i) { - if (cache.cells[i].pos >= 0 && !cache.cells[i].seq_id.empty()) { - return i + 1; +static uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) { + for (uint32_t i = cache.size; i > 0; --i) { + const llama_kv_cell & cell = cache.cells[i - 1]; + + if (cell.pos >= 0 && !cell.is_empty()) { + return i; } } @@ -2120,7 +2197,7 @@ static void llama_kv_cache_seq_rm( } else { continue; } - if (cache.cells[i].seq_id.empty()) { + if (cache.cells[i].is_empty()) { // keep count of the number of used cells if (cache.cells[i].pos >= 0) cache.used--; @@ -2171,7 +2248,7 @@ static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id if (new_head != cache.size && new_head < cache.head) cache.head = new_head; } -static void llama_kv_cache_seq_shift( +static void llama_kv_cache_seq_add( struct llama_kv_cache & cache, llama_seq_id seq_id, llama_pos p0, @@ -2189,10 +2266,14 @@ static void llama_kv_cache_seq_shift( cache.cells[i].delta += delta; if (cache.cells[i].pos < 0) { - if (!cache.cells[i].seq_id.empty()) cache.used--; + if (!cache.cells[i].is_empty()) { + cache.used--; + } cache.cells[i].pos = -1; cache.cells[i].seq_id.clear(); - if (new_head == cache.size) new_head = i; + if (new_head == cache.size) { + new_head = i; + } } } } @@ -2224,6 +2305,22 @@ static void llama_kv_cache_seq_div( } } +static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) { + llama_pos result = 0; + + for (uint32_t i = 0; i < cache.size; ++i) { + if (cache.cells[i].has_seq_id(seq_id)) { + result = std::max(result, cache.cells[i].pos); + } + } + + return result; +} + +static void llama_kv_cache_defrag(struct llama_kv_cache & cache) { + cache.do_defrag = true; +} + // // model loading and saving // @@ -2295,7 +2392,7 @@ namespace GGUFMeta { } }; - struct ArrayInfo{ + struct ArrayInfo { const gguf_type gt; const size_t length; const void * data; @@ -2314,7 +2411,7 @@ namespace GGUFMeta { }; template - class GKV: public GKV_Base { + class GKV : public GKV_Base { GKV() = delete; public: @@ -2330,46 +2427,46 @@ namespace GGUFMeta { static const char * override_type_to_str(const llama_model_kv_override_type ty) { switch (ty) { - case LLAMA_KV_OVERRIDE_BOOL: return "bool"; - case LLAMA_KV_OVERRIDE_INT: return "int"; - case LLAMA_KV_OVERRIDE_FLOAT: return "float"; + case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool"; + case LLAMA_KV_OVERRIDE_TYPE_INT: return "int"; + case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float"; } return "unknown"; } - static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override *override) { - if (!override) { return false; } - if (override->tag == expected_type) { + static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) { + if (!ovrd) { return false; } + if (ovrd->tag == expected_type) { LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ", - __func__, override_type_to_str(override->tag), override->key); - switch (override->tag) { - case LLAMA_KV_OVERRIDE_BOOL: { - LLAMA_LOG_INFO("%s\n", override->bool_value ? "true" : "false"); + __func__, override_type_to_str(ovrd->tag), ovrd->key); + switch (ovrd->tag) { + case LLAMA_KV_OVERRIDE_TYPE_BOOL: { + LLAMA_LOG_INFO("%s\n", ovrd->bool_value ? "true" : "false"); } break; - case LLAMA_KV_OVERRIDE_INT: { - LLAMA_LOG_INFO("%" PRId64 "\n", override->int_value); + case LLAMA_KV_OVERRIDE_TYPE_INT: { + LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->int_value); } break; - case LLAMA_KV_OVERRIDE_FLOAT: { - LLAMA_LOG_INFO("%.6f\n", override->float_value); + case LLAMA_KV_OVERRIDE_TYPE_FLOAT: { + LLAMA_LOG_INFO("%.6f\n", ovrd->float_value); } break; default: // Shouldn't be possible to end up here, but just in case... throw std::runtime_error( format("Unsupported attempt to override %s type for metadata key %s\n", - override_type_to_str(override->tag), override->key)); + override_type_to_str(ovrd->tag), ovrd->key)); } return true; } LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n", - __func__, override->key, override_type_to_str(expected_type), override_type_to_str(override->tag)); + __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag)); return false; } template static typename std::enable_if::value, bool>::type - try_override(OT & target, const struct llama_model_kv_override *override) { - if (validate_override(LLAMA_KV_OVERRIDE_BOOL, override)) { - target = override->bool_value; + try_override(OT & target, const struct llama_model_kv_override * ovrd) { + if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) { + target = ovrd->bool_value; return true; } return false; @@ -2377,9 +2474,9 @@ namespace GGUFMeta { template static typename std::enable_if::value && std::is_integral::value, bool>::type - try_override(OT & target, const struct llama_model_kv_override *override) { - if (validate_override(LLAMA_KV_OVERRIDE_INT, override)) { - target = override->int_value; + try_override(OT & target, const struct llama_model_kv_override * ovrd) { + if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) { + target = ovrd->int_value; return true; } return false; @@ -2387,9 +2484,9 @@ namespace GGUFMeta { template static typename std::enable_if::value, bool>::type - try_override(T & target, const struct llama_model_kv_override *override) { - if (validate_override(LLAMA_KV_OVERRIDE_FLOAT, override)) { - target = override->float_value; + try_override(T & target, const struct llama_model_kv_override * ovrd) { + if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) { + target = ovrd->float_value; return true; } return false; @@ -2397,17 +2494,17 @@ namespace GGUFMeta { template static typename std::enable_if::value, bool>::type - try_override(T & target, const struct llama_model_kv_override *override) { + try_override(T & target, const struct llama_model_kv_override * ovrd) { (void)target; - (void)override; - if (!override) { return false; } + (void)ovrd; + if (!ovrd) { return false; } // Currently, we should never end up here so it would be a bug if we do. throw std::runtime_error(format("Unsupported attempt to override string type for metadata key %s\n", - override ? override->key : "NULL")); + ovrd ? ovrd->key : "NULL")); } - static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override *override = nullptr) { - if (try_override(target, override)) { + static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) { + if (try_override(target, ovrd)) { return true; } if (k < 0) { return false; } @@ -2415,12 +2512,12 @@ namespace GGUFMeta { return true; } - static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override *override = nullptr) { - return set(ctx, gguf_find_key(ctx, key), target, override); + static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) { + return set(ctx, gguf_find_key(ctx, key), target, ovrd); } - static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override *override = nullptr) { - return set(ctx, key.c_str(), target, override); + static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) { + return set(ctx, key.c_str(), target, ovrd); } }; } @@ -2527,8 +2624,12 @@ struct llama_model_loader { case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break; case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break; case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break; + case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break; case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break; case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break; + case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break; + case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break; + case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break; default: { LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max)); @@ -2774,13 +2875,7 @@ struct llama_model_loader { std::vector> read_buf; - for (int i = 0; i < gguf_get_n_tensors(ctx_gguf); i++) { - struct ggml_tensor * cur = ggml_get_tensor(ctx, gguf_get_tensor_name(ctx_gguf, i)); - if (!cur) { - // some tensors may be allocated in a different context - continue; - } - + for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) { if (progress_callback) { if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) { return false; @@ -2835,6 +2930,19 @@ struct llama_model_loader { } }; +template<> +bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) { + uint32_t tmp; + const bool found = get_key(kid, tmp, required); + if (found) { + result = (enum llama_pooling_type) tmp; + } else { + result = LLAMA_POOLING_TYPE_UNSPECIFIED; + } + return found; +} + + // // load LLaMA models // @@ -2876,9 +2984,15 @@ static std::string llama_model_ftype_name(llama_ftype ftype) { case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K"; case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XXS - 2.0625 bpw"; case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw"; - case LLAMA_FTYPE_MOSTLY_Q3_K_XS:return "Q3_K - Extra small"; + case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw"; + case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw"; + case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw"; case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw"; case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw"; + case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw"; + case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw"; + case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw"; + case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw"; default: return "unknown, may not work"; } @@ -2912,16 +3026,16 @@ static const char * llama_model_type_name(e_model type) { default: return "?B"; } } + static const char * llama_model_vocab_type_name(enum llama_vocab_type type){ switch (type) { - case LLAMA_VOCAB_TYPE_SPM: return "SPM"; - case LLAMA_VOCAB_TYPE_BPE: return "BPE"; - case LLAMA_VOCAB_TYPE_WPM: return "WPM"; - default: return "unknown"; + case LLAMA_VOCAB_TYPE_SPM: return "SPM"; + case LLAMA_VOCAB_TYPE_BPE: return "BPE"; + case LLAMA_VOCAB_TYPE_WPM: return "WPM"; + default: return "unknown"; } } - static void llm_load_arch(llama_model_loader & ml, llama_model & model) { model.arch = ml.get_arch(); if (model.arch == LLM_ARCH_UNKNOWN) { @@ -2985,7 +3099,7 @@ static void llm_load_hparams( std::string rope_scaling("linear"); ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false); hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling); - GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_UNSPECIFIED); + GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED); // rope_freq_scale (inverse of the kv) is optional float ropescale = 0.0f; @@ -3098,10 +3212,10 @@ static void llm_load_hparams( } break; case LLM_ARCH_BERT: { - ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); - ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn); + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn); ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type); - ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type); + ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false); switch (hparams.n_layer) { case 3: @@ -3119,10 +3233,10 @@ static void llm_load_hparams( } break; case LLM_ARCH_NOMIC_BERT: { - ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); - ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn); + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn); ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type); - ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type); + ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type); if (hparams.n_layer == 12 && hparams.n_embd == 768) { model.type = e_model::MODEL_137M; @@ -3243,6 +3357,26 @@ static void llm_load_hparams( default: model.type = e_model::MODEL_UNKNOWN; } } break; + case LLM_ARCH_GEMMA: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + + switch (hparams.n_layer) { + case 18: model.type = e_model::MODEL_2B; break; + case 28: model.type = e_model::MODEL_7B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_STARCODER2: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + switch (hparams.n_layer) { + case 30: model.type = e_model::MODEL_3B; break; + case 32: model.type = e_model::MODEL_7B; break; + case 40: model.type = e_model::MODEL_15B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; default: (void)0; } @@ -3251,6 +3385,8 @@ static void llm_load_hparams( if (hparams.f_max_alibi_bias > 0.0f) { hparams.need_kq_pos = true; } + + hparams.rope_type = llama_rope_type(&model); } // TODO: This should probably be in llama.h @@ -3553,6 +3689,8 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) { LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff); LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert); LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used); + LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type); + LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type); LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type); LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train); LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train); @@ -3619,7 +3757,7 @@ static bool llm_load_tensors( model.buft_layer[i] = llama_default_buffer_type_cpu(true); } - if (split_mode == LLAMA_SPLIT_LAYER) { + if (split_mode == LLAMA_SPLIT_MODE_LAYER) { // calculate the split points int device_count = llama_get_device_count(); bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; }); @@ -3658,10 +3796,10 @@ static bool llm_load_tensors( } } else { ggml_backend_buffer_type_t split_buft; - if (split_mode == LLAMA_SPLIT_ROW) { + if (split_mode == LLAMA_SPLIT_MODE_ROW) { split_buft = llama_default_buffer_type_split(main_gpu, tensor_split); } else { - // LLAMA_SPLIT_NONE or LLAMA_SPLIT_LAYER in backends where it is not supported + // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported split_buft = llama_default_buffer_type_offload(main_gpu); } // assign the repeating layers @@ -3694,7 +3832,7 @@ static bool llm_load_tensors( } // create one context per buffer type - size_t ctx_size = ggml_tensor_overhead()*ml.n_tensors; + size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output std::map ctx_map; for (auto & it : buft_layer_count) { struct ggml_init_params params = { @@ -3832,6 +3970,7 @@ static bool llm_load_tensors( } else { model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU ml.n_created--; // artificial tensor + ml.size_data += ggml_nbytes(model.output); } } @@ -4031,7 +4170,12 @@ static bool llm_load_tensors( // output { model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); + model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, false); + + // same as tok_embd, duplicated to allow offloading + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + ml.n_created--; // artificial tensor + ml.size_data += ggml_nbytes(model.output); } for (int i = 0; i < n_layer; ++i) { @@ -4040,14 +4184,23 @@ static bool llm_load_tensors( auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, false); layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false); - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false); + + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, false); + + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); + layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, false); + + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, false); // AWQ ScaleActivation layer layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, false); @@ -4360,6 +4513,90 @@ static bool llm_load_tensors( layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); } } break; + case LLM_ARCH_GEMMA: + { + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + + // output + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // same as tok_embd, duplicated to allow offloading + ml.n_created--; // artificial tensor + ml.size_data += ggml_nbytes(model.output); + + const int64_t n_ff = hparams.n_ff; + const int64_t n_embd_head_k = hparams.n_embd_head_k; + const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(); + const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(); + + for (uint32_t i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + + layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head}); + layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}); + layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd}); + + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); + } + } break; + case LLM_ARCH_STARCODER2: + { + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + + // output + { + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); + + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false); + // if output is NULL, init from the input tok embed + if (model.output == NULL) { + model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + ml.n_created--; // artificial tensor + ml.size_data += ggml_nbytes(model.output); + } + + } + + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); + + layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); + layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); + layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + + // optional bias tensors + layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}); + layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}); + layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}); + layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); + + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); + + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + + // optional bias tensors + layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); + layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff}); + } + } break; default: throw std::runtime_error("unknown architecture"); } @@ -4525,12 +4762,6 @@ static int llama_model_load(const std::string & fname, llama_model & model, llam using llm_build_cb = std::function; -enum llm_rope_type { - LLM_ROPE, - LLM_ROPE_NEOX, - LLM_ROPE_GLM, -}; - enum llm_ffn_op_type { LLM_FFN_SILU, LLM_FFN_GELU, @@ -4576,55 +4807,6 @@ static struct ggml_tensor * llm_build_inp_embd( return inpL; } -// Persimmon: n_rot = n_embd_head_k/2 -// Other: n_rot = n_embd_head_k -static void llm_build_k_shift( - struct ggml_context * ctx, - const llama_hparams & hparams, - const llama_cparams & cparams, - const llama_kv_cache & kv, - struct ggml_cgraph * graph, - struct ggml_tensor * K_shift, - llm_rope_type type, - int64_t n_ctx, - float freq_base, - float freq_scale, - const llm_build_cb & cb) { - const int64_t n_layer = hparams.n_layer; - const int64_t n_head_kv = hparams.n_head_kv; - const int64_t n_embd_head_k = hparams.n_embd_head_k; - const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(); - const int32_t n_rot = hparams.n_rot; - const int32_t n_orig_ctx = cparams.n_yarn_orig_ctx; - const float ext_factor = cparams.yarn_ext_factor; - const float attn_factor = cparams.yarn_attn_factor; - const float beta_fast = cparams.yarn_beta_fast; - const float beta_slow = cparams.yarn_beta_slow; - - int rope_type = 0; - - switch (type) { - case LLM_ROPE: rope_type = 0; break; - case LLM_ROPE_NEOX: rope_type = 2; break; - case LLM_ROPE_GLM: rope_type = 4; break; - } - - for (int il = 0; il < n_layer; ++il) { - struct ggml_tensor * tmp = - // we rotate only the first n_rot dimensions - ggml_rope_custom_inplace(ctx, - ggml_view_3d(ctx, kv.k_l[il], - n_embd_head_k, n_head_kv, n_ctx, - ggml_row_size(kv.k_l[il]->type, n_embd_head_k), - ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa), - 0), - K_shift, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow); - cb(tmp, "K_shifted", il); - ggml_build_forward_expand(graph, tmp); - } -} - static void llm_build_kv_store( struct ggml_context * ctx, const llama_hparams & hparams, @@ -4864,8 +5046,8 @@ static struct ggml_tensor * llm_build_kqv( ggml_mul_mat_set_prec(kq, GGML_PREC_F32); } -#if defined(GGML_USE_VULKAN) || defined(GGML_USE_KOMPUTE) || defined(GGML_USE_SYCL) -#pragma message("TODO: ALiBi support in ggml_soft_max_ext is not implemented for Vulkan, Kompute, and SYCL") +#if defined(GGML_USE_VULKAN) || defined(GGML_USE_KOMPUTE) +#pragma message("TODO: ALiBi support in ggml_soft_max_ext is not implemented for Vulkan, and Kompute") #pragma message(" Falling back to ggml_alibi(). Will become an error in Mar 2024") #pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5488") if (hparams.f_max_alibi_bias > 0.0f) { @@ -4967,6 +5149,7 @@ struct llm_build_context { const int64_t n_embd; const int64_t n_layer; + const int64_t n_rot; const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train) const int64_t n_head; const int64_t n_head_kv; @@ -4991,8 +5174,8 @@ struct llm_build_context { const int32_t kv_head; // index of where we store new KV data in the cache const int32_t n_orig_ctx; - const bool do_rope_shift; - const uint32_t pooling_type; + const enum llama_pooling_type pooling_type; + const enum llama_rope_type rope_type; const llm_build_cb & cb; @@ -5014,6 +5197,7 @@ struct llm_build_context { kv_self (lctx.kv_self), n_embd (hparams.n_embd), n_layer (hparams.n_layer), + n_rot (hparams.n_rot), n_ctx (cparams.n_ctx), n_head (hparams.n_head), n_head_kv (hparams.n_head_kv), @@ -5035,8 +5219,8 @@ struct llm_build_context { n_kv (worst_case ? n_ctx : kv_self.n), kv_head (worst_case ? n_ctx - n_tokens : kv_self.head), n_orig_ctx (cparams.n_yarn_orig_ctx), - do_rope_shift (worst_case || kv_self.has_shift), - pooling_type (cparams.do_pooling ? hparams.pooling_type : (uint32_t)LLAMA_POOLING_NONE), + pooling_type (cparams.pooling_type), + rope_type (hparams.rope_type), cb (cb), buf_compute_meta (lctx.buf_compute_meta) { // all initializations should be done in init() @@ -5059,6 +5243,76 @@ struct llm_build_context { } } + struct ggml_cgraph * build_k_shift() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * tmp = + // we rotate only the first n_rot dimensions + ggml_rope_custom_inplace(ctx0, + ggml_view_3d(ctx0, kv_self.k_l[il], + n_embd_head_k, n_head_kv, n_ctx, + ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k), + ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa), + 0), + lctx.inp_K_shift, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow); + cb(tmp, "K_shifted", il); + ggml_build_forward_expand(gf, tmp); + } + + return gf; + } + + struct ggml_cgraph * build_defrag(const std::vector & ids) { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + for (uint32_t i = 0; i < ids.size(); ++i) { + const uint32_t id = ids[i]; + + if (i == id || id == ids.size()) { + continue; + } + + uint32_t nm = 1; + + while (i + nm < ids.size() && ids[i + nm] == id + nm) { + nm++; + } + + for (int il = 0; il < n_layer; ++il) { + ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il], + n_embd_k_gqa, nm, + ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa), + ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i)); + + ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il], + n_embd_k_gqa, nm, + ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa), + ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id)); + + ggml_tensor * view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il], + nm, n_embd_v_gqa, + ggml_row_size(kv_self.v_l[il]->type, kv_self.size), + ggml_row_size(kv_self.v_l[il]->type, i)); + + ggml_tensor * view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il], + nm, n_embd_v_gqa, + ggml_row_size(kv_self.v_l[il]->type, kv_self.size), + ggml_row_size(kv_self.v_l[il]->type, id)); + + ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst)); + ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst)); + } + + i += nm - 1; + } + + //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes); + + return gf; + } + struct ggml_cgraph * build_llama() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); @@ -5080,11 +5334,6 @@ struct llm_build_context { struct ggml_tensor * KQ_mask = ggml_cast(ctx0, ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0), GGML_TYPE_F16); cb(KQ_mask, "KQ_mask", -1); - // shift the entire K-cache if needed - if (do_rope_shift) { - llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb); - } - for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; @@ -5120,14 +5369,14 @@ struct llm_build_context { Qcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, - hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); Kcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, - hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); @@ -5268,11 +5517,6 @@ struct llm_build_context { struct ggml_tensor * KQ_pos = ggml_cast(ctx0, ggml_view_1d(ctx0, lctx.inp_KQ_pos, n_kv, 0), GGML_TYPE_F16); cb(KQ_pos, "KQ_pos", -1); - // shift the entire K-cache if needed - if (do_rope_shift) { - llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb); - } - for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; @@ -5296,12 +5540,12 @@ struct llm_build_context { case MODEL_7B: Qcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, - hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, - hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); break; @@ -5386,11 +5630,6 @@ struct llm_build_context { struct ggml_tensor * KQ_mask = ggml_cast(ctx0, ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0), GGML_TYPE_F16); cb(KQ_mask, "KQ_mask", -1); - // shift the entire K-cache if needed - if (do_rope_shift) { - llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE_NEOX, n_ctx, freq_base, freq_scale, cb); - } - for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * attn_norm; @@ -5429,13 +5668,13 @@ struct llm_build_context { // using mode = 2 for neox mode Qcur = ggml_rope_custom( - ctx0, Qcur, inp_pos, hparams.n_rot, 2, 0, n_orig_ctx, + ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); Kcur = ggml_rope_custom( - ctx0, Kcur, inp_pos, hparams.n_rot, 2, 0, n_orig_ctx, + ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); @@ -5605,10 +5844,6 @@ struct llm_build_context { struct ggml_tensor * KQ_mask = ggml_cast(ctx0, ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0), GGML_TYPE_F16); cb(KQ_mask, "KQ_mask", -1); - if (do_rope_shift) { - llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE_NEOX, n_ctx, freq_base, freq_scale, cb); - } - for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * residual = inpL; @@ -5666,7 +5901,7 @@ struct llm_build_context { // RoPE the first n_rot of q/k, pass the other half, and concat. struct ggml_tensor * qrot = ggml_view_3d( - ctx0, tmpq, hparams.n_rot, n_head, n_tokens, + ctx0, tmpq, n_rot, n_head, n_tokens, ggml_element_size(tmpq) * n_embd_head, ggml_element_size(tmpq) * n_embd_head * n_head, 0 @@ -5674,7 +5909,7 @@ struct llm_build_context { cb(qrot, "qrot", il); struct ggml_tensor * krot = ggml_view_3d( - ctx0, tmpk, hparams.n_rot, n_head, n_tokens, + ctx0, tmpk, n_rot, n_head, n_tokens, ggml_element_size(tmpk) * n_embd_head, ggml_element_size(tmpk) * n_embd_head * n_head, 0 @@ -5683,29 +5918,29 @@ struct llm_build_context { // get the second half of tmpq, e.g tmpq[n_rot:, :, :] struct ggml_tensor * qpass = ggml_view_3d( - ctx0, tmpq, hparams.n_rot, n_head, n_tokens, + ctx0, tmpq, n_rot, n_head, n_tokens, ggml_element_size(tmpq) * n_embd_head, ggml_element_size(tmpq) * n_embd_head * n_head, - ggml_element_size(tmpq) * hparams.n_rot + ggml_element_size(tmpq) * n_rot ); cb(qpass, "qpass", il); struct ggml_tensor * kpass = ggml_view_3d( - ctx0, tmpk, hparams.n_rot, n_head, n_tokens, + ctx0, tmpk, n_rot, n_head, n_tokens, ggml_element_size(tmpk) * n_embd_head, ggml_element_size(tmpk) * n_embd_head * n_head, - ggml_element_size(tmpk) * hparams.n_rot + ggml_element_size(tmpk) * n_rot ); cb(kpass, "kpass", il); struct ggml_tensor * qrotated = ggml_rope_custom( - ctx0, qrot, inp_pos, hparams.n_rot, 2, 0, n_orig_ctx, + ctx0, qrot, inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(qrotated, "qrotated", il); struct ggml_tensor * krotated = ggml_rope_custom( - ctx0, krot, inp_pos, hparams.n_rot, 2, 0, n_orig_ctx, + ctx0, krot, inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(krotated, "krotated", il); @@ -5957,14 +6192,14 @@ struct llm_build_context { Qcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, - hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); Kcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, - hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); @@ -6016,12 +6251,12 @@ struct llm_build_context { cur = inpL; // pooling layer - if (pooling_type == LLAMA_POOLING_MEAN) { + if (pooling_type == LLAMA_POOLING_TYPE_MEAN) { cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, cur)), inp_mean); - } else if (pooling_type == LLAMA_POOLING_CLS) { + } else if (pooling_type == LLAMA_POOLING_TYPE_CLS) { cur = ggml_get_rows(ctx0, cur, inp_cls); } else { - GGML_ASSERT(pooling_type == LLAMA_POOLING_NONE && "Invalid pooling type"); + GGML_ASSERT(pooling_type == LLAMA_POOLING_TYPE_NONE && "Invalid pooling type"); } cb(cur, "result_embd", -1); @@ -6153,7 +6388,7 @@ struct llm_build_context { attn_norm = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, - NULL, + model.layers[il].attn_norm_b, LLM_NORM, cb, il); cb(attn_norm, "attn_norm", il); @@ -6164,6 +6399,11 @@ struct llm_build_context { cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); cb(cur, "wqkv", il); + if (model.layers[il].bqkv){ + cur = ggml_add(ctx0, cur, model.layers[il].bqkv); + cb(cur, "bqkv", il); + } + if (hparams.f_clamp_kqv > 0.0f) { cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv); cb(cur, "wqkv_clamped", il); @@ -6180,7 +6420,7 @@ struct llm_build_context { Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, - model.layers[il].wo, NULL, + model.layers[il].wo, model.layers[il].bo, Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); } @@ -6193,13 +6433,13 @@ struct llm_build_context { { cur = llm_build_norm(ctx0, ffn_inp, hparams, model.layers[il].ffn_norm, - NULL, + model.layers[il].ffn_norm_b, LLM_NORM, cb, il); cb(cur, "ffn_norm", il); cur = llm_build_ffn(ctx0, cur, - model.layers[il].ffn_up, NULL, + model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, NULL, - model.layers[il].ffn_down, NULL, + model.layers[il].ffn_down, model.layers[il].ffn_down_b, model.layers[il].ffn_act, LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); cb(cur, "ffn_out", il); @@ -6216,7 +6456,7 @@ struct llm_build_context { cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, - NULL, + model.output_norm_b, LLM_NORM, cb, -1); cb(cur, "result_norm", -1); @@ -6248,11 +6488,6 @@ struct llm_build_context { struct ggml_tensor * KQ_mask = ggml_cast(ctx0, ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0), GGML_TYPE_F16); cb(KQ_mask, "KQ_mask", -1); - // shift the entire K-cache if needed - if (do_rope_shift) { - llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE_NEOX, n_ctx, freq_base, freq_scale, cb); - } - for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; @@ -6289,14 +6524,14 @@ struct llm_build_context { Qcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, - hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); Kcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, - hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); @@ -6371,11 +6606,6 @@ struct llm_build_context { struct ggml_tensor * KQ_mask = ggml_cast(ctx0, ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0), GGML_TYPE_F16); cb(KQ_mask, "KQ_mask", -1); - // shift the entire K-cache if needed - if (do_rope_shift) { - llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE_NEOX, n_ctx, freq_base, freq_scale, cb); - } - for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; @@ -6405,13 +6635,13 @@ struct llm_build_context { // using mode = 2 for neox mode Qcur = ggml_rope_custom( - ctx0, Qcur, inp_pos, hparams.n_rot, 2, 0, n_orig_ctx, + ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); Kcur = ggml_rope_custom( - ctx0, Kcur, inp_pos, hparams.n_rot, 2, 0, n_orig_ctx, + ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); @@ -6485,11 +6715,6 @@ struct llm_build_context { struct ggml_tensor * KQ_mask = ggml_cast(ctx0, ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0), GGML_TYPE_F16); cb(KQ_mask, "KQ_mask", -1); - // shift the entire K-cache if needed - if (do_rope_shift) { - llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE_NEOX, n_ctx, freq_base, freq_scale, cb); - } - for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; @@ -6525,14 +6750,14 @@ struct llm_build_context { Qcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, - hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); Kcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, - hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); @@ -6606,11 +6831,6 @@ struct llm_build_context { struct ggml_tensor * KQ_mask = ggml_cast(ctx0, ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0), GGML_TYPE_F16); cb(KQ_mask, "KQ_mask", -1); - // shift the entire K-cache if needed - if (do_rope_shift) { - llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE_NEOX, n_ctx, freq_base, freq_scale, cb); - } - for (int il = 0; il < n_layer; ++il) { attn_norm_output = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, @@ -6648,7 +6868,7 @@ struct llm_build_context { Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Qcur = ggml_rope_custom( - ctx0, Qcur, inp_pos, hparams.n_rot, 2, 0, n_orig_ctx, + ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); @@ -6659,7 +6879,7 @@ struct llm_build_context { cb(Qcur, "Qcur", il); Kcur = ggml_rope_custom( - ctx0, Kcur, inp_pos, hparams.n_rot, 2, 0, n_orig_ctx, + ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); @@ -6728,11 +6948,6 @@ struct llm_build_context { struct ggml_tensor * KQ_mask = ggml_cast(ctx0, ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0), GGML_TYPE_F16); cb(KQ_mask, "KQ_mask", -1); - // shift the entire K-cache if needed - if (do_rope_shift) { - llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb); - } - for (int il = 0; il < n_layer; ++il) { // norm @@ -6756,14 +6971,14 @@ struct llm_build_context { cb(Vcur, "Vcur", il); Qcur = ggml_rope_custom( - ctx0, ggml_reshape_3d(ctx0, Qcur, hparams.n_rot, n_head, n_tokens), inp_pos, - n_embd_head, 2, 0, n_orig_ctx, freq_base, freq_scale, + ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens), inp_pos, + n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); cb(Qcur, "Qcur", il); Kcur = ggml_rope_custom( - ctx0, ggml_reshape_3d(ctx0, Kcur, hparams.n_rot, n_head_kv, n_tokens), inp_pos, - n_embd_head, 2, 0, n_orig_ctx, freq_base, freq_scale, + ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos, + n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); cb(Kcur, "Kcur", il); @@ -6933,11 +7148,6 @@ struct llm_build_context { struct ggml_tensor * KQ_mask = ggml_cast(ctx0, ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0), GGML_TYPE_F16); cb(KQ_mask, "KQ_mask", -1); - // shift the entire K-cache if needed - if (do_rope_shift) { - llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb); - } - for (int il = 0; il < n_layer; ++il) { cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, @@ -6963,14 +7173,14 @@ struct llm_build_context { struct ggml_tensor * Qcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos, - hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); struct ggml_tensor * Kcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos, - hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); @@ -7041,11 +7251,6 @@ struct llm_build_context { struct ggml_tensor * KQ_mask = ggml_cast(ctx0, ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0), GGML_TYPE_F16); cb(KQ_mask, "KQ_mask", -1); - // shift the entire K-cache if needed - if (do_rope_shift) { - llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb); - } - for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; @@ -7081,14 +7286,14 @@ struct llm_build_context { Qcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, - hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); Kcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, - hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); @@ -7160,11 +7365,6 @@ struct llm_build_context { struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); cb(KQ_mask, "KQ_mask", -1); - // shift the entire K-cache if needed - if (do_rope_shift) { - llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb); - } - for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; @@ -7200,14 +7400,14 @@ struct llm_build_context { Qcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, - hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); Kcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, - hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); @@ -7292,11 +7492,6 @@ struct llm_build_context { struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); cb(KQ_mask, "KQ_mask", -1); - // shift the entire K-cache if needed - if (do_rope_shift) { - llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb); - } - for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; @@ -7332,14 +7527,14 @@ struct llm_build_context { Qcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, - hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); Kcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, - hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); @@ -7405,8 +7600,261 @@ struct llm_build_context { return gf; } + + struct ggml_cgraph * build_gemma() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + const int64_t n_embd_head_k = hparams.n_embd_head_k; + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); + cb(inpL, "inp_embd", -1); + + inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd)); + cb(inpL, "inp_scaled", -1); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0); + cb(inp_pos, "inp_pos", -1); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = ggml_cast(ctx0, ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0), GGML_TYPE_F16); + cb(KQ_mask, "KQ_mask", -1); + + for (int il = 0; il < n_layer; ++il) { + + // norm + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "attn_norm", il); + + // self-attention + { + // compute Q and K and RoPE them + struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + + struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + + struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + + Qcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos, + n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow); + cb(Qcur, "Qcur", il); + + Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k))); + cb(Qcur, "Qcur_scaled", il); + + Kcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, + n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow); + cb(Kcur, "Kcur", il); + + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + model.layers[il].wo, NULL, + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il); + cb(cur, "kqv_out", il); + } + + struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL); + cb(sa_out, "sa_out", il); + + cur = llm_build_norm(ctx0, sa_out, hparams, + model.layers[il].ffn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "ffn_norm", il); + + // feed-forward network + { + cur = llm_build_ffn(ctx0, cur, + model.layers[il].ffn_up, NULL, + model.layers[il].ffn_gate, NULL, + model.layers[il].ffn_down, NULL, + NULL, + LLM_FFN_GELU, LLM_FFN_PAR, cb, il); + cb(cur, "ffn_out", il); + } + + cur = ggml_add(ctx0, cur, sa_out); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = llm_build_norm(ctx0, cur, hparams, + model.output_norm, NULL, + LLM_NORM_RMS, cb, -1); + cb(cur, "result_norm", -1); + + // lm_head + cur = ggml_mul_mat(ctx0, model.output, cur); + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } + + struct ggml_cgraph * build_starcoder2() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + const int64_t n_embd_head = hparams.n_embd_head_v; + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + GGML_ASSERT(n_embd_head == hparams.n_rot); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); + cb(inpL, "inp_embd", -1); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0); + cb(inp_pos, "inp_pos", -1); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); + cb(KQ_mask, "KQ_mask", -1); + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * inpSA = inpL; + + // norm + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, model.layers[il].attn_norm_b, + LLM_NORM, cb, il); + cb(cur, "attn_norm", il); + + // self-attention + { + // compute Q and K and RoPE them + struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + if (model.layers[il].bq) { + Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); + cb(Qcur, "Qcur", il); + } + + struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + if (model.layers[il].bk) { + Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); + cb(Kcur, "Kcur", il); + } + + struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + if (model.layers[il].bv) { + Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); + cb(Vcur, "Vcur", il); + } + + Qcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Qcur, "Qcur", il); + + Kcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Kcur, "Kcur", il); + + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + model.layers[il].wo, model.layers[il].bo, + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + cb(cur, "kqv_out", il); + } + + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); + cb(ffn_inp, "ffn_inp", il); + + // feed-forward network + + cur = llm_build_norm(ctx0, ffn_inp, hparams, + model.layers[il].ffn_norm, model.layers[il].ffn_norm_b, + LLM_NORM, cb, il); + cb(cur, "ffn_norm", il); + + cur = llm_build_ffn(ctx0, cur, + model.layers[il].ffn_up, model.layers[il].ffn_up_b, + NULL, NULL, + model.layers[il].ffn_down, model.layers[il].ffn_down_b, + NULL, + LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); + cb(cur, "ffn_out", il); + cur = ggml_add(ctx0, cur, ffn_inp); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = llm_build_norm(ctx0, cur, hparams, + model.output_norm, model.output_norm_b, + LLM_NORM, cb, -1); + cb(cur, "result_norm", -1); + + // lm_head + cur = ggml_mul_mat(ctx0, model.output, cur); + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } }; +static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector & ids) { + llama_batch dummy; + dummy.n_tokens = 0; + + llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { }; + + struct llm_build_context llm(lctx, dummy, cb, false); + + llm.init(); + + struct ggml_cgraph * result = llm.build_defrag(ids); + + llm.free(); + + return result; +} + +static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) { + llama_batch dummy; + dummy.n_tokens = 0; + + llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { }; + + struct llm_build_context llm(lctx, dummy, cb, false); + + llm.init(); + + struct ggml_cgraph * result = llm.build_k_shift(); + + llm.free(); + + return result; +} + static struct ggml_cgraph * llama_build_graph( llama_context & lctx, const llama_batch & batch, @@ -7513,6 +7961,14 @@ static struct ggml_cgraph * llama_build_graph( { result = llm.build_minicpm(); } break; + case LLM_ARCH_GEMMA: + { + result = llm.build_gemma(); + } break; + case LLM_ARCH_STARCODER2: + { + result = llm.build_starcoder2(); + } break; default: GGML_ASSERT(false); } @@ -7522,6 +7978,20 @@ static struct ggml_cgraph * llama_build_graph( return result; } +static void llama_set_k_shift(llama_context & lctx) { + const auto & cparams = lctx.cparams; + + const int64_t n_ctx = cparams.n_ctx; + + assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer)); + + int32_t * data = (int32_t *) lctx.inp_K_shift->data; + + for (int i = 0; i < n_ctx; ++i) { + data[i] = lctx.kv_self.cells[i].delta; + } +} + static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) { // // set input data @@ -7589,19 +8059,7 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) { } } - if (kv_self.has_shift) { - const int64_t n_ctx = cparams.n_ctx; - - assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer)); - - int32_t * data = (int32_t *) lctx.inp_K_shift->data; - - for (int i = 0; i < n_ctx; ++i) { - data[i] = lctx.kv_self.cells[i].delta; - } - } - - if (cparams.do_pooling && hparams.pooling_type == LLAMA_POOLING_MEAN) { + if (cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) { const int64_t n_tokens = batch.n_tokens; GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer)); @@ -7629,7 +8087,7 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) { } } - if (cparams.do_pooling && hparams.pooling_type == LLAMA_POOLING_CLS) { + if (cparams.pooling_type == LLAMA_POOLING_TYPE_CLS) { const int64_t n_tokens = batch.n_tokens; GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer)); @@ -7645,6 +8103,35 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) { } } +static void llama_graph_compute( + llama_context & lctx, + ggml_cgraph * gf, + int n_threads) { +#ifdef GGML_USE_MPI + const int64_t n_layer = lctx.model.hparams.n_layer; + ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer); +#endif + +#ifdef GGML_USE_METAL + if (ggml_backend_is_metal(lctx.backend_metal)) { + ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads); + } +#endif + + if (lctx.backend_cpu != nullptr) { + ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads); + ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data); + } + + ggml_backend_sched_graph_compute(lctx.sched, gf); + + // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched)); + +#ifdef GGML_USE_MPI + ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer); +#endif +} + // decode a batch of tokens by evaluating the transformer // // - lctx: llama context @@ -7671,9 +8158,9 @@ static int llama_decode_internal( const auto n_batch = cparams.n_batch; GGML_ASSERT(n_tokens <= n_batch); + GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch; - GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT const int64_t t_start_us = ggml_time_us(); @@ -7722,6 +8209,8 @@ static int llama_decode_internal( batch.seq_id = seq_id_arr.data(); } + llama_kv_cache_update(&lctx); + // if we have enough unused cells before the current head -> // better to start searching from the beginning of the cache, hoping to fill it if (kv_self.head > kv_self.used + 2*n_tokens) { @@ -7736,7 +8225,7 @@ static int llama_decode_internal( // after enough generations, the benefit from this heuristic disappears // if we start defragmenting the cache, the benefit from this will be more important // note: we pad the n_kv because certain GPU kernels require it (e.g. ggml_flash_attn_ext) - kv_self.n = std::min((int32_t) cparams.n_ctx, std::max(128, GGML_PAD(llama_kv_cache_cell_max(kv_self), 128))); + kv_self.n = std::min(cparams.n_ctx, std::max(128u, GGML_PAD(llama_kv_cache_cell_max(kv_self), 128))); //kv_self.n = llama_kv_cache_cell_max(kv_self); //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head); @@ -7747,8 +8236,9 @@ static int llama_decode_internal( ggml_cgraph * gf = llama_build_graph(lctx, batch, false); // the output is always the last tensor in the graph - struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1]; + struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1]; struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 2]; + if (strcmp(res->name, "result_output") == 0) { // the embeddings could be the second to last tensor, or the third to last tensor if (strcmp(embeddings->name, "result_norm") != 0) { @@ -7775,40 +8265,12 @@ static int llama_decode_internal( n_threads = std::min(4, n_threads); } -#ifdef GGML_USE_MPI - const int64_t n_layer = hparams.n_layer; - ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer); -#endif - -#ifdef GGML_USE_METAL - if (ggml_backend_is_metal(lctx.backend_metal)) { - ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads); - } -#endif - - if (lctx.backend_cpu != nullptr) { - ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads); - } - llama_set_inputs(lctx, batch); - ggml_backend_sched_graph_compute(lctx.sched, gf); - - // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched)); - -#ifdef GGML_USE_MPI - ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer); -#endif + llama_graph_compute(lctx, gf, n_threads); // update the kv ring buffer { - if (kv_self.has_shift) { - kv_self.has_shift = false; - for (uint32_t i = 0; i < kv_self.size; ++i) { - kv_self.cells[i].delta = 0; - } - } - kv_self.head += n_tokens; // Ensure kv cache head points to a valid index. @@ -7817,6 +8279,18 @@ static int llama_decode_internal( } } + // decide if we need to defrag the kv cache + if (cparams.defrag_thold >= 0.0f) { + const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used + n_tokens)/float(kv_self.n) : 0.0f; + + // queue defragmentation for next llama_kv_cache_update + if (fragmentation > cparams.defrag_thold) { + //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation); + + llama_kv_cache_defrag(kv_self); + } + } + #ifdef GGML_PERF // print timing information per ggml operation (for debugging purposes) // requires GGML_PERF to be defined @@ -7904,6 +8378,245 @@ static int llama_decode_internal( return 0; } +// find holes from the beginning of the KV cache and fill them by moving data from the end of the cache +static void llama_kv_cache_defrag_internal(struct llama_context & lctx) { + auto & kv_self = lctx.kv_self; + + const auto & hparams = lctx.model.hparams; + + const uint32_t n_layer = hparams.n_layer; + + const uint32_t n_kv = llama_kv_cache_cell_max(kv_self); + const uint32_t n_used = kv_self.used; + + assert(n_used <= n_kv); + + //const int64_t t_start = ggml_time_us(); + + // number of cells moved + uint32_t n_moves = 0; + + // determine which KV cells to move where + // + // cell i moves to ids[i] + // + // if ids[i] == i || ids[i] == n_kv, then cell i is not moved + // + std::vector ids(n_kv, n_kv); + + for (uint32_t i0 = 0; i0 < n_used; ++i0) { + const auto & cell0 = kv_self.cells[i0]; + + if (!cell0.is_empty()) { + ids[i0] = i0; + + continue; + } + + // found a hole - fill it with data from the end of the cache + + uint32_t nh = 1; + + // determine the size of the hole + while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) { + nh++; + } + + // each move requires 6*n_layer tensors (see build_defrag) + // - source view, destination view, copy operation + // - x2 for keys and values + // + if (6*(n_moves + nh)*n_layer >= LLAMA_MAX_NODES) { + // the graph is too big, we cannot move more cells + break; + } + + uint32_t nf = 0; + uint32_t is = n_kv - 1; + + // starting from the end, find nh non-empty cells + for (; is > i0; --is) { + const auto & cell1 = kv_self.cells[is]; + + if (cell1.is_empty() || ids[is] != n_kv) { + continue; + } + + // non-empty cell which is not yet moved + nf++; + + if (nf == nh) { + break; + } + } + + // this can only happen if `n_used` is not accurate, which would be a bug + GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh"); + + nf = 0; + + uint32_t i1 = is; + + // are we moving a continuous block of memory? + bool cont = false; + + // go back and move the nf cells to the hole + for (; i1 < n_kv; ++i1) { + auto & cell1 = kv_self.cells[i1]; + + if (cell1.is_empty() || ids[i1] != n_kv) { + cont = false; + continue; + } + + // this cell goes to (i0 + nf) + ids[i1] = i0 + nf; + + // move the cell meta data + kv_self.cells[i0 + nf] = cell1; + + // clear the old cell and move the head there + cell1 = llama_kv_cell(); + kv_self.head = n_used; + + if (!cont) { + n_moves++; + cont = true; + } + + nf++; + + if (nf == nh) { + break; + } + } + + //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh); + + i0 += nh - 1; + } + + if (n_moves == 0) { + return; + } + + //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves); + + //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer); + +#if 0 + // CPU defrag + // + // TODO: optimizations are possible: + // - multiple threads + // - avoid copying to the host memory when already there + // + // likely not worth the effort, as we have ggml_graph based defrag + // + + const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(); + const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(); + + const uint32_t kv_size = kv_self.size; + + std::vector buf_k; + std::vector buf_v; + + for (uint32_t il = 0; il < n_layer; ++il) { + const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa); + const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size); + + const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type); + const size_t v_size = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size); + + buf_k.resize(k_size); + buf_v.resize(v_size); + + ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size()); + ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size()); + + // batch move [i, i+nm) to [id, id+nm) + // note: cells can move only to a lower index + for (uint32_t i = 0; i < n_kv; ++i) { + const uint32_t id = ids[i]; + + if (i == id || id == n_kv) { + continue; + } + + uint32_t nm = 1; + + while (i + nm < n_kv && ids[i + nm] == id + nm) { + nm++; + } + + // move keys + { + const int64_t os = i*k_size_row; + const int64_t od = id*k_size_row; + + memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row); + } + + // move values (note: they are transposed) + { + const int64_t os = i; + const int64_t od = id; + + for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { + memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el); + } + } + + i += nm - 1; + } + + ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size()); + ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size()); + } +#else + // ggml_graph defrag + + ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids); + + llama_graph_compute(lctx, gf, lctx.cparams.n_threads); +#endif + + //const int64_t t_end = ggml_time_us(); + + //LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0); +} + +static void llama_kv_cache_update_internal(struct llama_context & lctx) { + // apply K-shift if needed + if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) { + llama_set_k_shift(lctx); + + { + ggml_cgraph * gf = llama_build_graph_k_shift(lctx); + + llama_graph_compute(lctx, gf, lctx.cparams.n_threads); + } + + { + auto & kv_self = lctx.kv_self; + + kv_self.has_shift = false; + + for (uint32_t i = 0; i < kv_self.size; ++i) { + kv_self.cells[i].delta = 0; + } + } + } + + // defragment the KV cache if needed + if (lctx.kv_self.do_defrag) { + llama_kv_cache_defrag_internal(lctx); + + lctx.kv_self.do_defrag = false; + } +} + // // tokenizer // @@ -8495,37 +9208,46 @@ struct llm_tokenizer_wpm { } std::vector preprocess(const std::string & text) { - std::string ori_str = normalize(text); - uint64_t ori_size = ori_str.size(); + // normalalization form D + std::vector codepoints = codepoints_from_utf8(text); + std::vector nfd_codepoints; + for (uint32_t code : codepoints) { + auto it = nfd_map.equal_range(code); + if (it.first != it.second) { + for (auto jt = it.first; jt != it.second; jt++) { + nfd_codepoints.push_back(jt->second); + } + } else { + nfd_codepoints.push_back(code); + } + } - // single punct / single symbol / single digit - // baseline: add whitespace on the left and right of punct and chinese characters - std::vector words; + // strip accents, strip control, uniformize whitespace, + // to lowercase, pad chinese characters, pad punctuation std::string new_str = ""; - uint64_t i = 0; - while (i < ori_size) { - int utf_char_len = utf8_len(ori_str[i]); - if ((utf_char_len == 1) && ispunct(ori_str[i])) { - new_str += " "; - new_str += ori_str[i]; - new_str += " "; - i += 1; + for (uint32_t code : nfd_codepoints) { + int type = codepoint_type(code); + if (type == CODEPOINT_TYPE_ACCENT_MARK || type == CODEPOINT_TYPE_CONTROL) { + continue; } - else if ((utf_char_len == 3) && is_chinese_char(ori_str.substr(i, 3))) { - new_str += " "; - new_str += ori_str.substr(i, 3); - new_str += " "; - i += 3; + code = to_lower(code); + if (type == CODEPOINT_TYPE_WHITESPACE) { + code = ' '; } - else { - new_str += ori_str[i]; - i += 1; + std::string s = codepoint_to_utf8(code); + if (type == CODEPOINT_TYPE_PUNCTUATION || is_ascii_punct(code) || is_chinese_char(code)) { + new_str += " "; + new_str += s; + new_str += " "; + } else { + new_str += s; } } // split by whitespace uint64_t l = 0; uint64_t r = 0; + std::vector words; while (r < new_str.size()) { // if is whitespace if (isspace(new_str[r])) { @@ -8543,47 +9265,21 @@ struct llm_tokenizer_wpm { return words; } - std::string normalize(const std::string & text) { - // TODO: handle chinese characters? https://github.com/huggingface/tokenizers/blob/ef5f50605ddf9f8caef1598c0e4853862b9707a7/tokenizers/src/normalizers/bert.rs#L98 - std::string text2 = strip_accents(text); - for (size_t i = 0; i < text2.size(); i += utf8_len(text2[i])) { - char c = text2[i]; - if (c >= 'A' && c <= 'Z') { - text2[i] = c - 'A' + 'a'; - } + uint32_t to_lower(uint32_t code) { + static const std::locale locale("en_US.UTF-8"); +#if defined(_WIN32) + if (code > 0xFFFF) { + return code; } - return text2; +#endif + return std::tolower(wchar_t(code), locale); } - bool is_chinese_char(const std::string & str) { - int len = str.length(); - unsigned int codepoint = 0; - int num_bytes = 0; - int i = 0; - unsigned char ch = static_cast(str[i]); - if (ch <= 0x7f) { - codepoint = ch; - num_bytes = 1; - } else if ((ch >> 5) == 0x06) { - codepoint = ch & 0x1f; - num_bytes = 2; - } else if ((ch >> 4) == 0x0e) { - codepoint = ch & 0x0f; - num_bytes = 3; - } else if ((ch >> 3) == 0x1e) { - codepoint = ch & 0x07; - num_bytes = 4; - } - for (int j = 1; j < num_bytes; ++j) { - if (i + j >= len) { - return false; // incomplete UTF-8 character - } - unsigned char next_ch = static_cast(str[i + j]); - if ((next_ch >> 6) != 0x02) { - return false; // invalid trailing byte - } - codepoint = (codepoint << 6) | (next_ch & 0x3f); - } + bool is_ascii_punct(uint32_t code) { + return code < 256 && ispunct(code); + } + + bool is_chinese_char(uint32_t codepoint) { if ((codepoint >= 0x4E00 && codepoint <= 0x9FFF) || (codepoint >= 0x3400 && codepoint <= 0x4DBF) || (codepoint >= 0x20000 && codepoint <= 0x2A6DF) || @@ -8599,41 +9295,6 @@ struct llm_tokenizer_wpm { return false; } - std::string strip_accents(const std::string & input_string) { - std::string resultString; - std::map accent_map = { - {"À", 'A'}, {"Á", 'A'}, {"Â", 'A'}, {"Ã", 'A'}, {"Ä", 'A'}, {"Å", 'A'}, - {"à", 'a'}, {"á", 'a'}, {"â", 'a'}, {"ã", 'a'}, {"ä", 'a'}, {"å", 'a'}, - {"È", 'E'}, {"É", 'E'}, {"Ê", 'E'}, {"Ë", 'E'}, {"è", 'e'}, {"é", 'e'}, - {"ê", 'e'}, {"ë", 'e'}, {"Ì", 'I'}, {"Í", 'I'}, {"Î", 'I'}, {"Ï", 'I'}, - {"ì", 'i'}, {"í", 'i'}, {"î", 'i'}, {"ï", 'i'}, {"Ò", 'O'}, {"Ó", 'O'}, - {"Ô", 'O'}, {"Õ", 'O'}, {"Ö", 'O'}, {"ò", 'o'}, {"ó", 'o'}, {"ô", 'o'}, - {"õ", 'o'}, {"ö", 'o'}, {"Ù", 'U'}, {"Ú", 'U'}, {"Û", 'U'}, {"Ü", 'U'}, - {"ù", 'u'}, {"ú", 'u'}, {"û", 'u'}, {"ü", 'u'}, {"Ý", 'Y'}, {"ý", 'y'}, - {"Ç", 'C'}, {"ç", 'c'}, {"Ñ", 'N'}, {"ñ", 'n'}, - }; - - for (size_t i = 0; i < input_string.length();) { - int len = utf8_len(input_string[i]); - std::string curChar = input_string.substr(i, len); - auto iter = accent_map.find(curChar); - if (iter != accent_map.end()) { - resultString += iter->second; - } else { - resultString += curChar; - } - i += len; - } - - return resultString; - } - - static size_t utf8_len(char src) { - const size_t lookup[] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4}; - uint8_t highbits = static_cast(src) >> 4; - return lookup[highbits]; - } - const llama_vocab & vocab; }; @@ -9667,10 +10328,6 @@ void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * cand } } -void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) { - llama_sample_temp(ctx, candidates_p, temp); -} - void llama_sample_repetition_penalties( struct llama_context * ctx, llama_token_data_array * candidates, @@ -9797,38 +10454,6 @@ void llama_sample_apply_guidance( ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } -void llama_sample_classifier_free_guidance( - struct llama_context * ctx, - llama_token_data_array * candidates, - struct llama_context * guidance_ctx, - float scale) { - GGML_ASSERT(ctx); - int64_t t_start_sample_us; - - t_start_sample_us = ggml_time_us(); - const size_t n_vocab = llama_n_vocab(llama_get_model(ctx)); - - GGML_ASSERT(n_vocab == candidates->size); - GGML_ASSERT(!candidates->sorted); - - std::vector logits_base(n_vocab); - for (size_t i = 0; i < n_vocab; ++i) { - logits_base[i] = candidates->data[i].logit; - } - - float * logits_guidance = llama_get_logits(guidance_ctx); - - ctx->t_sample_us += ggml_time_us() - t_start_sample_us; - llama_sample_apply_guidance(ctx, logits_base.data(), logits_guidance, scale); - t_start_sample_us = ggml_time_us(); - - for (size_t i = 0; i < n_vocab; ++i) { - candidates->data[i].logit = logits_base[i]; - } - - ctx->t_sample_us += ggml_time_us() - t_start_sample_us; -} - llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) { GGML_ASSERT(ctx); @@ -10262,7 +10887,7 @@ struct quantize_state_internal { {} }; -static void llama_convert_tensor_internal( +static void llama_tensor_dequantize_internal( struct ggml_tensor * tensor, std::vector> & output, std::vector & workers, const size_t nelements, const int nthread ) { @@ -10351,36 +10976,55 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty return std::make_pair(i_layer, n_layer); }; - if (name == tn(LLM_TENSOR_OUTPUT, "weight")) { + // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings + // with the quantization of the output tensor + if (name == tn(LLM_TENSOR_OUTPUT, "weight") || + (LLM_TENSOR_NAMES.at(arch).find(LLM_TENSOR_OUTPUT) == LLM_TENSOR_NAMES.at(arch).end() && name == "token_embd.weight")) { int nx = tensor->ne[0]; if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) { new_type = GGML_TYPE_Q8_0; } - else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) { + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS || + ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) { new_type = GGML_TYPE_Q5_K; } else if (new_type != GGML_TYPE_Q8_0) { new_type = GGML_TYPE_Q6_K; } } else if (name == "token_embd.weight") { - if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) { + if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || + ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) { new_type = GGML_TYPE_Q2_K; } - else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) { - new_type = GGML_TYPE_Q4_K; + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) { + new_type = GGML_TYPE_IQ3_S; } - } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) { + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) { + new_type = GGML_TYPE_IQ3_S; + } + } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || + ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) { if (name.find("attn_v.weight") != std::string::npos) { if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K; - else new_type = GGML_TYPE_Q2_K; + else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K; ++qs.i_attention_wv; } + else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) { + new_type = GGML_TYPE_Q4_K; + } else if (name.find("ffn_down") != std::string::npos) { - if (qs.i_ffn_down < qs.n_ffn_down/8) new_type = GGML_TYPE_Q2_K; + if (qs.i_ffn_down < qs.n_ffn_down/8) { + new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K; + } ++qs.i_ffn_down; } else if (name.find("attn_output.weight") != std::string::npos) { - if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) new_type = GGML_TYPE_IQ2_XXS; + if (qs.model.hparams.n_expert == 8) { + new_type = GGML_TYPE_Q5_K; + } else { + if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) new_type = GGML_TYPE_IQ2_XXS; + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S; + } } } else if (name.find("attn_v.weight") != std::string::npos) { if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) { @@ -10390,12 +11034,27 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty new_type = GGML_TYPE_Q4_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) { - new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_Q3_K : GGML_TYPE_IQ3_XXS; + new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS; + } + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_S && qs.model.hparams.n_gqa() >= 4) { + new_type = GGML_TYPE_Q4_K; + } + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) { + new_type = GGML_TYPE_Q4_K; + } + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_S && qs.model.hparams.n_gqa() >= 4) { + new_type = GGML_TYPE_Q4_K; + } + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) { + new_type = GGML_TYPE_Q4_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) { new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; + else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) { + new_type = GGML_TYPE_Q5_K; + } else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) && use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K; @@ -10419,14 +11078,24 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty // TODO: explore better strategies new_type = GGML_TYPE_Q8_0; } - else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS) { - new_type = GGML_TYPE_Q2_K; + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) { + new_type = GGML_TYPE_IQ3_XXS; + } + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) { + new_type = GGML_TYPE_IQ2_S; + } + } else if (name.find("attn_q.weight") != std::string::npos) { + if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) { + new_type = GGML_TYPE_IQ3_XXS; + } + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) { + new_type = GGML_TYPE_IQ2_S; } } else if (name.find("ffn_down") != std::string::npos) { auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str()); int i_layer = info.first, n_layer = info.second; if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K; - else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS) { + else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) { if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) { @@ -10437,6 +11106,10 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K; } + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 || + (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) { + new_type = GGML_TYPE_Q4_K; + } else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) { new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K; } @@ -10448,6 +11121,9 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K; } } + else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) { + new_type = GGML_TYPE_Q5_K; + } else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) { new_type = GGML_TYPE_Q5_K; @@ -10463,39 +11139,43 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty } else if (name.find("attn_output.weight") != std::string::npos) { if (arch != LLM_ARCH_FALCON) { if (qs.model.hparams.n_expert == 8) { - if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS || - ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || - ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) { + if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS || + ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || + ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S || + ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) { new_type = GGML_TYPE_Q5_K; } } else { - if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K; - else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_Q3_K; - else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) new_type = GGML_TYPE_Q4_K; - else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; + if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K; + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S; + else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K; + else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K; + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K; } } else { if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K; } } else if (name.find("attn_qkv.weight") != std::string::npos) { - if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K; + if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) { + new_type = GGML_TYPE_Q4_K; + } else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K; } else if (name.find("ffn_gate") != std::string::npos) { auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str()); int i_layer = info.first, n_layer = info.second; - if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS && !use_more_bits(i_layer, n_layer)) { - new_type = GGML_TYPE_Q2_K; + if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) { + new_type = GGML_TYPE_IQ3_XXS; } ++qs.i_ffn_gate; } else if (name.find("ffn_up") != std::string::npos) { auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str()); int i_layer = info.first, n_layer = info.second; - if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS && !use_more_bits(i_layer, n_layer)) { - new_type = GGML_TYPE_Q2_K; + if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) { + new_type = GGML_TYPE_IQ3_XXS; } ++qs.i_ffn_up; } @@ -10513,9 +11193,9 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty //} bool convert_incompatible_tensor = false; if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K || - new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || - new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || - new_type == GGML_TYPE_IQ3_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) { + new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS || + new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S || + new_type == GGML_TYPE_IQ3_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || new_type == GGML_TYPE_IQ3_S) { int nx = tensor->ne[0]; int ny = tensor->ne[1]; if (nx % QK_K != 0) { @@ -10529,13 +11209,16 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty switch (new_type) { case GGML_TYPE_IQ2_XXS: case GGML_TYPE_IQ2_XS: + case GGML_TYPE_IQ2_S: case GGML_TYPE_IQ3_XXS: + case GGML_TYPE_IQ3_S: case GGML_TYPE_IQ1_S: - case GGML_TYPE_Q2_K: new_type = GGML_TYPE_Q4_0; break; - case GGML_TYPE_Q3_K: new_type = GGML_TYPE_Q4_1; break; - case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break; - case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break; - case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break; + case GGML_TYPE_Q2_K: + case GGML_TYPE_Q3_K: + case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break; + case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break; + case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break; + case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break; default: throw std::runtime_error("\nUnsupported tensor size encountered\n"); } LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type)); @@ -10545,6 +11228,46 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty return new_type; } +static int32_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int chunk_size, int nrows, int n_per_row, int64_t * hist_cur, const float * imatrix, std::vector & workers, const int nthread) { + std::mutex mutex; + int counter = 0; + size_t new_size = 0; + if (nthread < 2) { + // single-thread + return ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, hist_cur, imatrix); + } + auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, chunk_size, + nrows, n_per_row, imatrix]() { + std::array local_hist = {}; + const int nrows_per_chunk = chunk_size / n_per_row; + size_t local_size = 0; + while (true) { + std::unique_lock lock(mutex); + int first_row = counter; counter += nrows_per_chunk; + if (first_row >= nrows) { + if (local_size > 0) { + for (int j=0; jftype; @@ -10561,7 +11284,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s // K-quants case LLAMA_FTYPE_MOSTLY_Q2_K_S: case LLAMA_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_TYPE_Q2_K; break; - case LLAMA_FTYPE_MOSTLY_Q3_K_XS: + case LLAMA_FTYPE_MOSTLY_IQ3_XS: quantized_type = GGML_TYPE_IQ3_S; break; case LLAMA_FTYPE_MOSTLY_Q3_K_S: case LLAMA_FTYPE_MOSTLY_Q3_K_M: case LLAMA_FTYPE_MOSTLY_Q3_K_L: quantized_type = GGML_TYPE_Q3_K; break; @@ -10572,8 +11295,14 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break; case LLAMA_FTYPE_MOSTLY_IQ2_XXS: quantized_type = GGML_TYPE_IQ2_XXS; break; case LLAMA_FTYPE_MOSTLY_IQ2_XS: quantized_type = GGML_TYPE_IQ2_XS; break; + case LLAMA_FTYPE_MOSTLY_IQ2_S: quantized_type = GGML_TYPE_IQ2_XS; break; + case LLAMA_FTYPE_MOSTLY_IQ2_M: quantized_type = GGML_TYPE_IQ2_S; break; case LLAMA_FTYPE_MOSTLY_IQ3_XXS: quantized_type = GGML_TYPE_IQ3_XXS; break; - case LLAMA_FTYPE_MOSTLY_IQ1_S: quantized_type = GGML_TYPE_IQ1_S ; break; + case LLAMA_FTYPE_MOSTLY_IQ1_S: quantized_type = GGML_TYPE_IQ1_S; break; + case LLAMA_FTYPE_MOSTLY_IQ4_NL: quantized_type = GGML_TYPE_IQ4_NL; break; + case LLAMA_FTYPE_MOSTLY_IQ4_XS: quantized_type = GGML_TYPE_IQ4_XS; break; + case LLAMA_FTYPE_MOSTLY_IQ3_S: quantized_type = GGML_TYPE_IQ3_S; break; + case LLAMA_FTYPE_MOSTLY_IQ3_M: quantized_type = GGML_TYPE_IQ3_S; break; default: throw std::runtime_error(format("invalid output file type %d\n", ftype)); } @@ -10651,7 +11380,6 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s std::vector workers; workers.reserve(nthread); - std::mutex mutex; int idx = 0; @@ -10703,7 +11431,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s quantize &= !params->only_copy; // do not quantize expert gating tensors - quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_FFN_GATE_INP, "weight"); + // NOTE: can't use LLM_TN here because the layer number is not known + quantize &= name.find("ffn_gate_inp.weight") == std::string::npos; // do not quantize positional embeddings and token types (BERT) quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight"); @@ -10747,6 +11476,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s } if ((new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_XS || + new_type == GGML_TYPE_IQ2_S || new_type == GGML_TYPE_IQ1_S || (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) { LLAMA_LOG_ERROR("\n\n============================================================\n"); @@ -10763,7 +11493,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) { throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type))); } else { - llama_convert_tensor_internal(tensor, f32_conv_buf, workers, nelements, nthread); + llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread); f32_data = (float *) f32_conv_buf.data(); } @@ -10784,41 +11514,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s const int nchunk = (nelements + chunk_size - 1)/chunk_size; const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1; - if (nthread_use < 2) { - new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, hist_cur.data(), imatrix); - } else { - int counter = 0; - new_size = 0; - auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, chunk_size, - nrows, n_per_row, imatrix]() { - std::array local_hist = {}; - const int nrows_per_chunk = chunk_size / n_per_row; - size_t local_size = 0; - while (true) { - std::unique_lock lock(mutex); - int first_row = counter; counter += nrows_per_chunk; - if (first_row >= nrows) { - if (local_size > 0) { - for (int j=0; j %8.2f MiB", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0); int64_t tot_count = 0; @@ -11168,7 +11864,7 @@ static int llama_apply_lora_from_file_internal( struct llama_model_params llama_model_default_params() { struct llama_model_params result = { /*.n_gpu_layers =*/ 0, - /*.split_mode =*/ LLAMA_SPLIT_LAYER, + /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER, /*.main_gpu =*/ 0, /*.tensor_split =*/ nullptr, /*.progress_callback =*/ nullptr, @@ -11194,7 +11890,8 @@ struct llama_context_params llama_context_default_params() { /*.n_batch =*/ 512, /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS, - /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_UNSPECIFIED, + /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED, + /*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED, /*.rope_freq_base =*/ 0.0f, /*.rope_freq_scale =*/ 0.0f, /*.yarn_ext_factor =*/ -1.0f, @@ -11202,15 +11899,16 @@ struct llama_context_params llama_context_default_params() { /*.yarn_beta_fast =*/ 32.0f, /*.yarn_beta_slow =*/ 1.0f, /*.yarn_orig_ctx =*/ 0, + /*.defrag_thold =*/ -1.0f, /*.cb_eval =*/ nullptr, /*.cb_eval_user_data =*/ nullptr, /*.type_k =*/ GGML_TYPE_F16, /*.type_v =*/ GGML_TYPE_F16, - /*.mul_mat_q =*/ true, /*.logits_all =*/ false, /*.embedding =*/ false, /*.offload_kqv =*/ true, - /*.do_pooling =*/ true, + /*.abort_callback =*/ nullptr, + /*.abort_callback_data =*/ nullptr, }; return result; @@ -11262,15 +11960,6 @@ bool llama_supports_gpu_offload(void) { #endif } -// deprecated: -bool llama_mmap_supported(void) { - return llama_supports_mmap(); -} - -bool llama_mlock_supported(void) { - return llama_supports_mlock(); -} - void llama_backend_init(void) { ggml_time_init(); @@ -11369,9 +12058,9 @@ struct llama_context * llama_new_context_with_model( cparams.yarn_attn_factor = params.yarn_attn_factor; cparams.yarn_beta_fast = params.yarn_beta_fast; cparams.yarn_beta_slow = params.yarn_beta_slow; - cparams.mul_mat_q = params.mul_mat_q; + cparams.defrag_thold = params.defrag_thold; cparams.offload_kqv = params.offload_kqv; - cparams.do_pooling = params.do_pooling; + cparams.pooling_type = params.pooling_type; cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx; cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base; @@ -11385,16 +12074,24 @@ struct llama_context * llama_new_context_with_model( cparams.cb_eval_user_data = params.cb_eval_user_data; auto rope_scaling_type = params.rope_scaling_type; - if (rope_scaling_type == LLAMA_ROPE_SCALING_UNSPECIFIED) { + if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) { rope_scaling_type = hparams.rope_scaling_type_train; } - if (rope_scaling_type == LLAMA_ROPE_SCALING_NONE) { + if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) { cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none } if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set' - cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_YARN ? 1.0f : 0.0f; + cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f; + } + + if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) { + if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) { + cparams.pooling_type = LLAMA_POOLING_TYPE_NONE; + } else { + cparams.pooling_type = hparams.pooling_type; + } } if (params.seed == LLAMA_DEFAULT_SEED) { @@ -11405,8 +12102,11 @@ struct llama_context * llama_new_context_with_model( LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base); LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale); - ctx->rng = std::mt19937(params.seed); - ctx->logits_all = params.logits_all; + ctx->abort_callback = params.abort_callback; + ctx->abort_callback_data = params.abort_callback_data; + + ctx->rng = std::mt19937(params.seed); + ctx->logits_all = params.logits_all; const ggml_type type_k = params.type_k; const ggml_type type_v = params.type_v; @@ -11428,8 +12128,8 @@ struct llama_context * llama_new_context_with_model( } #elif defined(GGML_USE_CUBLAS) if (model->n_gpu_layers > 0) { - // with split_mode LLAMA_SPLIT_NONE or LLAMA_SPLIT_ROW, only the main GPU backend is used - if (model->split_mode == LLAMA_SPLIT_NONE || model->split_mode == LLAMA_SPLIT_ROW) { + // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used + if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) { ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu); if (backend == nullptr) { LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu); @@ -11438,7 +12138,7 @@ struct llama_context * llama_new_context_with_model( } ctx->backends.push_back(backend); } else { - // LLAMA_SPLIT_LAYER requires a backend for each GPU + // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) { ggml_backend_t backend = ggml_backend_cuda_init(device); if (backend == nullptr) { @@ -11464,13 +12164,31 @@ struct llama_context * llama_new_context_with_model( } #elif defined(GGML_USE_SYCL) if (model->n_gpu_layers > 0) { - ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu); - if (backend == nullptr) { - LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d backend\n", __func__, model->main_gpu); - llama_free(ctx); - return nullptr; + // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used + if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) { + int main_gpu_index = ggml_backend_sycl_get_device_index(model->main_gpu); + ggml_backend_t backend = ggml_backend_sycl_init(main_gpu_index); + if (backend == nullptr) { + LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d)backend\n", __func__, model->main_gpu, main_gpu_index); + llama_free(ctx); + return nullptr; + } + ctx->backends.push_back(backend); + } else { + // LLAMA_SPLIT_LAYER requires a backend for each GPU + int id_list[GGML_SYCL_MAX_DEVICES]; + ggml_sycl_get_gpu_list(id_list, GGML_SYCL_MAX_DEVICES); + for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) { + int device_id = id_list[i]; + ggml_backend_t backend = ggml_backend_sycl_init(i); + if (backend == nullptr) { + LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d)backend\n", __func__, device_id, i); + llama_free(ctx); + return nullptr; + } + ctx->backends.push_back(backend); + } } - ctx->backends.push_back(backend); } #elif defined(GGML_USE_KOMPUTE) if (model->n_gpu_layers > 0) { @@ -11573,7 +12291,7 @@ struct llama_context * llama_new_context_with_model( } // buffer used to store the computation graph and the tensor meta data - ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead()); + ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false)); ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES); @@ -11642,6 +12360,50 @@ enum llama_vocab_type llama_vocab_type(const struct llama_model * model) { return model->vocab.type; } +enum llama_rope_type llama_rope_type(const struct llama_model * model) { + switch (model->arch) { + // these models do not use RoPE + case LLM_ARCH_GPT2: + case LLM_ARCH_GPTJ: + case LLM_ARCH_GPTNEOX: + case LLM_ARCH_MPT: + case LLM_ARCH_REFACT: + case LLM_ARCH_BLOOM: + return LLAMA_ROPE_TYPE_NONE; + + // use what we call a normal RoPE, operating on pairs of consecutive head values + case LLM_ARCH_LLAMA: + case LLM_ARCH_BAICHUAN: + case LLM_ARCH_STARCODER: + case LLM_ARCH_PLAMO: + case LLM_ARCH_CODESHELL: + case LLM_ARCH_ORION: + case LLM_ARCH_INTERNLM2: + case LLM_ARCH_MINICPM: + return LLAMA_ROPE_TYPE_NORM; + + // the pairs of head values are offset by n_rot/2 + case LLM_ARCH_FALCON: + case LLM_ARCH_PERSIMMON: + case LLM_ARCH_BERT: + case LLM_ARCH_NOMIC_BERT: + case LLM_ARCH_STABLELM: + case LLM_ARCH_QWEN: + case LLM_ARCH_QWEN2: + case LLM_ARCH_PHI2: + case LLM_ARCH_GEMMA: + case LLM_ARCH_STARCODER2: + return LLAMA_ROPE_TYPE_NEOX; + + // all model arches should be listed explicitly here + case LLM_ARCH_UNKNOWN: + GGML_ASSERT(false && "unknown architecture"); + break; + } + + return LLAMA_ROPE_TYPE_NONE; +} + int32_t llama_n_vocab(const struct llama_model * model) { return model->vocab.id_to_token.size(); } @@ -11744,15 +12506,6 @@ uint32_t llama_model_quantize( } } -int32_t llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) { - try { - return llama_apply_lora_from_file_internal(ctx->model, path_lora, scale, path_base_model, n_threads); - } catch (const std::exception & err) { - LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what()); - return 1; - } -} - int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) { try { return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads); @@ -11884,12 +12637,12 @@ void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) { llama_kv_cache_seq_keep(ctx->kv_self, seq_id); } -void llama_kv_cache_seq_shift(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) { +void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) { if (delta == 0) { return; } - llama_kv_cache_seq_shift(ctx->kv_self, seq_id, p0, p1, delta); + llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta); } void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) { @@ -11900,6 +12653,19 @@ void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, lla llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d); } +llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) { + return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id); +} + +void llama_kv_cache_defrag(struct llama_context * ctx) { + llama_kv_cache_defrag(ctx->kv_self); +} + +void llama_kv_cache_update(struct llama_context * ctx) { + llama_kv_cache_update_internal(*ctx); +} + + // Returns the *maximum* size of the state size_t llama_get_state_size(const struct llama_context * ctx) { // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state. @@ -11911,9 +12677,14 @@ size_t llama_get_state_size(const struct llama_context * ctx) { const size_t s_logits = ctx->logits.capacity() * sizeof(float); const size_t s_embedding_size = sizeof(size_t); const size_t s_embedding = ctx->embedding.size() * sizeof(float); - const size_t s_kv_size = sizeof(size_t); - const size_t s_kv_ntok = sizeof(int); + const size_t s_kv_buf_size = sizeof(size_t); + const size_t s_kv_head = sizeof(uint32_t); + const size_t s_kv_size = sizeof(uint32_t); + const size_t s_kv_used = sizeof(uint32_t); const size_t s_kv = ctx->kv_self.total_size(); + // TODO: assume the max is more than 1 seq_id per KV cell + const size_t s_kv_cell = sizeof(llama_pos) + sizeof(size_t) + sizeof(llama_seq_id); + const size_t s_kv_cells = ctx->kv_self.size * s_kv_cell; const size_t s_total = ( + s_rng_size @@ -11922,9 +12693,12 @@ size_t llama_get_state_size(const struct llama_context * ctx) { + s_logits + s_embedding_size + s_embedding + + s_kv_buf_size + + s_kv_head + s_kv_size - + s_kv_ntok + + s_kv_used + s_kv + + s_kv_cells ); return s_total; @@ -12024,15 +12798,13 @@ static void llama_copy_state_data_internal(struct llama_context * ctx, llama_dat { const auto & kv_self = ctx->kv_self; const auto & hparams = ctx->model.hparams; - const auto & cparams = ctx->cparams; - const auto n_layer = hparams.n_layer; - const auto n_embd_k_gqa = hparams.n_embd_k_gqa(); - const auto n_embd_v_gqa = hparams.n_embd_v_gqa(); - const auto n_ctx = cparams.n_ctx; + const uint32_t n_layer = hparams.n_layer; + const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(); + const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(); const size_t kv_buf_size = kv_self.total_size(); - const uint32_t kv_head = kv_self.head; + const uint32_t kv_head = llama_kv_cache_cell_max(kv_self); const uint32_t kv_size = kv_self.size; const uint32_t kv_used = kv_self.used; @@ -12042,24 +12814,27 @@ static void llama_copy_state_data_internal(struct llama_context * ctx, llama_dat data_ctx->write(&kv_used, sizeof(kv_used)); if (kv_buf_size) { - const size_t elt_size = ggml_element_size(kv_self.k_l[0]); - std::vector tmp_buf; for (int il = 0; il < (int) n_layer; ++il) { - tmp_buf.resize(elt_size*n_embd_k_gqa*kv_head); + const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head); + + tmp_buf.resize(k_size); ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size()); data_ctx->write(tmp_buf.data(), tmp_buf.size()); // v is not contiguous, copy row by row - tmp_buf.resize(elt_size*kv_head); + const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head); + const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_size); + + tmp_buf.resize(v_row_size); for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) { - ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*elt_size*n_ctx, tmp_buf.size()); + ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*v_row_stride, tmp_buf.size()); data_ctx->write(tmp_buf.data(), tmp_buf.size()); } } } - for (uint32_t i = 0; i < kv_size; ++i) { + for (uint32_t i = 0; i < kv_head; ++i) { const auto & cell = kv_self.cells[i]; const llama_pos pos = cell.pos; @@ -12083,8 +12858,8 @@ size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) { } // Sets the state reading from the specified source address -size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) { - uint8_t * inp = src; +size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) { + const uint8_t * inp = src; // set rng { @@ -12093,7 +12868,7 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) { GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE); - std::string rng_str((char *)inp, rng_size); inp += rng_size; + std::string rng_str((const char *)inp, rng_size); inp += rng_size; std::istringstream rng_ss(rng_str); rng_ss >> ctx->rng; @@ -12135,12 +12910,10 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) { { const auto & kv_self = ctx->kv_self; const auto & hparams = ctx->model.hparams; - const auto & cparams = ctx->cparams; - const int n_layer = hparams.n_layer; - const int n_embd_k_gqa = hparams.n_embd_k_gqa(); - const int n_embd_v_gqa = hparams.n_embd_v_gqa(); - const int n_ctx = cparams.n_ctx; + const uint32_t n_layer = hparams.n_layer; + const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(); + const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(); size_t kv_buf_size; uint32_t kv_head; @@ -12155,29 +12928,32 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) { if (kv_buf_size) { GGML_ASSERT(kv_self.total_size() == kv_buf_size); - const size_t elt_size = ggml_element_size(kv_self.k_l[0]); - for (int il = 0; il < (int) n_layer; ++il) { - size_t k_size = elt_size*n_embd_k_gqa*kv_head; + const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head); + ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size); inp += k_size; // v is not contiguous, copy row by row - size_t v_row_size = elt_size*kv_head; + const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head); + const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_size); + for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) { - ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*elt_size*n_ctx, v_row_size); + ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*v_row_stride, v_row_size); inp += v_row_size; } } } + GGML_ASSERT(kv_self.size == kv_size); + ctx->kv_self.head = kv_head; ctx->kv_self.size = kv_size; ctx->kv_self.used = kv_used; ctx->kv_self.cells.resize(kv_size); - for (uint32_t i = 0; i < kv_size; ++i) { + for (uint32_t i = 0; i < kv_head; ++i) { llama_pos pos; size_t seq_id_size; @@ -12193,6 +12969,11 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) { ctx->kv_self.cells[i].seq_id.insert(seq_id); } } + + for (uint32_t i = kv_head; i < kv_size; ++i) { + ctx->kv_self.cells[i].pos = -1; + ctx->kv_self.cells[i].seq_id.clear(); + } } const size_t nread = inp - src; @@ -12285,43 +13066,16 @@ bool llama_save_session_file(struct llama_context * ctx, const char * path_sessi return true; } -int llama_eval( - struct llama_context * ctx, - llama_token * tokens, - int32_t n_tokens, - int32_t n_past) { - llama_kv_cache_seq_rm(ctx->kv_self, -1, n_past, -1); - - const int ret = llama_decode_internal(*ctx, llama_batch_get_one(tokens, n_tokens, n_past, 0)); - if (ret < 0) { - LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret); - } - - return ret; -} - -int llama_eval_embd( - struct llama_context * ctx, - float * embd, - int32_t n_tokens, - int32_t n_past) { - llama_kv_cache_seq_rm(ctx->kv_self, -1, n_past, -1); - - llama_batch batch = { n_tokens, nullptr, embd, nullptr, nullptr, nullptr, nullptr, n_past, 1, 0, }; - - const int ret = llama_decode_internal(*ctx, batch); - if (ret < 0) { - LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret); - } - - return ret; -} - void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) { ctx->cparams.n_threads = n_threads; ctx->cparams.n_threads_batch = n_threads_batch; } +void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) { + ctx->abort_callback = abort_callback; + ctx->abort_callback_data = abort_callback_data; +} + struct llama_batch llama_batch_get_one( llama_token * tokens, int32_t n_tokens, @@ -12627,6 +13381,37 @@ static int32_t llama_chat_apply_template_internal( if (add_ass) { ss << "<|assistant|>\n"; } + } else if (tmpl.find("bos_token + message['role']") != std::string::npos) { + // mlabonne/AlphaMonarch-7B template (the is included inside history) + for (auto message : chat) { + std::string bos = (message == chat.front()) ? "" : ""; // skip BOS for first message + ss << bos << message->role << "\n" << message->content << "\n"; + } + if (add_ass) { + ss << "assistant\n"; + } + } else if (tmpl.find("") != std::string::npos) { + // google/gemma-7b-it + std::string system_prompt = ""; + for (auto message : chat) { + std::string role(message->role); + if (role == "system") { + // there is no system message for gemma, but we will merge it with user prompt, so nothing is broken + system_prompt = trim(message->content); + continue; + } + // in gemma, "assistant" is "model" + role = role == "assistant" ? "model" : message->role; + ss << "" << role << "\n"; + if (!system_prompt.empty() && role != "model") { + ss << system_prompt << "\n\n"; + system_prompt = ""; + } + ss << trim(message->content) << "\n"; + } + if (add_ass) { + ss << "model\n"; + } } else { // template not supported return -1; @@ -12649,7 +13434,7 @@ LLAMA_API int32_t llama_chat_apply_template( // load template from model std::vector model_template(2048, 0); // longest known template is about 1200 bytes std::string template_key = "tokenizer.chat_template"; - int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), curr_tmpl.size()); + int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size()); if (res < 0) { // worst case: there is no information about template, we will use chatml by default curr_tmpl = "<|im_start|>"; // see llama_chat_apply_template_internal diff --git a/llama.h b/llama.h index 77a84c18a..70da4cb3f 100644 --- a/llama.h +++ b/llama.h @@ -64,6 +64,15 @@ extern "C" { LLAMA_VOCAB_TYPE_WPM = 2, // WordPiece }; + // note: these values should be synchronized with ggml_rope + // TODO: maybe move this enum to ggml.h (ggml_rope_type) + enum llama_rope_type { + LLAMA_ROPE_TYPE_NONE = -1, + LLAMA_ROPE_TYPE_NORM = 0, + LLAMA_ROPE_TYPE_NEOX = 2, + LLAMA_ROPE_TYPE_GLM = 4, + }; + enum llama_token_type { LLAMA_TOKEN_TYPE_UNDEFINED = 0, LLAMA_TOKEN_TYPE_NORMAL = 1, @@ -98,31 +107,38 @@ extern "C" { LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors - LLAMA_FTYPE_MOSTLY_Q3_K_XS = 22, // except 1d tensors + LLAMA_FTYPE_MOSTLY_IQ3_XS = 22, // except 1d tensors LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors + LLAMA_FTYPE_MOSTLY_IQ4_NL = 25, // except 1d tensors + LLAMA_FTYPE_MOSTLY_IQ3_S = 26, // except 1d tensors + LLAMA_FTYPE_MOSTLY_IQ3_M = 27, // except 1d tensors + LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors + LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors + LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file }; enum llama_rope_scaling_type { - LLAMA_ROPE_SCALING_UNSPECIFIED = -1, - LLAMA_ROPE_SCALING_NONE = 0, - LLAMA_ROPE_SCALING_LINEAR = 1, - LLAMA_ROPE_SCALING_YARN = 2, - LLAMA_ROPE_SCALING_MAX_VALUE = LLAMA_ROPE_SCALING_YARN, + LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1, + LLAMA_ROPE_SCALING_TYPE_NONE = 0, + LLAMA_ROPE_SCALING_TYPE_LINEAR = 1, + LLAMA_ROPE_SCALING_TYPE_YARN = 2, + LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_YARN, }; enum llama_pooling_type { - LLAMA_POOLING_NONE = 0, - LLAMA_POOLING_MEAN = 1, - LLAMA_POOLING_CLS = 2, + LLAMA_POOLING_TYPE_UNSPECIFIED = -1, + LLAMA_POOLING_TYPE_NONE = 0, + LLAMA_POOLING_TYPE_MEAN = 1, + LLAMA_POOLING_TYPE_CLS = 2, }; enum llama_split_mode { - LLAMA_SPLIT_NONE = 0, // single GPU - LLAMA_SPLIT_LAYER = 1, // split layers and KV across GPUs - LLAMA_SPLIT_ROW = 2, // split rows across GPUs + LLAMA_SPLIT_MODE_NONE = 0, // single GPU + LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs + LLAMA_SPLIT_MODE_ROW = 2, // split rows across GPUs }; typedef struct llama_token_data { @@ -170,9 +186,9 @@ extern "C" { } llama_batch; enum llama_model_kv_override_type { - LLAMA_KV_OVERRIDE_INT, - LLAMA_KV_OVERRIDE_FLOAT, - LLAMA_KV_OVERRIDE_BOOL, + LLAMA_KV_OVERRIDE_TYPE_INT, + LLAMA_KV_OVERRIDE_TYPE_FLOAT, + LLAMA_KV_OVERRIDE_TYPE_BOOL, }; struct llama_model_kv_override { @@ -221,7 +237,10 @@ extern "C" { uint32_t n_batch; // prompt processing maximum batch size uint32_t n_threads; // number of threads to use for generation uint32_t n_threads_batch; // number of threads to use for batch processing - int32_t rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type` + + enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type` + enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id + // (ignored if no pooling layer) // ref: https://github.com/ggerganov/llama.cpp/pull/2054 float rope_freq_base; // RoPE base frequency, 0 = from model @@ -231,6 +250,7 @@ extern "C" { float yarn_beta_fast; // YaRN low correction dim float yarn_beta_slow; // YaRN high correction dim uint32_t yarn_orig_ctx; // YaRN original context size + float defrag_thold; // defragment the KV cache if holes/size > thold, < 0 disabled (default) ggml_backend_sched_eval_callback cb_eval; void * cb_eval_user_data; @@ -239,11 +259,15 @@ extern "C" { enum ggml_type type_v; // data type for V cache // Keep the booleans together to avoid misalignment during copy-by-value. - bool mul_mat_q; // if true, use experimental mul_mat_q kernels (DEPRECATED - always true) - bool logits_all; // the llama_eval() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead) + bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead) bool embedding; // embedding mode only bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU - bool do_pooling; // whether to pool (sum) embedding results by sequence id (ignored if no pooling layer) + + // Abort callback + // if it returns true, execution of llama_decode() will be aborted + // currently works only with CPU execution + ggml_abort_callback abort_callback; + void * abort_callback_data; }; // model quantization parameters @@ -348,15 +372,13 @@ extern "C" { LLAMA_API bool llama_supports_mlock (void); LLAMA_API bool llama_supports_gpu_offload(void); - LLAMA_API DEPRECATED(bool llama_mmap_supported (void), "use llama_supports_mmap() instead"); - LLAMA_API DEPRECATED(bool llama_mlock_supported(void), "use llama_supports_mlock() instead"); - LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx); LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx); LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx); LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_model * model); + LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model); LLAMA_API int32_t llama_n_vocab (const struct llama_model * model); LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model); @@ -406,14 +428,6 @@ extern "C" { // The model needs to be reloaded before applying a new adapter, otherwise the adapter // will be applied on top of the previous one // Returns 0 on success - LLAMA_API DEPRECATED(int32_t llama_apply_lora_from_file( - struct llama_context * ctx, - const char * path_lora, - float scale, - const char * path_base_model, - int32_t n_threads), - "use llama_model_apply_lora_from_file instead"); - LLAMA_API int32_t llama_model_apply_lora_from_file( const struct llama_model * model, const char * path_lora, @@ -511,10 +525,12 @@ extern "C" { llama_seq_id seq_id); // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1) - // If the KV cache is RoPEd, the KV data is updated accordingly + // If the KV cache is RoPEd, the KV data is updated accordingly: + // - lazily on next llama_decode() + // - explicitly with llama_kv_cache_update() // p0 < 0 : [0, p1] // p1 < 0 : [p0, inf) - LLAMA_API void llama_kv_cache_seq_shift( + LLAMA_API void llama_kv_cache_seq_add( struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, @@ -522,7 +538,9 @@ extern "C" { llama_pos delta); // Integer division of the positions by factor of `d > 1` - // If the KV cache is RoPEd, the KV data is updated accordingly + // If the KV cache is RoPEd, the KV data is updated accordingly: + // - lazily on next llama_decode() + // - explicitly with llama_kv_cache_update() // p0 < 0 : [0, p1] // p1 < 0 : [p0, inf) LLAMA_API void llama_kv_cache_seq_div( @@ -532,6 +550,20 @@ extern "C" { llama_pos p1, int d); + // Returns the largest position present in the KV cache for the specified sequence + LLAMA_API llama_pos llama_kv_cache_seq_pos_max( + struct llama_context * ctx, + llama_seq_id seq_id); + + // Defragment the KV cache + // This will be applied: + // - lazily on next llama_decode() + // - explicitly with llama_kv_cache_update() + LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx); + + // Apply the KV cache updates (such as K-shifts, defragmentation, etc.) + LLAMA_API void llama_kv_cache_update(struct llama_context * ctx); + // // State / sessions // @@ -551,7 +583,7 @@ extern "C" { // Returns the number of bytes read LLAMA_API size_t llama_set_state_data( struct llama_context * ctx, - uint8_t * src); + const uint8_t * src); // Save/load session file LLAMA_API bool llama_load_session_file( @@ -571,27 +603,6 @@ extern "C" { // Decoding // - // Run the llama inference to obtain the logits and probabilities for the next token(s). - // tokens + n_tokens is the provided batch of new tokens to process - // n_past is the number of tokens to use from previous eval calls - // Returns 0 on success - // DEPRECATED: use llama_decode() instead - LLAMA_API DEPRECATED(int llama_eval( - struct llama_context * ctx, - llama_token * tokens, - int32_t n_tokens, - int32_t n_past), - "use llama_decode() instead"); - - // Same as llama_eval, but use float matrix input directly. - // DEPRECATED: use llama_decode() instead - LLAMA_API DEPRECATED(int llama_eval_embd( - struct llama_context * ctx, - float * embd, - int32_t n_tokens, - int32_t n_past), - "use llama_decode() instead"); - // Return batch for single sequence of tokens starting at pos_0 // // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it @@ -630,7 +641,10 @@ extern "C" { // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens) LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch); - // Token logits obtained from the last call to llama_eval() + // Set abort callback + LLAMA_API void llama_set_abort_callback(struct llama_context * ctx, ggml_abort_callback abort_callback, void * abort_callback_data); + + // Token logits obtained from the last call to llama_decode() // The logits for the last token are stored in the last row // Logits for which llama_batch.logits[i] == 0 are undefined // Rows: n_tokens provided with llama_batch @@ -707,7 +721,7 @@ extern "C" { /// Apply chat template. Inspired by hf apply_chat_template() on python. /// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model" - /// NOTE: This function only support some known jinja templates. It is not a jinja parser. + /// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template /// @param tmpl A Jinja template to use for this chat. If this is nullptr, the model’s default chat template will be used instead. /// @param chat Pointer to a list of multiple llama_chat_message /// @param n_msg Number of llama_chat_message in this chat @@ -765,13 +779,6 @@ extern "C" { float * logits_guidance, float scale); - LLAMA_API DEPRECATED(void llama_sample_classifier_free_guidance( - struct llama_context * ctx, - llama_token_data_array * candidates, - struct llama_context * guidance_ctx, - float scale), - "use llama_sample_apply_guidance() instead"); - /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits. LLAMA_API void llama_sample_softmax( struct llama_context * ctx, @@ -825,12 +832,6 @@ extern "C" { llama_token_data_array * candidates, float temp); - LLAMA_API DEPRECATED(void llama_sample_temperature( - struct llama_context * ctx, - llama_token_data_array * candidates, - float temp), - "use llama_sample_temp instead"); - /// @details Apply constraints from grammar LLAMA_API void llama_sample_grammar( struct llama_context * ctx, diff --git a/requirements/requirements-convert-hf-to-gguf.txt b/requirements/requirements-convert-hf-to-gguf.txt index 6ac402610..6ce840d73 100644 --- a/requirements/requirements-convert-hf-to-gguf.txt +++ b/requirements/requirements-convert-hf-to-gguf.txt @@ -1,2 +1,3 @@ -r ./requirements-convert.txt torch~=2.1.1 +einops~=0.7.0 diff --git a/scripts/compare-llama-bench.py b/scripts/compare-llama-bench.py index 70737f976..39c3e52e5 100755 --- a/scripts/compare-llama-bench.py +++ b/scripts/compare-llama-bench.py @@ -31,7 +31,7 @@ PRETTY_NAMES = { "model_size": "Model Size [GiB]", "model_n_params": "Num. of Parameters", "n_batch": "Batch size", "n_threads": "Threads", "type_k": "K type", "type_v": "V type", "n_gpu_layers": "GPU layers", "main_gpu": "Main GPU", "no_kv_offload": "NKVO", - "mul_mat_q": "MMQ", "tensor_split": "Tensor split" + "tensor_split": "Tensor split" } DEFAULT_SHOW = ["model_type"] # Always show these properties by default. diff --git a/scripts/pod-llama.sh b/scripts/pod-llama.sh new file mode 100644 index 000000000..6cf1ab4f3 --- /dev/null +++ b/scripts/pod-llama.sh @@ -0,0 +1,213 @@ +#!/bin/bash +# +# Use this script only on fresh pods (runpod.io)! +# Otherwise, it can break your environment! +# + +if [ -z "$1" ]; then + echo "Usage: $0 " + echo " 0: no models" + echo " 1: tinyllama-1b" + echo " 2: codellama-7b" + echo " 3: codellama-13b" + echo " 4: codellama-34b" + echo " 5: codellama-7b-instruct" + echo " 6: codellama-13b-instruct" + echo " 7: codellama-34b-instruct" + + exit 1 +fi + +set -x + +# setup deps +apt-get update +apt-get install -y git-lfs cmake cmake-curses-gui vim ruby +git-lfs install + +if [ ! -d "/workspace" ]; then + ln -sfn $(pwd) /workspace +fi + +# download data +cd /workspace + +# this is useful to git clone repos without doubling the disk size due to .git +git clone https://github.com/iboB/git-lfs-download +ln -sfn /workspace/git-lfs-download/git-lfs-download /usr/local/bin/git-lfs-download + +# llama.cpp +cd /workspace +git clone https://github.com/ggerganov/llama.cpp + +cd llama.cpp + +LLAMA_CUBLAS=1 make -j + +ln -sfn /workspace/TinyLlama-1.1B-Chat-v0.3 ./models/tinyllama-1b +ln -sfn /workspace/CodeLlama-7b-hf ./models/codellama-7b +ln -sfn /workspace/CodeLlama-13b-hf ./models/codellama-13b +ln -sfn /workspace/CodeLlama-34b-hf ./models/codellama-34b +ln -sfn /workspace/CodeLlama-7b-Instruct-hf ./models/codellama-7b-instruct +ln -sfn /workspace/CodeLlama-13b-Instruct-hf ./models/codellama-13b-instruct +ln -sfn /workspace/CodeLlama-34b-Instruct-hf ./models/codellama-34b-instruct + +pip install -r requirements.txt + +# cmake +cd /workspace/llama.cpp + +mkdir build-cublas +cd build-cublas + +cmake -DLLAMA_CUBLAS=1 ../ +make -j + +if [ "$1" -eq "0" ]; then + exit 0 +fi + +# more models +if [ "$1" -eq "1" ]; then + cd /workspace + + git-lfs-download https://huggingface.co/PY007/TinyLlama-1.1B-Chat-v0.3 + + cd /workspace/llama.cpp + + python3 convert.py ./models/tinyllama-1b --outfile ./models/tinyllama-1b/ggml-model-f16.gguf --outtype f16 + + ./quantize ./models/tinyllama-1b/ggml-model-f16.gguf ./models/tinyllama-1b/ggml-model-q4_0.gguf q4_0 + ./quantize ./models/tinyllama-1b/ggml-model-f16.gguf ./models/tinyllama-1b/ggml-model-q4_k.gguf q4_k + ./quantize ./models/tinyllama-1b/ggml-model-f16.gguf ./models/tinyllama-1b/ggml-model-q8_0.gguf q8_0 +fi + +if [ "$1" -eq "2" ]; then + cd /workspace + + git-lfs-download https://huggingface.co/codellama/CodeLlama-7b-hf --without *safetensors* + rm -v ./CodeLlama-7b-hf/*safetensors* + + cd /workspace/llama.cpp + + python3 convert.py ./models/codellama-7b --outfile ./models/codellama-7b/ggml-model-f16.gguf --outtype f16 + + ./quantize ./models/codellama-7b/ggml-model-f16.gguf ./models/codellama-7b/ggml-model-q4_0.gguf q4_0 + ./quantize ./models/codellama-7b/ggml-model-f16.gguf ./models/codellama-7b/ggml-model-q4_k.gguf q4_k + ./quantize ./models/codellama-7b/ggml-model-f16.gguf ./models/codellama-7b/ggml-model-q8_0.gguf q8_0 +fi + +if [ "$1" -eq "3" ]; then + cd /workspace + + git-lfs-download https://huggingface.co/codellama/CodeLlama-13b-hf --without *safetensors* + rm -v ./CodeLlama-13b-hf/*safetensors* + + cd /workspace/llama.cpp + + python3 convert.py ./models/codellama-13b --outfile ./models/codellama-13b/ggml-model-f16.gguf --outtype f16 + + ./quantize ./models/codellama-13b/ggml-model-f16.gguf ./models/codellama-13b/ggml-model-q4_0.gguf q4_0 + ./quantize ./models/codellama-13b/ggml-model-f16.gguf ./models/codellama-13b/ggml-model-q4_k.gguf q4_k + ./quantize ./models/codellama-13b/ggml-model-f16.gguf ./models/codellama-13b/ggml-model-q8_0.gguf q8_0 +fi + +if [ "$1" -eq "4" ]; then + cd /workspace + + git-lfs-download https://huggingface.co/codellama/CodeLlama-34b-hf --without *safetensors* + rm -v ./CodeLlama-34b-hf/*safetensors* + + cd /workspace/llama.cpp + + python3 convert.py ./models/codellama-34b --outfile ./models/codellama-34b/ggml-model-f16.gguf --outtype f16 + + ./quantize ./models/codellama-34b/ggml-model-f16.gguf ./models/codellama-34b/ggml-model-q4_0.gguf q4_0 + ./quantize ./models/codellama-34b/ggml-model-f16.gguf ./models/codellama-34b/ggml-model-q4_k.gguf q4_k + ./quantize ./models/codellama-34b/ggml-model-f16.gguf ./models/codellama-34b/ggml-model-q8_0.gguf q8_0 +fi + +if [ "$1" -eq "5" ]; then + cd /workspace + + git-lfs-download https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf --without *safetensors* + rm -v ./CodeLlama-7b-Instruct-hf/*safetensors* + + cd /workspace/llama.cpp + + python3 convert.py ./models/codellama-7b-instruct --outfile ./models/codellama-7b-instruct/ggml-model-f16.gguf --outtype f16 + + ./quantize ./models/codellama-7b-instruct/ggml-model-f16.gguf ./models/codellama-7b-instruct/ggml-model-q4_0.gguf q4_0 + ./quantize ./models/codellama-7b-instruct/ggml-model-f16.gguf ./models/codellama-7b-instruct/ggml-model-q4_k.gguf q4_k + ./quantize ./models/codellama-7b-instruct/ggml-model-f16.gguf ./models/codellama-7b-instruct/ggml-model-q8_0.gguf q8_0 +fi + +if [ "$1" -eq "6" ]; then + cd /workspace + + git-lfs-download https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf --without *safetensors* + rm -v ./CodeLlama-13b-Instruct-hf/*safetensors* + + cd /workspace/llama.cpp + + python3 convert.py ./models/codellama-13b-instruct --outfile ./models/codellama-13b-instruct/ggml-model-f16.gguf --outtype f16 + + ./quantize ./models/codellama-13b-instruct/ggml-model-f16.gguf ./models/codellama-13b-instruct/ggml-model-q4_0.gguf q4_0 + ./quantize ./models/codellama-13b-instruct/ggml-model-f16.gguf ./models/codellama-13b-instruct/ggml-model-q4_k.gguf q4_k + ./quantize ./models/codellama-13b-instruct/ggml-model-f16.gguf ./models/codellama-13b-instruct/ggml-model-q8_0.gguf q8_0 +fi + +if [ "$1" -eq "7" ]; then + cd /workspace + + git-lfs-download https://huggingface.co/codellama/CodeLlama-34b-Instruct-hf --without *safetensors* + rm -v ./CodeLlama-34b-Instruct-hf/*safetensors* + + cd /workspace/llama.cpp + + python3 convert.py ./models/codellama-34b-instruct --outfile ./models/codellama-34b-instruct/ggml-model-f16.gguf --outtype f16 + + ./quantize ./models/codellama-34b-instruct/ggml-model-f16.gguf ./models/codellama-34b-instruct/ggml-model-q4_0.gguf q4_0 + ./quantize ./models/codellama-34b-instruct/ggml-model-f16.gguf ./models/codellama-34b-instruct/ggml-model-q4_k.gguf q4_k + ./quantize ./models/codellama-34b-instruct/ggml-model-f16.gguf ./models/codellama-34b-instruct/ggml-model-q8_0.gguf q8_0 +fi + +if [ "$1" -eq "1" ]; then + # perf + perplexity + cd /workspace/llama.cpp/build-cublas + + make -j && ../scripts/run-all-perf.sh tinyllama-1b "f16" "-ngl 99 -t 1 -p 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,32,64,128,256,512,1024,2048 -n 128" + + ../scripts/get-wikitext-2.sh + unzip wikitext-2-raw-v1.zip + + make -j && ./bin/perplexity -m ../models/tinyllama-1b/ggml-model-f16.gguf -f ./wikitext-2-raw/wiki.test.raw -ngl 100 --chunks 32 + + # batched + cd /workspace/llama.cpp + + LLAMA_CUBLAS=1 make -j && ./batched ./models/tinyllama-1b/ggml-model-f16.gguf "Hello, my name is" 8 128 999 + + # batched-bench + cd /workspace/llama.cpp + + LLAMA_CUBLAS=1 make -j && ./batched-bench ./models/tinyllama-1b/ggml-model-f16.gguf 4608 1 99 0 512 128 1,2,3,4,5,6,7,8,16,32 + + # parallel + cd /workspace/llama.cpp + + LLAMA_CUBLAS=1 make -j && ./parallel -m ./models/tinyllama-1b/ggml-model-f16.gguf -t 1 -ngl 100 -c 4096 -b 512 -s 1 -np 8 -ns 128 -n 100 -cb + +fi + +# speculative +#if [ "$1" -eq "7" ]; then +# cd /workspace/llama.cpp +# +# LLAMA_CUBLAS=1 make -j && ./speculative -m ./models/codellama-34b-instruct/ggml-model-f16.gguf -md ./models/codellama-7b-instruct/ggml-model-q4_0.gguf -p "# Dijkstra's shortest path algorithm in Python (4 spaces indentation) + complexity analysis:\n\n" -e -ngl 999 -ngld 999 -t 4 -n 512 -c 4096 -s 21 --draft 16 -np 1 --temp 0.0 +#fi + +# more benches +#LLAMA_CUBLAS=1 make -j && ./batched-bench ./models/codellama-7b/ggml-model-q4_k.gguf 4096 1 99 1 512,3200 128,128,800 1 +#LLAMA_CUBLAS=1 make -j && ./batched-bench ./models/codellama-13b/ggml-model-q4_k.gguf 4096 1 99 1 512,3200 128,128,800 1 + diff --git a/scripts/sync-ggml.last b/scripts/sync-ggml.last index 7a23ab162..389c0bdfe 100644 --- a/scripts/sync-ggml.last +++ b/scripts/sync-ggml.last @@ -1 +1 @@ -5070f078a67c18c11736e78316ab715ca9afde16 +b458250b736a7473f7ff3560d47c93f1644f3290 diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index 278c57299..c89ee3ed9 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -1114,11 +1114,11 @@ struct test_soft_max : public test_case { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_tensor * mask = nullptr; if (this->mask) { - mask = ggml_new_tensor_2d(ctx, type, ne[0], ne[1]); + mask = ggml_new_tensor_2d(ctx, GGML_TYPE_F16, ne[0], ne[1]); } ggml_tensor * pos = nullptr; if (max_bias > 0.0f) { - pos = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ne[0]); + pos = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, ne[0]); } ggml_tensor * out = ggml_soft_max_ext(ctx, a, mask, pos, scale, max_bias); return out; @@ -1274,7 +1274,7 @@ struct test_argsort : public test_case { test_argsort(ggml_type type = GGML_TYPE_F32, std::array ne = {16, 10, 10, 10}, - ggml_sort_order order = GGML_SORT_ASC) + ggml_sort_order order = GGML_SORT_ORDER_ASC) : type(type), ne(ne), order(order) {} ggml_tensor * build_graph(ggml_context * ctx) override { @@ -1996,8 +1996,9 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op GGML_TYPE_Q2_K, GGML_TYPE_Q3_K, GGML_TYPE_Q4_K, GGML_TYPE_Q5_K, GGML_TYPE_Q6_K, - GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, + GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S, GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, + GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS, }; // unary ops @@ -2195,7 +2196,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op test_cases.emplace_back(new test_concat(GGML_TYPE_F32)); test_cases.emplace_back(new test_concat(GGML_TYPE_I32)); - for (ggml_sort_order order : {GGML_SORT_ASC, GGML_SORT_DESC}) { + for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) { test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order)); test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order)); } diff --git a/tests/test-chat-template.cpp b/tests/test-chat-template.cpp index 9830650d4..fa2eb577b 100644 --- a/tests/test-chat-template.cpp +++ b/tests/test-chat-template.cpp @@ -27,12 +27,24 @@ int main(void) { "{%- for idx in range(0, messages|length) -%}\\n{%- if messages[idx]['role'] == 'user' -%}\\n{%- if idx > 1 -%}\\n{{- bos_token + '[INST] ' + messages[idx]['content'] + ' [/INST]' -}}\\n{%- else -%}\\n{{- messages[idx]['content'] + ' [/INST]' -}}\\n{%- endif -%}\\n{% elif messages[idx]['role'] == 'system' %}\\n{{- '[INST] <>\\\\n' + messages[idx]['content'] + '\\\\n<>\\\\n\\\\n' -}}\\n{%- elif messages[idx]['role'] == 'assistant' -%}\\n{{- ' ' + messages[idx]['content'] + ' ' + eos_token -}}\\n{% endif %}\\n{% endfor %}", // bofenghuang/vigogne-2-70b-chat "{{ bos_token }}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% elif true == true and not '<>' in messages[0]['content'] %}{% set loop_messages = messages %}{% set system_message = 'Vous êtes Vigogne, un assistant IA créé par Zaion Lab. Vous suivez extrêmement bien les instructions. Aidez autant que vous le pouvez.' %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<>\\\\n' + system_message + '\\\\n<>\\\\n\\\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'system' %}{{ '<>\\\\n' + content.strip() + '\\\\n<>\\\\n\\\\n' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}", + // mlabonne/AlphaMonarch-7B + "{% for message in messages %}{{bos_token + message['role'] + '\\n' + message['content'] + eos_token + '\\n'}}{% endfor %}{% if add_generation_prompt %}{{ bos_token + 'assistant\\n' }}{% endif %}", + // google/gemma-7b-it + "{% if messages[0]['role'] == 'system' %}{{ raise_exception('System role not supported') }}{% endif %}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if (message['role'] == 'assistant') %}{% set role = 'model' %}{% else %}{% set role = message['role'] %}{% endif %}{{ '' + role + '\\n' + message['content'] | trim + '\\n' }}{% endfor %}{% if add_generation_prompt %}{{'model\\n'}}{% endif %}", }; - std::vector expected_substr = { - "<|im_start|>assistant\n I am an assistant <|im_end|>\n<|im_start|>user\nAnother question<|im_end|>\n<|im_start|>assistant", - "[/INST]Hi there[INST] Who are you [/INST] I am an assistant [INST] Another question [/INST]", - "[INST] Who are you [/INST] I am an assistant [INST] Another question [/INST]", - "[/INST] Hi there [INST] Who are you [/INST] I am an assistant [INST] Another question [/INST]", + std::vector expected_output = { + // teknium/OpenHermes-2.5-Mistral-7B + "<|im_start|>system\nYou are a helpful assistant<|im_end|>\n<|im_start|>user\nHello<|im_end|>\n<|im_start|>assistant\nHi there<|im_end|>\n<|im_start|>user\nWho are you<|im_end|>\n<|im_start|>assistant\n I am an assistant <|im_end|>\n<|im_start|>user\nAnother question<|im_end|>\n<|im_start|>assistant\n", + // mistralai/Mistral-7B-Instruct-v0.2 + "[INST] You are a helpful assistant\nHello [/INST]Hi there[INST] Who are you [/INST] I am an assistant [INST] Another question [/INST]", + // TheBloke/FusionNet_34Bx2_MoE-AWQ + "[INST] <>\nYou are a helpful assistant\n<>\n\nHello [/INST] Hi there [INST] Who are you [/INST] I am an assistant [INST] Another question [/INST]", + // bofenghuang/vigogne-2-70b-chat + "[INST] <>\nYou are a helpful assistant\n<>\n\nHello [/INST] Hi there [INST] Who are you [/INST] I am an assistant [INST] Another question [/INST]", + // mlabonne/AlphaMonarch-7B + "system\nYou are a helpful assistant\nuser\nHello\nassistant\nHi there\nuser\nWho are you\nassistant\n I am an assistant \nuser\nAnother question\nassistant\n", + // google/gemma-7b-it + "user\nYou are a helpful assistant\n\nHello\nmodel\nHi there\nuser\nWho are you\nmodel\nI am an assistant\nuser\nAnother question\nmodel\n", }; std::vector formatted_chat(1024); int32_t res; @@ -43,7 +55,7 @@ int main(void) { for (size_t i = 0; i < templates.size(); i++) { std::string custom_template = templates[i]; - std::string substr = expected_substr[i]; + std::string expected = expected_output[i]; formatted_chat.resize(1024); res = llama_chat_apply_template( nullptr, @@ -57,8 +69,7 @@ int main(void) { formatted_chat.resize(res); std::string output(formatted_chat.data(), formatted_chat.size()); std::cout << output << "\n-------------------------\n"; - // expect the "formatted_chat" to contain pre-defined strings - assert(output.find(substr) != std::string::npos); + assert(output == expected); } return 0; } diff --git a/tests/test-opt.cpp b/tests/test-opt.cpp index 2c9997fca..546ca230b 100644 --- a/tests/test-opt.cpp +++ b/tests/test-opt.cpp @@ -118,7 +118,7 @@ int main(void) { const float fe = ggml_get_f32_1d(e, 0); printf("%s: e = %.4f\n", __func__, fe); - struct ggml_opt_params opt_params = ggml_opt_default_params(GGML_OPT_ADAM); + struct ggml_opt_params opt_params = ggml_opt_default_params(GGML_OPT_TYPE_ADAM); ggml_opt(ctx, opt_params, e); diff --git a/tests/test-quantize-fns.cpp b/tests/test-quantize-fns.cpp index 5e92d5742..f615b612d 100644 --- a/tests/test-quantize-fns.cpp +++ b/tests/test-quantize-fns.cpp @@ -150,7 +150,9 @@ int main(int argc, char * argv[]) { const float total_error = total_quantization_error(qfns, test_size, test_data.data()); const float max_quantization_error = type == GGML_TYPE_Q2_K ? MAX_QUANTIZATION_TOTAL_ERROR_2BITS : + type == GGML_TYPE_IQ2_S ? MAX_QUANTIZATION_TOTAL_ERROR_2BITS : type == GGML_TYPE_Q3_K ? MAX_QUANTIZATION_TOTAL_ERROR_3BITS : + type == GGML_TYPE_IQ3_S ? MAX_QUANTIZATION_TOTAL_ERROR_3BITS : type == GGML_TYPE_IQ3_XXS ? MAX_QUANTIZATION_TOTAL_ERROR_3BITS_XXS : MAX_QUANTIZATION_TOTAL_ERROR; failed = !(total_error < max_quantization_error); num_failed += failed; @@ -167,7 +169,9 @@ int main(int argc, char * argv[]) { const float vec_dot_error = dot_product_error(qfns, test_size, test_data.data(), test_data2.data()); const float max_allowed_error = type == GGML_TYPE_Q2_K || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ2_XXS || - type == GGML_TYPE_IQ3_XXS ? MAX_DOT_PRODUCT_ERROR_LOWBIT : MAX_DOT_PRODUCT_ERROR; + type == GGML_TYPE_IQ3_XXS || type == GGML_TYPE_IQ3_S || type == GGML_TYPE_IQ2_S + ? MAX_DOT_PRODUCT_ERROR_LOWBIT + : MAX_DOT_PRODUCT_ERROR; failed = !(vec_dot_error < max_allowed_error); num_failed += failed; if (failed || verbose) { diff --git a/unicode.h b/unicode.h index 263260702..f6be4549b 100644 --- a/unicode.h +++ b/unicode.h @@ -1,6 +1,7 @@ #pragma once #include +#include #include #include #include @@ -223,6 +224,313 @@ static const std::vector> control_ranges = { {0x2B81E, 0x2B81F}, {0x2CEA2, 0x2CEAF}, {0x2EBE1, 0x2F7FF}, {0x2FA1E, 0x2FFFF}, {0x3134B, 0xE00FF}, {0xE01F0, 0x10FFFF}, }; +static const std::multimap nfd_map = { +{0xC0, 0x41}, {0xC0, 0x300}, {0xC1, 0x41}, {0xC1, 0x301}, {0xC2, 0x41}, {0xC2, 0x302}, {0xC3, 0x41}, {0xC3, 0x303}, {0xC4, 0x41}, {0xC4, 0x308}, {0xC5, 0x41}, {0xC5, 0x30A}, {0xC7, 0x43}, +{0xC7, 0x327}, {0xC8, 0x45}, {0xC8, 0x300}, {0xC9, 0x45}, {0xC9, 0x301}, {0xCA, 0x45}, {0xCA, 0x302}, {0xCB, 0x45}, {0xCB, 0x308}, {0xCC, 0x49}, {0xCC, 0x300}, {0xCD, 0x49}, {0xCD, 0x301}, +{0xCE, 0x49}, {0xCE, 0x302}, {0xCF, 0x49}, {0xCF, 0x308}, {0xD1, 0x4E}, {0xD1, 0x303}, {0xD2, 0x4F}, {0xD2, 0x300}, {0xD3, 0x4F}, {0xD3, 0x301}, {0xD4, 0x4F}, {0xD4, 0x302}, {0xD5, 0x4F}, +{0xD5, 0x303}, {0xD6, 0x4F}, {0xD6, 0x308}, {0xD9, 0x55}, {0xD9, 0x300}, {0xDA, 0x55}, {0xDA, 0x301}, {0xDB, 0x55}, {0xDB, 0x302}, {0xDC, 0x55}, {0xDC, 0x308}, {0xDD, 0x59}, {0xDD, 0x301}, +{0xE0, 0x61}, {0xE0, 0x300}, {0xE1, 0x61}, {0xE1, 0x301}, {0xE2, 0x61}, {0xE2, 0x302}, {0xE3, 0x61}, {0xE3, 0x303}, {0xE4, 0x61}, {0xE4, 0x308}, {0xE5, 0x61}, {0xE5, 0x30A}, {0xE7, 0x63}, +{0xE7, 0x327}, {0xE8, 0x65}, {0xE8, 0x300}, {0xE9, 0x65}, {0xE9, 0x301}, {0xEA, 0x65}, {0xEA, 0x302}, {0xEB, 0x65}, {0xEB, 0x308}, {0xEC, 0x69}, {0xEC, 0x300}, {0xED, 0x69}, {0xED, 0x301}, +{0xEE, 0x69}, {0xEE, 0x302}, {0xEF, 0x69}, {0xEF, 0x308}, {0xF1, 0x6E}, {0xF1, 0x303}, {0xF2, 0x6F}, {0xF2, 0x300}, {0xF3, 0x6F}, {0xF3, 0x301}, {0xF4, 0x6F}, {0xF4, 0x302}, {0xF5, 0x6F}, +{0xF5, 0x303}, {0xF6, 0x6F}, {0xF6, 0x308}, {0xF9, 0x75}, {0xF9, 0x300}, {0xFA, 0x75}, {0xFA, 0x301}, {0xFB, 0x75}, {0xFB, 0x302}, {0xFC, 0x75}, {0xFC, 0x308}, {0xFD, 0x79}, {0xFD, 0x301}, +{0xFF, 0x79}, {0xFF, 0x308}, {0x100, 0x41}, {0x100, 0x304}, {0x101, 0x61}, {0x101, 0x304}, {0x102, 0x41}, {0x102, 0x306}, {0x103, 0x61}, {0x103, 0x306}, {0x104, 0x41}, {0x104, 0x328}, {0x105, 0x61}, +{0x105, 0x328}, {0x106, 0x43}, {0x106, 0x301}, {0x107, 0x63}, {0x107, 0x301}, {0x108, 0x43}, {0x108, 0x302}, {0x109, 0x63}, {0x109, 0x302}, {0x10A, 0x43}, {0x10A, 0x307}, {0x10B, 0x63}, +{0x10B, 0x307}, {0x10C, 0x43}, {0x10C, 0x30C}, {0x10D, 0x63}, {0x10D, 0x30C}, {0x10E, 0x44}, {0x10E, 0x30C}, {0x10F, 0x64}, {0x10F, 0x30C}, {0x112, 0x45}, {0x112, 0x304}, {0x113, 0x65}, +{0x113, 0x304}, {0x114, 0x45}, {0x114, 0x306}, {0x115, 0x65}, {0x115, 0x306}, {0x116, 0x45}, {0x116, 0x307}, {0x117, 0x65}, {0x117, 0x307}, {0x118, 0x45}, {0x118, 0x328}, {0x119, 0x65}, +{0x119, 0x328}, {0x11A, 0x45}, {0x11A, 0x30C}, {0x11B, 0x65}, {0x11B, 0x30C}, {0x11C, 0x47}, {0x11C, 0x302}, {0x11D, 0x67}, {0x11D, 0x302}, {0x11E, 0x47}, {0x11E, 0x306}, {0x11F, 0x67}, +{0x11F, 0x306}, {0x120, 0x47}, {0x120, 0x307}, {0x121, 0x67}, {0x121, 0x307}, {0x122, 0x47}, {0x122, 0x327}, {0x123, 0x67}, {0x123, 0x327}, {0x124, 0x48}, {0x124, 0x302}, {0x125, 0x68}, +{0x125, 0x302}, {0x128, 0x49}, {0x128, 0x303}, {0x129, 0x69}, {0x129, 0x303}, {0x12A, 0x49}, {0x12A, 0x304}, {0x12B, 0x69}, {0x12B, 0x304}, {0x12C, 0x49}, {0x12C, 0x306}, {0x12D, 0x69}, +{0x12D, 0x306}, {0x12E, 0x49}, {0x12E, 0x328}, {0x12F, 0x69}, {0x12F, 0x328}, {0x130, 0x49}, {0x130, 0x307}, {0x134, 0x4A}, {0x134, 0x302}, {0x135, 0x6A}, {0x135, 0x302}, {0x136, 0x4B}, +{0x136, 0x327}, {0x137, 0x6B}, {0x137, 0x327}, {0x139, 0x4C}, {0x139, 0x301}, {0x13A, 0x6C}, {0x13A, 0x301}, {0x13B, 0x4C}, {0x13B, 0x327}, {0x13C, 0x6C}, {0x13C, 0x327}, {0x13D, 0x4C}, +{0x13D, 0x30C}, {0x13E, 0x6C}, {0x13E, 0x30C}, {0x143, 0x4E}, {0x143, 0x301}, {0x144, 0x6E}, {0x144, 0x301}, {0x145, 0x4E}, {0x145, 0x327}, {0x146, 0x6E}, {0x146, 0x327}, {0x147, 0x4E}, +{0x147, 0x30C}, {0x148, 0x6E}, {0x148, 0x30C}, {0x14C, 0x4F}, {0x14C, 0x304}, {0x14D, 0x6F}, {0x14D, 0x304}, {0x14E, 0x4F}, {0x14E, 0x306}, {0x14F, 0x6F}, {0x14F, 0x306}, {0x150, 0x4F}, +{0x150, 0x30B}, {0x151, 0x6F}, {0x151, 0x30B}, {0x154, 0x52}, {0x154, 0x301}, {0x155, 0x72}, {0x155, 0x301}, {0x156, 0x52}, {0x156, 0x327}, {0x157, 0x72}, {0x157, 0x327}, {0x158, 0x52}, +{0x158, 0x30C}, {0x159, 0x72}, {0x159, 0x30C}, {0x15A, 0x53}, {0x15A, 0x301}, {0x15B, 0x73}, {0x15B, 0x301}, {0x15C, 0x53}, {0x15C, 0x302}, {0x15D, 0x73}, {0x15D, 0x302}, {0x15E, 0x53}, +{0x15E, 0x327}, {0x15F, 0x73}, {0x15F, 0x327}, {0x160, 0x53}, {0x160, 0x30C}, {0x161, 0x73}, {0x161, 0x30C}, {0x162, 0x54}, {0x162, 0x327}, {0x163, 0x74}, {0x163, 0x327}, {0x164, 0x54}, +{0x164, 0x30C}, {0x165, 0x74}, {0x165, 0x30C}, {0x168, 0x55}, {0x168, 0x303}, {0x169, 0x75}, {0x169, 0x303}, {0x16A, 0x55}, {0x16A, 0x304}, {0x16B, 0x75}, {0x16B, 0x304}, {0x16C, 0x55}, +{0x16C, 0x306}, {0x16D, 0x75}, {0x16D, 0x306}, {0x16E, 0x55}, {0x16E, 0x30A}, {0x16F, 0x75}, {0x16F, 0x30A}, {0x170, 0x55}, {0x170, 0x30B}, {0x171, 0x75}, {0x171, 0x30B}, {0x172, 0x55}, +{0x172, 0x328}, {0x173, 0x75}, {0x173, 0x328}, {0x174, 0x57}, {0x174, 0x302}, {0x175, 0x77}, {0x175, 0x302}, {0x176, 0x59}, {0x176, 0x302}, {0x177, 0x79}, {0x177, 0x302}, {0x178, 0x59}, +{0x178, 0x308}, {0x179, 0x5A}, {0x179, 0x301}, {0x17A, 0x7A}, {0x17A, 0x301}, {0x17B, 0x5A}, {0x17B, 0x307}, {0x17C, 0x7A}, {0x17C, 0x307}, {0x17D, 0x5A}, {0x17D, 0x30C}, {0x17E, 0x7A}, +{0x17E, 0x30C}, {0x1A0, 0x4F}, {0x1A0, 0x31B}, {0x1A1, 0x6F}, {0x1A1, 0x31B}, {0x1AF, 0x55}, {0x1AF, 0x31B}, {0x1B0, 0x75}, {0x1B0, 0x31B}, {0x1CD, 0x41}, {0x1CD, 0x30C}, {0x1CE, 0x61}, +{0x1CE, 0x30C}, {0x1CF, 0x49}, {0x1CF, 0x30C}, {0x1D0, 0x69}, {0x1D0, 0x30C}, {0x1D1, 0x4F}, {0x1D1, 0x30C}, {0x1D2, 0x6F}, {0x1D2, 0x30C}, {0x1D3, 0x55}, {0x1D3, 0x30C}, {0x1D4, 0x75}, +{0x1D4, 0x30C}, {0x1D5, 0x55}, {0x1D5, 0x308}, {0x1D5, 0x304}, {0x1D6, 0x75}, {0x1D6, 0x308}, {0x1D6, 0x304}, {0x1D7, 0x55}, {0x1D7, 0x308}, {0x1D7, 0x301}, {0x1D8, 0x75}, {0x1D8, 0x308}, +{0x1D8, 0x301}, {0x1D9, 0x55}, {0x1D9, 0x308}, {0x1D9, 0x30C}, {0x1DA, 0x75}, {0x1DA, 0x308}, {0x1DA, 0x30C}, {0x1DB, 0x55}, {0x1DB, 0x308}, {0x1DB, 0x300}, {0x1DC, 0x75}, {0x1DC, 0x308}, +{0x1DC, 0x300}, {0x1DE, 0x41}, {0x1DE, 0x308}, {0x1DE, 0x304}, {0x1DF, 0x61}, {0x1DF, 0x308}, {0x1DF, 0x304}, {0x1E0, 0x41}, {0x1E0, 0x307}, {0x1E0, 0x304}, {0x1E1, 0x61}, {0x1E1, 0x307}, +{0x1E1, 0x304}, {0x1E2, 0xC6}, {0x1E2, 0x304}, {0x1E3, 0xE6}, {0x1E3, 0x304}, {0x1E6, 0x47}, {0x1E6, 0x30C}, {0x1E7, 0x67}, {0x1E7, 0x30C}, {0x1E8, 0x4B}, {0x1E8, 0x30C}, {0x1E9, 0x6B}, +{0x1E9, 0x30C}, {0x1EA, 0x4F}, {0x1EA, 0x328}, {0x1EB, 0x6F}, {0x1EB, 0x328}, {0x1EC, 0x4F}, {0x1EC, 0x328}, {0x1EC, 0x304}, {0x1ED, 0x6F}, {0x1ED, 0x328}, {0x1ED, 0x304}, {0x1EE, 0x1B7}, +{0x1EE, 0x30C}, {0x1EF, 0x292}, {0x1EF, 0x30C}, {0x1F0, 0x6A}, {0x1F0, 0x30C}, {0x1F4, 0x47}, {0x1F4, 0x301}, {0x1F5, 0x67}, {0x1F5, 0x301}, {0x1F8, 0x4E}, {0x1F8, 0x300}, {0x1F9, 0x6E}, +{0x1F9, 0x300}, {0x1FA, 0x41}, {0x1FA, 0x30A}, {0x1FA, 0x301}, {0x1FB, 0x61}, {0x1FB, 0x30A}, {0x1FB, 0x301}, {0x1FC, 0xC6}, {0x1FC, 0x301}, {0x1FD, 0xE6}, {0x1FD, 0x301}, {0x1FE, 0xD8}, +{0x1FE, 0x301}, {0x1FF, 0xF8}, {0x1FF, 0x301}, {0x200, 0x41}, {0x200, 0x30F}, {0x201, 0x61}, {0x201, 0x30F}, {0x202, 0x41}, {0x202, 0x311}, {0x203, 0x61}, {0x203, 0x311}, {0x204, 0x45}, +{0x204, 0x30F}, {0x205, 0x65}, {0x205, 0x30F}, {0x206, 0x45}, {0x206, 0x311}, {0x207, 0x65}, {0x207, 0x311}, {0x208, 0x49}, {0x208, 0x30F}, {0x209, 0x69}, {0x209, 0x30F}, {0x20A, 0x49}, +{0x20A, 0x311}, {0x20B, 0x69}, {0x20B, 0x311}, {0x20C, 0x4F}, {0x20C, 0x30F}, {0x20D, 0x6F}, {0x20D, 0x30F}, {0x20E, 0x4F}, {0x20E, 0x311}, {0x20F, 0x6F}, {0x20F, 0x311}, {0x210, 0x52}, +{0x210, 0x30F}, {0x211, 0x72}, {0x211, 0x30F}, {0x212, 0x52}, {0x212, 0x311}, {0x213, 0x72}, {0x213, 0x311}, {0x214, 0x55}, {0x214, 0x30F}, {0x215, 0x75}, {0x215, 0x30F}, {0x216, 0x55}, +{0x216, 0x311}, {0x217, 0x75}, {0x217, 0x311}, {0x218, 0x53}, {0x218, 0x326}, {0x219, 0x73}, {0x219, 0x326}, {0x21A, 0x54}, {0x21A, 0x326}, {0x21B, 0x74}, {0x21B, 0x326}, {0x21E, 0x48}, +{0x21E, 0x30C}, {0x21F, 0x68}, {0x21F, 0x30C}, {0x226, 0x41}, {0x226, 0x307}, {0x227, 0x61}, {0x227, 0x307}, {0x228, 0x45}, {0x228, 0x327}, {0x229, 0x65}, {0x229, 0x327}, {0x22A, 0x4F}, +{0x22A, 0x308}, {0x22A, 0x304}, {0x22B, 0x6F}, {0x22B, 0x308}, {0x22B, 0x304}, {0x22C, 0x4F}, {0x22C, 0x303}, {0x22C, 0x304}, {0x22D, 0x6F}, {0x22D, 0x303}, {0x22D, 0x304}, {0x22E, 0x4F}, +{0x22E, 0x307}, {0x22F, 0x6F}, {0x22F, 0x307}, {0x230, 0x4F}, {0x230, 0x307}, {0x230, 0x304}, {0x231, 0x6F}, {0x231, 0x307}, {0x231, 0x304}, {0x232, 0x59}, {0x232, 0x304}, {0x233, 0x79}, +{0x233, 0x304}, {0x340, 0x300}, {0x341, 0x301}, {0x343, 0x313}, {0x344, 0x308}, {0x344, 0x301}, {0x374, 0x2B9}, {0x37E, 0x3B}, {0x385, 0xA8}, {0x385, 0x301}, {0x386, 0x391}, {0x386, 0x301}, +{0x387, 0xB7}, {0x388, 0x395}, {0x388, 0x301}, {0x389, 0x397}, {0x389, 0x301}, {0x38A, 0x399}, {0x38A, 0x301}, {0x38C, 0x39F}, {0x38C, 0x301}, {0x38E, 0x3A5}, {0x38E, 0x301}, {0x38F, 0x3A9}, +{0x38F, 0x301}, {0x390, 0x3B9}, {0x390, 0x308}, {0x390, 0x301}, {0x3AA, 0x399}, {0x3AA, 0x308}, {0x3AB, 0x3A5}, {0x3AB, 0x308}, {0x3AC, 0x3B1}, {0x3AC, 0x301}, {0x3AD, 0x3B5}, {0x3AD, 0x301}, +{0x3AE, 0x3B7}, {0x3AE, 0x301}, {0x3AF, 0x3B9}, {0x3AF, 0x301}, {0x3B0, 0x3C5}, {0x3B0, 0x308}, {0x3B0, 0x301}, {0x3CA, 0x3B9}, {0x3CA, 0x308}, {0x3CB, 0x3C5}, {0x3CB, 0x308}, {0x3CC, 0x3BF}, +{0x3CC, 0x301}, {0x3CD, 0x3C5}, {0x3CD, 0x301}, {0x3CE, 0x3C9}, {0x3CE, 0x301}, {0x3D3, 0x3D2}, {0x3D3, 0x301}, {0x3D4, 0x3D2}, {0x3D4, 0x308}, {0x400, 0x415}, {0x400, 0x300}, {0x401, 0x415}, +{0x401, 0x308}, {0x403, 0x413}, {0x403, 0x301}, {0x407, 0x406}, {0x407, 0x308}, {0x40C, 0x41A}, {0x40C, 0x301}, {0x40D, 0x418}, {0x40D, 0x300}, {0x40E, 0x423}, {0x40E, 0x306}, {0x419, 0x418}, +{0x419, 0x306}, {0x439, 0x438}, {0x439, 0x306}, {0x450, 0x435}, {0x450, 0x300}, {0x451, 0x435}, {0x451, 0x308}, {0x453, 0x433}, {0x453, 0x301}, {0x457, 0x456}, {0x457, 0x308}, {0x45C, 0x43A}, +{0x45C, 0x301}, {0x45D, 0x438}, {0x45D, 0x300}, {0x45E, 0x443}, {0x45E, 0x306}, {0x476, 0x474}, {0x476, 0x30F}, {0x477, 0x475}, {0x477, 0x30F}, {0x4C1, 0x416}, {0x4C1, 0x306}, {0x4C2, 0x436}, +{0x4C2, 0x306}, {0x4D0, 0x410}, {0x4D0, 0x306}, {0x4D1, 0x430}, {0x4D1, 0x306}, {0x4D2, 0x410}, {0x4D2, 0x308}, {0x4D3, 0x430}, {0x4D3, 0x308}, {0x4D6, 0x415}, {0x4D6, 0x306}, {0x4D7, 0x435}, +{0x4D7, 0x306}, {0x4DA, 0x4D8}, {0x4DA, 0x308}, {0x4DB, 0x4D9}, {0x4DB, 0x308}, {0x4DC, 0x416}, {0x4DC, 0x308}, {0x4DD, 0x436}, {0x4DD, 0x308}, {0x4DE, 0x417}, {0x4DE, 0x308}, {0x4DF, 0x437}, +{0x4DF, 0x308}, {0x4E2, 0x418}, {0x4E2, 0x304}, {0x4E3, 0x438}, {0x4E3, 0x304}, {0x4E4, 0x418}, {0x4E4, 0x308}, {0x4E5, 0x438}, {0x4E5, 0x308}, {0x4E6, 0x41E}, {0x4E6, 0x308}, {0x4E7, 0x43E}, +{0x4E7, 0x308}, {0x4EA, 0x4E8}, {0x4EA, 0x308}, {0x4EB, 0x4E9}, {0x4EB, 0x308}, {0x4EC, 0x42D}, {0x4EC, 0x308}, {0x4ED, 0x44D}, {0x4ED, 0x308}, {0x4EE, 0x423}, {0x4EE, 0x304}, {0x4EF, 0x443}, +{0x4EF, 0x304}, {0x4F0, 0x423}, {0x4F0, 0x308}, {0x4F1, 0x443}, {0x4F1, 0x308}, {0x4F2, 0x423}, {0x4F2, 0x30B}, {0x4F3, 0x443}, {0x4F3, 0x30B}, {0x4F4, 0x427}, {0x4F4, 0x308}, {0x4F5, 0x447}, +{0x4F5, 0x308}, {0x4F8, 0x42B}, {0x4F8, 0x308}, {0x4F9, 0x44B}, {0x4F9, 0x308}, {0x622, 0x627}, {0x622, 0x653}, {0x623, 0x627}, {0x623, 0x654}, {0x624, 0x648}, {0x624, 0x654}, {0x625, 0x627}, +{0x625, 0x655}, {0x626, 0x64A}, {0x626, 0x654}, {0x6C0, 0x6D5}, {0x6C0, 0x654}, {0x6C2, 0x6C1}, {0x6C2, 0x654}, {0x6D3, 0x6D2}, {0x6D3, 0x654}, {0x929, 0x928}, {0x929, 0x93C}, {0x931, 0x930}, +{0x931, 0x93C}, {0x934, 0x933}, {0x934, 0x93C}, {0x958, 0x915}, {0x958, 0x93C}, {0x959, 0x916}, {0x959, 0x93C}, {0x95A, 0x917}, {0x95A, 0x93C}, {0x95B, 0x91C}, {0x95B, 0x93C}, {0x95C, 0x921}, +{0x95C, 0x93C}, {0x95D, 0x922}, {0x95D, 0x93C}, {0x95E, 0x92B}, {0x95E, 0x93C}, {0x95F, 0x92F}, {0x95F, 0x93C}, {0x9CB, 0x9C7}, {0x9CB, 0x9BE}, {0x9CC, 0x9C7}, {0x9CC, 0x9D7}, {0x9DC, 0x9A1}, +{0x9DC, 0x9BC}, {0x9DD, 0x9A2}, {0x9DD, 0x9BC}, {0x9DF, 0x9AF}, {0x9DF, 0x9BC}, {0xA33, 0xA32}, {0xA33, 0xA3C}, {0xA36, 0xA38}, {0xA36, 0xA3C}, {0xA59, 0xA16}, {0xA59, 0xA3C}, {0xA5A, 0xA17}, +{0xA5A, 0xA3C}, {0xA5B, 0xA1C}, {0xA5B, 0xA3C}, {0xA5E, 0xA2B}, {0xA5E, 0xA3C}, {0xB48, 0xB47}, {0xB48, 0xB56}, {0xB4B, 0xB47}, {0xB4B, 0xB3E}, {0xB4C, 0xB47}, {0xB4C, 0xB57}, {0xB5C, 0xB21}, +{0xB5C, 0xB3C}, {0xB5D, 0xB22}, {0xB5D, 0xB3C}, {0xB94, 0xB92}, {0xB94, 0xBD7}, {0xBCA, 0xBC6}, {0xBCA, 0xBBE}, {0xBCB, 0xBC7}, {0xBCB, 0xBBE}, {0xBCC, 0xBC6}, {0xBCC, 0xBD7}, {0xC48, 0xC46}, +{0xC48, 0xC56}, {0xCC0, 0xCBF}, {0xCC0, 0xCD5}, {0xCC7, 0xCC6}, {0xCC7, 0xCD5}, {0xCC8, 0xCC6}, {0xCC8, 0xCD6}, {0xCCA, 0xCC6}, {0xCCA, 0xCC2}, {0xCCB, 0xCC6}, {0xCCB, 0xCC2}, {0xCCB, 0xCD5}, +{0xD4A, 0xD46}, {0xD4A, 0xD3E}, {0xD4B, 0xD47}, {0xD4B, 0xD3E}, {0xD4C, 0xD46}, {0xD4C, 0xD57}, {0xDDA, 0xDD9}, {0xDDA, 0xDCA}, {0xDDC, 0xDD9}, {0xDDC, 0xDCF}, {0xDDD, 0xDD9}, {0xDDD, 0xDCF}, +{0xDDD, 0xDCA}, {0xDDE, 0xDD9}, {0xDDE, 0xDDF}, {0xF43, 0xF42}, {0xF43, 0xFB7}, {0xF4D, 0xF4C}, {0xF4D, 0xFB7}, {0xF52, 0xF51}, {0xF52, 0xFB7}, {0xF57, 0xF56}, {0xF57, 0xFB7}, {0xF5C, 0xF5B}, +{0xF5C, 0xFB7}, {0xF69, 0xF40}, {0xF69, 0xFB5}, {0xF73, 0xF71}, {0xF73, 0xF72}, {0xF75, 0xF71}, {0xF75, 0xF74}, {0xF76, 0xFB2}, {0xF76, 0xF80}, {0xF78, 0xFB3}, {0xF78, 0xF80}, {0xF81, 0xF71}, +{0xF81, 0xF80}, {0xF93, 0xF92}, {0xF93, 0xFB7}, {0xF9D, 0xF9C}, {0xF9D, 0xFB7}, {0xFA2, 0xFA1}, {0xFA2, 0xFB7}, {0xFA7, 0xFA6}, {0xFA7, 0xFB7}, {0xFAC, 0xFAB}, {0xFAC, 0xFB7}, {0xFB9, 0xF90}, +{0xFB9, 0xFB5}, {0x1026, 0x1025}, {0x1026, 0x102E}, {0x1B06, 0x1B05}, {0x1B06, 0x1B35}, {0x1B08, 0x1B07}, {0x1B08, 0x1B35}, {0x1B0A, 0x1B09}, {0x1B0A, 0x1B35}, {0x1B0C, 0x1B0B}, {0x1B0C, 0x1B35}, +{0x1B0E, 0x1B0D}, {0x1B0E, 0x1B35}, {0x1B12, 0x1B11}, {0x1B12, 0x1B35}, {0x1B3B, 0x1B3A}, {0x1B3B, 0x1B35}, {0x1B3D, 0x1B3C}, {0x1B3D, 0x1B35}, {0x1B40, 0x1B3E}, {0x1B40, 0x1B35}, {0x1B41, 0x1B3F}, +{0x1B41, 0x1B35}, {0x1B43, 0x1B42}, {0x1B43, 0x1B35}, {0x1E00, 0x41}, {0x1E00, 0x325}, {0x1E01, 0x61}, {0x1E01, 0x325}, {0x1E02, 0x42}, {0x1E02, 0x307}, {0x1E03, 0x62}, {0x1E03, 0x307}, +{0x1E04, 0x42}, {0x1E04, 0x323}, {0x1E05, 0x62}, {0x1E05, 0x323}, {0x1E06, 0x42}, {0x1E06, 0x331}, {0x1E07, 0x62}, {0x1E07, 0x331}, {0x1E08, 0x43}, {0x1E08, 0x327}, {0x1E08, 0x301}, {0x1E09, 0x63}, +{0x1E09, 0x327}, {0x1E09, 0x301}, {0x1E0A, 0x44}, {0x1E0A, 0x307}, {0x1E0B, 0x64}, {0x1E0B, 0x307}, {0x1E0C, 0x44}, {0x1E0C, 0x323}, {0x1E0D, 0x64}, {0x1E0D, 0x323}, {0x1E0E, 0x44}, {0x1E0E, 0x331}, +{0x1E0F, 0x64}, {0x1E0F, 0x331}, {0x1E10, 0x44}, {0x1E10, 0x327}, {0x1E11, 0x64}, {0x1E11, 0x327}, {0x1E12, 0x44}, {0x1E12, 0x32D}, {0x1E13, 0x64}, {0x1E13, 0x32D}, {0x1E14, 0x45}, {0x1E14, 0x304}, +{0x1E14, 0x300}, {0x1E15, 0x65}, {0x1E15, 0x304}, {0x1E15, 0x300}, {0x1E16, 0x45}, {0x1E16, 0x304}, {0x1E16, 0x301}, {0x1E17, 0x65}, {0x1E17, 0x304}, {0x1E17, 0x301}, {0x1E18, 0x45}, {0x1E18, 0x32D}, +{0x1E19, 0x65}, {0x1E19, 0x32D}, {0x1E1A, 0x45}, {0x1E1A, 0x330}, {0x1E1B, 0x65}, {0x1E1B, 0x330}, {0x1E1C, 0x45}, {0x1E1C, 0x327}, {0x1E1C, 0x306}, {0x1E1D, 0x65}, {0x1E1D, 0x327}, {0x1E1D, 0x306}, +{0x1E1E, 0x46}, {0x1E1E, 0x307}, {0x1E1F, 0x66}, {0x1E1F, 0x307}, {0x1E20, 0x47}, {0x1E20, 0x304}, {0x1E21, 0x67}, {0x1E21, 0x304}, {0x1E22, 0x48}, {0x1E22, 0x307}, {0x1E23, 0x68}, {0x1E23, 0x307}, +{0x1E24, 0x48}, {0x1E24, 0x323}, {0x1E25, 0x68}, {0x1E25, 0x323}, {0x1E26, 0x48}, {0x1E26, 0x308}, {0x1E27, 0x68}, {0x1E27, 0x308}, {0x1E28, 0x48}, {0x1E28, 0x327}, {0x1E29, 0x68}, {0x1E29, 0x327}, +{0x1E2A, 0x48}, {0x1E2A, 0x32E}, {0x1E2B, 0x68}, {0x1E2B, 0x32E}, {0x1E2C, 0x49}, {0x1E2C, 0x330}, {0x1E2D, 0x69}, {0x1E2D, 0x330}, {0x1E2E, 0x49}, {0x1E2E, 0x308}, {0x1E2E, 0x301}, {0x1E2F, 0x69}, +{0x1E2F, 0x308}, {0x1E2F, 0x301}, {0x1E30, 0x4B}, {0x1E30, 0x301}, {0x1E31, 0x6B}, {0x1E31, 0x301}, {0x1E32, 0x4B}, {0x1E32, 0x323}, {0x1E33, 0x6B}, {0x1E33, 0x323}, {0x1E34, 0x4B}, {0x1E34, 0x331}, +{0x1E35, 0x6B}, {0x1E35, 0x331}, {0x1E36, 0x4C}, {0x1E36, 0x323}, {0x1E37, 0x6C}, {0x1E37, 0x323}, {0x1E38, 0x4C}, {0x1E38, 0x323}, {0x1E38, 0x304}, {0x1E39, 0x6C}, {0x1E39, 0x323}, {0x1E39, 0x304}, +{0x1E3A, 0x4C}, {0x1E3A, 0x331}, {0x1E3B, 0x6C}, {0x1E3B, 0x331}, {0x1E3C, 0x4C}, {0x1E3C, 0x32D}, {0x1E3D, 0x6C}, {0x1E3D, 0x32D}, {0x1E3E, 0x4D}, {0x1E3E, 0x301}, {0x1E3F, 0x6D}, {0x1E3F, 0x301}, +{0x1E40, 0x4D}, {0x1E40, 0x307}, {0x1E41, 0x6D}, {0x1E41, 0x307}, {0x1E42, 0x4D}, {0x1E42, 0x323}, {0x1E43, 0x6D}, {0x1E43, 0x323}, {0x1E44, 0x4E}, {0x1E44, 0x307}, {0x1E45, 0x6E}, {0x1E45, 0x307}, +{0x1E46, 0x4E}, {0x1E46, 0x323}, {0x1E47, 0x6E}, {0x1E47, 0x323}, {0x1E48, 0x4E}, {0x1E48, 0x331}, {0x1E49, 0x6E}, {0x1E49, 0x331}, {0x1E4A, 0x4E}, {0x1E4A, 0x32D}, {0x1E4B, 0x6E}, {0x1E4B, 0x32D}, +{0x1E4C, 0x4F}, {0x1E4C, 0x303}, {0x1E4C, 0x301}, {0x1E4D, 0x6F}, {0x1E4D, 0x303}, {0x1E4D, 0x301}, {0x1E4E, 0x4F}, {0x1E4E, 0x303}, {0x1E4E, 0x308}, {0x1E4F, 0x6F}, {0x1E4F, 0x303}, {0x1E4F, 0x308}, +{0x1E50, 0x4F}, {0x1E50, 0x304}, {0x1E50, 0x300}, {0x1E51, 0x6F}, {0x1E51, 0x304}, {0x1E51, 0x300}, {0x1E52, 0x4F}, {0x1E52, 0x304}, {0x1E52, 0x301}, {0x1E53, 0x6F}, {0x1E53, 0x304}, {0x1E53, 0x301}, +{0x1E54, 0x50}, {0x1E54, 0x301}, {0x1E55, 0x70}, {0x1E55, 0x301}, {0x1E56, 0x50}, {0x1E56, 0x307}, {0x1E57, 0x70}, {0x1E57, 0x307}, {0x1E58, 0x52}, {0x1E58, 0x307}, {0x1E59, 0x72}, {0x1E59, 0x307}, +{0x1E5A, 0x52}, {0x1E5A, 0x323}, {0x1E5B, 0x72}, {0x1E5B, 0x323}, {0x1E5C, 0x52}, {0x1E5C, 0x323}, {0x1E5C, 0x304}, {0x1E5D, 0x72}, {0x1E5D, 0x323}, {0x1E5D, 0x304}, {0x1E5E, 0x52}, {0x1E5E, 0x331}, +{0x1E5F, 0x72}, {0x1E5F, 0x331}, {0x1E60, 0x53}, {0x1E60, 0x307}, {0x1E61, 0x73}, {0x1E61, 0x307}, {0x1E62, 0x53}, {0x1E62, 0x323}, {0x1E63, 0x73}, {0x1E63, 0x323}, {0x1E64, 0x53}, {0x1E64, 0x301}, +{0x1E64, 0x307}, {0x1E65, 0x73}, {0x1E65, 0x301}, {0x1E65, 0x307}, {0x1E66, 0x53}, {0x1E66, 0x30C}, {0x1E66, 0x307}, {0x1E67, 0x73}, {0x1E67, 0x30C}, {0x1E67, 0x307}, {0x1E68, 0x53}, {0x1E68, 0x323}, +{0x1E68, 0x307}, {0x1E69, 0x73}, {0x1E69, 0x323}, {0x1E69, 0x307}, {0x1E6A, 0x54}, {0x1E6A, 0x307}, {0x1E6B, 0x74}, {0x1E6B, 0x307}, {0x1E6C, 0x54}, {0x1E6C, 0x323}, {0x1E6D, 0x74}, {0x1E6D, 0x323}, +{0x1E6E, 0x54}, {0x1E6E, 0x331}, {0x1E6F, 0x74}, {0x1E6F, 0x331}, {0x1E70, 0x54}, {0x1E70, 0x32D}, {0x1E71, 0x74}, {0x1E71, 0x32D}, {0x1E72, 0x55}, {0x1E72, 0x324}, {0x1E73, 0x75}, {0x1E73, 0x324}, +{0x1E74, 0x55}, {0x1E74, 0x330}, {0x1E75, 0x75}, {0x1E75, 0x330}, {0x1E76, 0x55}, {0x1E76, 0x32D}, {0x1E77, 0x75}, {0x1E77, 0x32D}, {0x1E78, 0x55}, {0x1E78, 0x303}, {0x1E78, 0x301}, {0x1E79, 0x75}, +{0x1E79, 0x303}, {0x1E79, 0x301}, {0x1E7A, 0x55}, {0x1E7A, 0x304}, {0x1E7A, 0x308}, {0x1E7B, 0x75}, {0x1E7B, 0x304}, {0x1E7B, 0x308}, {0x1E7C, 0x56}, {0x1E7C, 0x303}, {0x1E7D, 0x76}, {0x1E7D, 0x303}, +{0x1E7E, 0x56}, {0x1E7E, 0x323}, {0x1E7F, 0x76}, {0x1E7F, 0x323}, {0x1E80, 0x57}, {0x1E80, 0x300}, {0x1E81, 0x77}, {0x1E81, 0x300}, {0x1E82, 0x57}, {0x1E82, 0x301}, {0x1E83, 0x77}, {0x1E83, 0x301}, +{0x1E84, 0x57}, {0x1E84, 0x308}, {0x1E85, 0x77}, {0x1E85, 0x308}, {0x1E86, 0x57}, {0x1E86, 0x307}, {0x1E87, 0x77}, {0x1E87, 0x307}, {0x1E88, 0x57}, {0x1E88, 0x323}, {0x1E89, 0x77}, {0x1E89, 0x323}, +{0x1E8A, 0x58}, {0x1E8A, 0x307}, {0x1E8B, 0x78}, {0x1E8B, 0x307}, {0x1E8C, 0x58}, {0x1E8C, 0x308}, {0x1E8D, 0x78}, {0x1E8D, 0x308}, {0x1E8E, 0x59}, {0x1E8E, 0x307}, {0x1E8F, 0x79}, {0x1E8F, 0x307}, +{0x1E90, 0x5A}, {0x1E90, 0x302}, {0x1E91, 0x7A}, {0x1E91, 0x302}, {0x1E92, 0x5A}, {0x1E92, 0x323}, {0x1E93, 0x7A}, {0x1E93, 0x323}, {0x1E94, 0x5A}, {0x1E94, 0x331}, {0x1E95, 0x7A}, {0x1E95, 0x331}, +{0x1E96, 0x68}, {0x1E96, 0x331}, {0x1E97, 0x74}, {0x1E97, 0x308}, {0x1E98, 0x77}, {0x1E98, 0x30A}, {0x1E99, 0x79}, {0x1E99, 0x30A}, {0x1E9B, 0x17F}, {0x1E9B, 0x307}, {0x1EA0, 0x41}, {0x1EA0, 0x323}, +{0x1EA1, 0x61}, {0x1EA1, 0x323}, {0x1EA2, 0x41}, {0x1EA2, 0x309}, {0x1EA3, 0x61}, {0x1EA3, 0x309}, {0x1EA4, 0x41}, {0x1EA4, 0x302}, {0x1EA4, 0x301}, {0x1EA5, 0x61}, {0x1EA5, 0x302}, {0x1EA5, 0x301}, +{0x1EA6, 0x41}, {0x1EA6, 0x302}, {0x1EA6, 0x300}, {0x1EA7, 0x61}, {0x1EA7, 0x302}, {0x1EA7, 0x300}, {0x1EA8, 0x41}, {0x1EA8, 0x302}, {0x1EA8, 0x309}, {0x1EA9, 0x61}, {0x1EA9, 0x302}, {0x1EA9, 0x309}, +{0x1EAA, 0x41}, {0x1EAA, 0x302}, {0x1EAA, 0x303}, {0x1EAB, 0x61}, {0x1EAB, 0x302}, {0x1EAB, 0x303}, {0x1EAC, 0x41}, {0x1EAC, 0x323}, {0x1EAC, 0x302}, {0x1EAD, 0x61}, {0x1EAD, 0x323}, {0x1EAD, 0x302}, +{0x1EAE, 0x41}, {0x1EAE, 0x306}, {0x1EAE, 0x301}, {0x1EAF, 0x61}, {0x1EAF, 0x306}, {0x1EAF, 0x301}, {0x1EB0, 0x41}, {0x1EB0, 0x306}, {0x1EB0, 0x300}, {0x1EB1, 0x61}, {0x1EB1, 0x306}, {0x1EB1, 0x300}, +{0x1EB2, 0x41}, {0x1EB2, 0x306}, {0x1EB2, 0x309}, {0x1EB3, 0x61}, {0x1EB3, 0x306}, {0x1EB3, 0x309}, {0x1EB4, 0x41}, {0x1EB4, 0x306}, {0x1EB4, 0x303}, {0x1EB5, 0x61}, {0x1EB5, 0x306}, {0x1EB5, 0x303}, +{0x1EB6, 0x41}, {0x1EB6, 0x323}, {0x1EB6, 0x306}, {0x1EB7, 0x61}, {0x1EB7, 0x323}, {0x1EB7, 0x306}, {0x1EB8, 0x45}, {0x1EB8, 0x323}, {0x1EB9, 0x65}, {0x1EB9, 0x323}, {0x1EBA, 0x45}, {0x1EBA, 0x309}, +{0x1EBB, 0x65}, {0x1EBB, 0x309}, {0x1EBC, 0x45}, {0x1EBC, 0x303}, {0x1EBD, 0x65}, {0x1EBD, 0x303}, {0x1EBE, 0x45}, {0x1EBE, 0x302}, {0x1EBE, 0x301}, {0x1EBF, 0x65}, {0x1EBF, 0x302}, {0x1EBF, 0x301}, +{0x1EC0, 0x45}, {0x1EC0, 0x302}, {0x1EC0, 0x300}, {0x1EC1, 0x65}, {0x1EC1, 0x302}, {0x1EC1, 0x300}, {0x1EC2, 0x45}, {0x1EC2, 0x302}, {0x1EC2, 0x309}, {0x1EC3, 0x65}, {0x1EC3, 0x302}, {0x1EC3, 0x309}, +{0x1EC4, 0x45}, {0x1EC4, 0x302}, {0x1EC4, 0x303}, {0x1EC5, 0x65}, {0x1EC5, 0x302}, {0x1EC5, 0x303}, {0x1EC6, 0x45}, {0x1EC6, 0x323}, {0x1EC6, 0x302}, {0x1EC7, 0x65}, {0x1EC7, 0x323}, {0x1EC7, 0x302}, +{0x1EC8, 0x49}, {0x1EC8, 0x309}, {0x1EC9, 0x69}, {0x1EC9, 0x309}, {0x1ECA, 0x49}, {0x1ECA, 0x323}, {0x1ECB, 0x69}, {0x1ECB, 0x323}, {0x1ECC, 0x4F}, {0x1ECC, 0x323}, {0x1ECD, 0x6F}, {0x1ECD, 0x323}, +{0x1ECE, 0x4F}, {0x1ECE, 0x309}, {0x1ECF, 0x6F}, {0x1ECF, 0x309}, {0x1ED0, 0x4F}, {0x1ED0, 0x302}, {0x1ED0, 0x301}, {0x1ED1, 0x6F}, {0x1ED1, 0x302}, {0x1ED1, 0x301}, {0x1ED2, 0x4F}, {0x1ED2, 0x302}, +{0x1ED2, 0x300}, {0x1ED3, 0x6F}, {0x1ED3, 0x302}, {0x1ED3, 0x300}, {0x1ED4, 0x4F}, {0x1ED4, 0x302}, {0x1ED4, 0x309}, {0x1ED5, 0x6F}, {0x1ED5, 0x302}, {0x1ED5, 0x309}, {0x1ED6, 0x4F}, {0x1ED6, 0x302}, +{0x1ED6, 0x303}, {0x1ED7, 0x6F}, {0x1ED7, 0x302}, {0x1ED7, 0x303}, {0x1ED8, 0x4F}, {0x1ED8, 0x323}, {0x1ED8, 0x302}, {0x1ED9, 0x6F}, {0x1ED9, 0x323}, {0x1ED9, 0x302}, {0x1EDA, 0x4F}, {0x1EDA, 0x31B}, +{0x1EDA, 0x301}, {0x1EDB, 0x6F}, {0x1EDB, 0x31B}, {0x1EDB, 0x301}, {0x1EDC, 0x4F}, {0x1EDC, 0x31B}, {0x1EDC, 0x300}, {0x1EDD, 0x6F}, {0x1EDD, 0x31B}, {0x1EDD, 0x300}, {0x1EDE, 0x4F}, {0x1EDE, 0x31B}, +{0x1EDE, 0x309}, {0x1EDF, 0x6F}, {0x1EDF, 0x31B}, {0x1EDF, 0x309}, {0x1EE0, 0x4F}, {0x1EE0, 0x31B}, {0x1EE0, 0x303}, {0x1EE1, 0x6F}, {0x1EE1, 0x31B}, {0x1EE1, 0x303}, {0x1EE2, 0x4F}, {0x1EE2, 0x31B}, +{0x1EE2, 0x323}, {0x1EE3, 0x6F}, {0x1EE3, 0x31B}, {0x1EE3, 0x323}, {0x1EE4, 0x55}, {0x1EE4, 0x323}, {0x1EE5, 0x75}, {0x1EE5, 0x323}, {0x1EE6, 0x55}, {0x1EE6, 0x309}, {0x1EE7, 0x75}, {0x1EE7, 0x309}, +{0x1EE8, 0x55}, {0x1EE8, 0x31B}, {0x1EE8, 0x301}, {0x1EE9, 0x75}, {0x1EE9, 0x31B}, {0x1EE9, 0x301}, {0x1EEA, 0x55}, {0x1EEA, 0x31B}, {0x1EEA, 0x300}, {0x1EEB, 0x75}, {0x1EEB, 0x31B}, {0x1EEB, 0x300}, +{0x1EEC, 0x55}, {0x1EEC, 0x31B}, {0x1EEC, 0x309}, {0x1EED, 0x75}, {0x1EED, 0x31B}, {0x1EED, 0x309}, {0x1EEE, 0x55}, {0x1EEE, 0x31B}, {0x1EEE, 0x303}, {0x1EEF, 0x75}, {0x1EEF, 0x31B}, {0x1EEF, 0x303}, +{0x1EF0, 0x55}, {0x1EF0, 0x31B}, {0x1EF0, 0x323}, {0x1EF1, 0x75}, {0x1EF1, 0x31B}, {0x1EF1, 0x323}, {0x1EF2, 0x59}, {0x1EF2, 0x300}, {0x1EF3, 0x79}, {0x1EF3, 0x300}, {0x1EF4, 0x59}, {0x1EF4, 0x323}, +{0x1EF5, 0x79}, {0x1EF5, 0x323}, {0x1EF6, 0x59}, {0x1EF6, 0x309}, {0x1EF7, 0x79}, {0x1EF7, 0x309}, {0x1EF8, 0x59}, {0x1EF8, 0x303}, {0x1EF9, 0x79}, {0x1EF9, 0x303}, {0x1F00, 0x3B1}, {0x1F00, 0x313}, +{0x1F01, 0x3B1}, {0x1F01, 0x314}, {0x1F02, 0x3B1}, {0x1F02, 0x313}, {0x1F02, 0x300}, {0x1F03, 0x3B1}, {0x1F03, 0x314}, {0x1F03, 0x300}, {0x1F04, 0x3B1}, {0x1F04, 0x313}, {0x1F04, 0x301}, +{0x1F05, 0x3B1}, {0x1F05, 0x314}, {0x1F05, 0x301}, {0x1F06, 0x3B1}, {0x1F06, 0x313}, {0x1F06, 0x342}, {0x1F07, 0x3B1}, {0x1F07, 0x314}, {0x1F07, 0x342}, {0x1F08, 0x391}, {0x1F08, 0x313}, +{0x1F09, 0x391}, {0x1F09, 0x314}, {0x1F0A, 0x391}, {0x1F0A, 0x313}, {0x1F0A, 0x300}, {0x1F0B, 0x391}, {0x1F0B, 0x314}, {0x1F0B, 0x300}, {0x1F0C, 0x391}, {0x1F0C, 0x313}, {0x1F0C, 0x301}, +{0x1F0D, 0x391}, {0x1F0D, 0x314}, {0x1F0D, 0x301}, {0x1F0E, 0x391}, {0x1F0E, 0x313}, {0x1F0E, 0x342}, {0x1F0F, 0x391}, {0x1F0F, 0x314}, {0x1F0F, 0x342}, {0x1F10, 0x3B5}, {0x1F10, 0x313}, +{0x1F11, 0x3B5}, {0x1F11, 0x314}, {0x1F12, 0x3B5}, {0x1F12, 0x313}, {0x1F12, 0x300}, {0x1F13, 0x3B5}, {0x1F13, 0x314}, {0x1F13, 0x300}, {0x1F14, 0x3B5}, {0x1F14, 0x313}, {0x1F14, 0x301}, +{0x1F15, 0x3B5}, {0x1F15, 0x314}, {0x1F15, 0x301}, {0x1F18, 0x395}, {0x1F18, 0x313}, {0x1F19, 0x395}, {0x1F19, 0x314}, {0x1F1A, 0x395}, {0x1F1A, 0x313}, {0x1F1A, 0x300}, {0x1F1B, 0x395}, +{0x1F1B, 0x314}, {0x1F1B, 0x300}, {0x1F1C, 0x395}, {0x1F1C, 0x313}, {0x1F1C, 0x301}, {0x1F1D, 0x395}, {0x1F1D, 0x314}, {0x1F1D, 0x301}, {0x1F20, 0x3B7}, {0x1F20, 0x313}, {0x1F21, 0x3B7}, +{0x1F21, 0x314}, {0x1F22, 0x3B7}, {0x1F22, 0x313}, {0x1F22, 0x300}, {0x1F23, 0x3B7}, {0x1F23, 0x314}, {0x1F23, 0x300}, {0x1F24, 0x3B7}, {0x1F24, 0x313}, {0x1F24, 0x301}, {0x1F25, 0x3B7}, +{0x1F25, 0x314}, {0x1F25, 0x301}, {0x1F26, 0x3B7}, {0x1F26, 0x313}, {0x1F26, 0x342}, {0x1F27, 0x3B7}, {0x1F27, 0x314}, {0x1F27, 0x342}, {0x1F28, 0x397}, {0x1F28, 0x313}, {0x1F29, 0x397}, +{0x1F29, 0x314}, {0x1F2A, 0x397}, {0x1F2A, 0x313}, {0x1F2A, 0x300}, {0x1F2B, 0x397}, {0x1F2B, 0x314}, {0x1F2B, 0x300}, {0x1F2C, 0x397}, {0x1F2C, 0x313}, {0x1F2C, 0x301}, {0x1F2D, 0x397}, +{0x1F2D, 0x314}, {0x1F2D, 0x301}, {0x1F2E, 0x397}, {0x1F2E, 0x313}, {0x1F2E, 0x342}, {0x1F2F, 0x397}, {0x1F2F, 0x314}, {0x1F2F, 0x342}, {0x1F30, 0x3B9}, {0x1F30, 0x313}, {0x1F31, 0x3B9}, +{0x1F31, 0x314}, {0x1F32, 0x3B9}, {0x1F32, 0x313}, {0x1F32, 0x300}, {0x1F33, 0x3B9}, {0x1F33, 0x314}, {0x1F33, 0x300}, {0x1F34, 0x3B9}, {0x1F34, 0x313}, {0x1F34, 0x301}, {0x1F35, 0x3B9}, +{0x1F35, 0x314}, {0x1F35, 0x301}, {0x1F36, 0x3B9}, {0x1F36, 0x313}, {0x1F36, 0x342}, {0x1F37, 0x3B9}, {0x1F37, 0x314}, {0x1F37, 0x342}, {0x1F38, 0x399}, {0x1F38, 0x313}, {0x1F39, 0x399}, +{0x1F39, 0x314}, {0x1F3A, 0x399}, {0x1F3A, 0x313}, {0x1F3A, 0x300}, {0x1F3B, 0x399}, {0x1F3B, 0x314}, {0x1F3B, 0x300}, {0x1F3C, 0x399}, {0x1F3C, 0x313}, {0x1F3C, 0x301}, {0x1F3D, 0x399}, +{0x1F3D, 0x314}, {0x1F3D, 0x301}, {0x1F3E, 0x399}, {0x1F3E, 0x313}, {0x1F3E, 0x342}, {0x1F3F, 0x399}, {0x1F3F, 0x314}, {0x1F3F, 0x342}, {0x1F40, 0x3BF}, {0x1F40, 0x313}, {0x1F41, 0x3BF}, +{0x1F41, 0x314}, {0x1F42, 0x3BF}, {0x1F42, 0x313}, {0x1F42, 0x300}, {0x1F43, 0x3BF}, {0x1F43, 0x314}, {0x1F43, 0x300}, {0x1F44, 0x3BF}, {0x1F44, 0x313}, {0x1F44, 0x301}, {0x1F45, 0x3BF}, +{0x1F45, 0x314}, {0x1F45, 0x301}, {0x1F48, 0x39F}, {0x1F48, 0x313}, {0x1F49, 0x39F}, {0x1F49, 0x314}, {0x1F4A, 0x39F}, {0x1F4A, 0x313}, {0x1F4A, 0x300}, {0x1F4B, 0x39F}, {0x1F4B, 0x314}, +{0x1F4B, 0x300}, {0x1F4C, 0x39F}, {0x1F4C, 0x313}, {0x1F4C, 0x301}, {0x1F4D, 0x39F}, {0x1F4D, 0x314}, {0x1F4D, 0x301}, {0x1F50, 0x3C5}, {0x1F50, 0x313}, {0x1F51, 0x3C5}, {0x1F51, 0x314}, +{0x1F52, 0x3C5}, {0x1F52, 0x313}, {0x1F52, 0x300}, {0x1F53, 0x3C5}, {0x1F53, 0x314}, {0x1F53, 0x300}, {0x1F54, 0x3C5}, {0x1F54, 0x313}, {0x1F54, 0x301}, {0x1F55, 0x3C5}, {0x1F55, 0x314}, +{0x1F55, 0x301}, {0x1F56, 0x3C5}, {0x1F56, 0x313}, {0x1F56, 0x342}, {0x1F57, 0x3C5}, {0x1F57, 0x314}, {0x1F57, 0x342}, {0x1F59, 0x3A5}, {0x1F59, 0x314}, {0x1F5B, 0x3A5}, {0x1F5B, 0x314}, +{0x1F5B, 0x300}, {0x1F5D, 0x3A5}, {0x1F5D, 0x314}, {0x1F5D, 0x301}, {0x1F5F, 0x3A5}, {0x1F5F, 0x314}, {0x1F5F, 0x342}, {0x1F60, 0x3C9}, {0x1F60, 0x313}, {0x1F61, 0x3C9}, {0x1F61, 0x314}, +{0x1F62, 0x3C9}, {0x1F62, 0x313}, {0x1F62, 0x300}, {0x1F63, 0x3C9}, {0x1F63, 0x314}, {0x1F63, 0x300}, {0x1F64, 0x3C9}, {0x1F64, 0x313}, {0x1F64, 0x301}, {0x1F65, 0x3C9}, {0x1F65, 0x314}, +{0x1F65, 0x301}, {0x1F66, 0x3C9}, {0x1F66, 0x313}, {0x1F66, 0x342}, {0x1F67, 0x3C9}, {0x1F67, 0x314}, {0x1F67, 0x342}, {0x1F68, 0x3A9}, {0x1F68, 0x313}, {0x1F69, 0x3A9}, {0x1F69, 0x314}, +{0x1F6A, 0x3A9}, {0x1F6A, 0x313}, {0x1F6A, 0x300}, {0x1F6B, 0x3A9}, {0x1F6B, 0x314}, {0x1F6B, 0x300}, {0x1F6C, 0x3A9}, {0x1F6C, 0x313}, {0x1F6C, 0x301}, {0x1F6D, 0x3A9}, {0x1F6D, 0x314}, +{0x1F6D, 0x301}, {0x1F6E, 0x3A9}, {0x1F6E, 0x313}, {0x1F6E, 0x342}, {0x1F6F, 0x3A9}, {0x1F6F, 0x314}, {0x1F6F, 0x342}, {0x1F70, 0x3B1}, {0x1F70, 0x300}, {0x1F71, 0x3B1}, {0x1F71, 0x301}, +{0x1F72, 0x3B5}, {0x1F72, 0x300}, {0x1F73, 0x3B5}, {0x1F73, 0x301}, {0x1F74, 0x3B7}, {0x1F74, 0x300}, {0x1F75, 0x3B7}, {0x1F75, 0x301}, {0x1F76, 0x3B9}, {0x1F76, 0x300}, {0x1F77, 0x3B9}, +{0x1F77, 0x301}, {0x1F78, 0x3BF}, {0x1F78, 0x300}, {0x1F79, 0x3BF}, {0x1F79, 0x301}, {0x1F7A, 0x3C5}, {0x1F7A, 0x300}, {0x1F7B, 0x3C5}, {0x1F7B, 0x301}, {0x1F7C, 0x3C9}, {0x1F7C, 0x300}, +{0x1F7D, 0x3C9}, {0x1F7D, 0x301}, {0x1F80, 0x3B1}, {0x1F80, 0x313}, {0x1F80, 0x345}, {0x1F81, 0x3B1}, {0x1F81, 0x314}, {0x1F81, 0x345}, {0x1F82, 0x3B1}, {0x1F82, 0x313}, {0x1F82, 0x300}, +{0x1F82, 0x345}, {0x1F83, 0x3B1}, {0x1F83, 0x314}, {0x1F83, 0x300}, {0x1F83, 0x345}, {0x1F84, 0x3B1}, {0x1F84, 0x313}, {0x1F84, 0x301}, {0x1F84, 0x345}, {0x1F85, 0x3B1}, {0x1F85, 0x314}, +{0x1F85, 0x301}, {0x1F85, 0x345}, {0x1F86, 0x3B1}, {0x1F86, 0x313}, {0x1F86, 0x342}, {0x1F86, 0x345}, {0x1F87, 0x3B1}, {0x1F87, 0x314}, {0x1F87, 0x342}, {0x1F87, 0x345}, {0x1F88, 0x391}, +{0x1F88, 0x313}, {0x1F88, 0x345}, {0x1F89, 0x391}, {0x1F89, 0x314}, {0x1F89, 0x345}, {0x1F8A, 0x391}, {0x1F8A, 0x313}, {0x1F8A, 0x300}, {0x1F8A, 0x345}, {0x1F8B, 0x391}, {0x1F8B, 0x314}, +{0x1F8B, 0x300}, {0x1F8B, 0x345}, {0x1F8C, 0x391}, {0x1F8C, 0x313}, {0x1F8C, 0x301}, {0x1F8C, 0x345}, {0x1F8D, 0x391}, {0x1F8D, 0x314}, {0x1F8D, 0x301}, {0x1F8D, 0x345}, {0x1F8E, 0x391}, +{0x1F8E, 0x313}, {0x1F8E, 0x342}, {0x1F8E, 0x345}, {0x1F8F, 0x391}, {0x1F8F, 0x314}, {0x1F8F, 0x342}, {0x1F8F, 0x345}, {0x1F90, 0x3B7}, {0x1F90, 0x313}, {0x1F90, 0x345}, {0x1F91, 0x3B7}, +{0x1F91, 0x314}, {0x1F91, 0x345}, {0x1F92, 0x3B7}, {0x1F92, 0x313}, {0x1F92, 0x300}, {0x1F92, 0x345}, {0x1F93, 0x3B7}, {0x1F93, 0x314}, {0x1F93, 0x300}, {0x1F93, 0x345}, {0x1F94, 0x3B7}, +{0x1F94, 0x313}, {0x1F94, 0x301}, {0x1F94, 0x345}, {0x1F95, 0x3B7}, {0x1F95, 0x314}, {0x1F95, 0x301}, {0x1F95, 0x345}, {0x1F96, 0x3B7}, {0x1F96, 0x313}, {0x1F96, 0x342}, {0x1F96, 0x345}, +{0x1F97, 0x3B7}, {0x1F97, 0x314}, {0x1F97, 0x342}, {0x1F97, 0x345}, {0x1F98, 0x397}, {0x1F98, 0x313}, {0x1F98, 0x345}, {0x1F99, 0x397}, {0x1F99, 0x314}, {0x1F99, 0x345}, {0x1F9A, 0x397}, +{0x1F9A, 0x313}, {0x1F9A, 0x300}, {0x1F9A, 0x345}, {0x1F9B, 0x397}, {0x1F9B, 0x314}, {0x1F9B, 0x300}, {0x1F9B, 0x345}, {0x1F9C, 0x397}, {0x1F9C, 0x313}, {0x1F9C, 0x301}, {0x1F9C, 0x345}, +{0x1F9D, 0x397}, {0x1F9D, 0x314}, {0x1F9D, 0x301}, {0x1F9D, 0x345}, {0x1F9E, 0x397}, {0x1F9E, 0x313}, {0x1F9E, 0x342}, {0x1F9E, 0x345}, {0x1F9F, 0x397}, {0x1F9F, 0x314}, {0x1F9F, 0x342}, +{0x1F9F, 0x345}, {0x1FA0, 0x3C9}, {0x1FA0, 0x313}, {0x1FA0, 0x345}, {0x1FA1, 0x3C9}, {0x1FA1, 0x314}, {0x1FA1, 0x345}, {0x1FA2, 0x3C9}, {0x1FA2, 0x313}, {0x1FA2, 0x300}, {0x1FA2, 0x345}, +{0x1FA3, 0x3C9}, {0x1FA3, 0x314}, {0x1FA3, 0x300}, {0x1FA3, 0x345}, {0x1FA4, 0x3C9}, {0x1FA4, 0x313}, {0x1FA4, 0x301}, {0x1FA4, 0x345}, {0x1FA5, 0x3C9}, {0x1FA5, 0x314}, {0x1FA5, 0x301}, +{0x1FA5, 0x345}, {0x1FA6, 0x3C9}, {0x1FA6, 0x313}, {0x1FA6, 0x342}, {0x1FA6, 0x345}, {0x1FA7, 0x3C9}, {0x1FA7, 0x314}, {0x1FA7, 0x342}, {0x1FA7, 0x345}, {0x1FA8, 0x3A9}, {0x1FA8, 0x313}, +{0x1FA8, 0x345}, {0x1FA9, 0x3A9}, {0x1FA9, 0x314}, {0x1FA9, 0x345}, {0x1FAA, 0x3A9}, {0x1FAA, 0x313}, {0x1FAA, 0x300}, {0x1FAA, 0x345}, {0x1FAB, 0x3A9}, {0x1FAB, 0x314}, {0x1FAB, 0x300}, +{0x1FAB, 0x345}, {0x1FAC, 0x3A9}, {0x1FAC, 0x313}, {0x1FAC, 0x301}, {0x1FAC, 0x345}, {0x1FAD, 0x3A9}, {0x1FAD, 0x314}, {0x1FAD, 0x301}, {0x1FAD, 0x345}, {0x1FAE, 0x3A9}, {0x1FAE, 0x313}, +{0x1FAE, 0x342}, {0x1FAE, 0x345}, {0x1FAF, 0x3A9}, {0x1FAF, 0x314}, {0x1FAF, 0x342}, {0x1FAF, 0x345}, {0x1FB0, 0x3B1}, {0x1FB0, 0x306}, {0x1FB1, 0x3B1}, {0x1FB1, 0x304}, {0x1FB2, 0x3B1}, +{0x1FB2, 0x300}, {0x1FB2, 0x345}, {0x1FB3, 0x3B1}, {0x1FB3, 0x345}, {0x1FB4, 0x3B1}, {0x1FB4, 0x301}, {0x1FB4, 0x345}, {0x1FB6, 0x3B1}, {0x1FB6, 0x342}, {0x1FB7, 0x3B1}, {0x1FB7, 0x342}, +{0x1FB7, 0x345}, {0x1FB8, 0x391}, {0x1FB8, 0x306}, {0x1FB9, 0x391}, {0x1FB9, 0x304}, {0x1FBA, 0x391}, {0x1FBA, 0x300}, {0x1FBB, 0x391}, {0x1FBB, 0x301}, {0x1FBC, 0x391}, {0x1FBC, 0x345}, +{0x1FBE, 0x3B9}, {0x1FC1, 0xA8}, {0x1FC1, 0x342}, {0x1FC2, 0x3B7}, {0x1FC2, 0x300}, {0x1FC2, 0x345}, {0x1FC3, 0x3B7}, {0x1FC3, 0x345}, {0x1FC4, 0x3B7}, {0x1FC4, 0x301}, {0x1FC4, 0x345}, +{0x1FC6, 0x3B7}, {0x1FC6, 0x342}, {0x1FC7, 0x3B7}, {0x1FC7, 0x342}, {0x1FC7, 0x345}, {0x1FC8, 0x395}, {0x1FC8, 0x300}, {0x1FC9, 0x395}, {0x1FC9, 0x301}, {0x1FCA, 0x397}, {0x1FCA, 0x300}, +{0x1FCB, 0x397}, {0x1FCB, 0x301}, {0x1FCC, 0x397}, {0x1FCC, 0x345}, {0x1FCD, 0x1FBF}, {0x1FCD, 0x300}, {0x1FCE, 0x1FBF}, {0x1FCE, 0x301}, {0x1FCF, 0x1FBF}, {0x1FCF, 0x342}, {0x1FD0, 0x3B9}, +{0x1FD0, 0x306}, {0x1FD1, 0x3B9}, {0x1FD1, 0x304}, {0x1FD2, 0x3B9}, {0x1FD2, 0x308}, {0x1FD2, 0x300}, {0x1FD3, 0x3B9}, {0x1FD3, 0x308}, {0x1FD3, 0x301}, {0x1FD6, 0x3B9}, {0x1FD6, 0x342}, +{0x1FD7, 0x3B9}, {0x1FD7, 0x308}, {0x1FD7, 0x342}, {0x1FD8, 0x399}, {0x1FD8, 0x306}, {0x1FD9, 0x399}, {0x1FD9, 0x304}, {0x1FDA, 0x399}, {0x1FDA, 0x300}, {0x1FDB, 0x399}, {0x1FDB, 0x301}, +{0x1FDD, 0x1FFE}, {0x1FDD, 0x300}, {0x1FDE, 0x1FFE}, {0x1FDE, 0x301}, {0x1FDF, 0x1FFE}, {0x1FDF, 0x342}, {0x1FE0, 0x3C5}, {0x1FE0, 0x306}, {0x1FE1, 0x3C5}, {0x1FE1, 0x304}, {0x1FE2, 0x3C5}, +{0x1FE2, 0x308}, {0x1FE2, 0x300}, {0x1FE3, 0x3C5}, {0x1FE3, 0x308}, {0x1FE3, 0x301}, {0x1FE4, 0x3C1}, {0x1FE4, 0x313}, {0x1FE5, 0x3C1}, {0x1FE5, 0x314}, {0x1FE6, 0x3C5}, {0x1FE6, 0x342}, +{0x1FE7, 0x3C5}, {0x1FE7, 0x308}, {0x1FE7, 0x342}, {0x1FE8, 0x3A5}, {0x1FE8, 0x306}, {0x1FE9, 0x3A5}, {0x1FE9, 0x304}, {0x1FEA, 0x3A5}, {0x1FEA, 0x300}, {0x1FEB, 0x3A5}, {0x1FEB, 0x301}, +{0x1FEC, 0x3A1}, {0x1FEC, 0x314}, {0x1FED, 0xA8}, {0x1FED, 0x300}, {0x1FEE, 0xA8}, {0x1FEE, 0x301}, {0x1FEF, 0x60}, {0x1FF2, 0x3C9}, {0x1FF2, 0x300}, {0x1FF2, 0x345}, {0x1FF3, 0x3C9}, {0x1FF3, 0x345}, +{0x1FF4, 0x3C9}, {0x1FF4, 0x301}, {0x1FF4, 0x345}, {0x1FF6, 0x3C9}, {0x1FF6, 0x342}, {0x1FF7, 0x3C9}, {0x1FF7, 0x342}, {0x1FF7, 0x345}, {0x1FF8, 0x39F}, {0x1FF8, 0x300}, {0x1FF9, 0x39F}, +{0x1FF9, 0x301}, {0x1FFA, 0x3A9}, {0x1FFA, 0x300}, {0x1FFB, 0x3A9}, {0x1FFB, 0x301}, {0x1FFC, 0x3A9}, {0x1FFC, 0x345}, {0x1FFD, 0xB4}, {0x2000, 0x2002}, {0x2001, 0x2003}, {0x2126, 0x3A9}, +{0x212A, 0x4B}, {0x212B, 0x41}, {0x212B, 0x30A}, {0x219A, 0x2190}, {0x219A, 0x338}, {0x219B, 0x2192}, {0x219B, 0x338}, {0x21AE, 0x2194}, {0x21AE, 0x338}, {0x21CD, 0x21D0}, {0x21CD, 0x338}, +{0x21CE, 0x21D4}, {0x21CE, 0x338}, {0x21CF, 0x21D2}, {0x21CF, 0x338}, {0x2204, 0x2203}, {0x2204, 0x338}, {0x2209, 0x2208}, {0x2209, 0x338}, {0x220C, 0x220B}, {0x220C, 0x338}, {0x2224, 0x2223}, +{0x2224, 0x338}, {0x2226, 0x2225}, {0x2226, 0x338}, {0x2241, 0x223C}, {0x2241, 0x338}, {0x2244, 0x2243}, {0x2244, 0x338}, {0x2247, 0x2245}, {0x2247, 0x338}, {0x2249, 0x2248}, {0x2249, 0x338}, +{0x2260, 0x3D}, {0x2260, 0x338}, {0x2262, 0x2261}, {0x2262, 0x338}, {0x226D, 0x224D}, {0x226D, 0x338}, {0x226E, 0x3C}, {0x226E, 0x338}, {0x226F, 0x3E}, {0x226F, 0x338}, {0x2270, 0x2264}, +{0x2270, 0x338}, {0x2271, 0x2265}, {0x2271, 0x338}, {0x2274, 0x2272}, {0x2274, 0x338}, {0x2275, 0x2273}, {0x2275, 0x338}, {0x2278, 0x2276}, {0x2278, 0x338}, {0x2279, 0x2277}, {0x2279, 0x338}, +{0x2280, 0x227A}, {0x2280, 0x338}, {0x2281, 0x227B}, {0x2281, 0x338}, {0x2284, 0x2282}, {0x2284, 0x338}, {0x2285, 0x2283}, {0x2285, 0x338}, {0x2288, 0x2286}, {0x2288, 0x338}, {0x2289, 0x2287}, +{0x2289, 0x338}, {0x22AC, 0x22A2}, {0x22AC, 0x338}, {0x22AD, 0x22A8}, {0x22AD, 0x338}, {0x22AE, 0x22A9}, {0x22AE, 0x338}, {0x22AF, 0x22AB}, {0x22AF, 0x338}, {0x22E0, 0x227C}, {0x22E0, 0x338}, +{0x22E1, 0x227D}, {0x22E1, 0x338}, {0x22E2, 0x2291}, {0x22E2, 0x338}, {0x22E3, 0x2292}, {0x22E3, 0x338}, {0x22EA, 0x22B2}, {0x22EA, 0x338}, {0x22EB, 0x22B3}, {0x22EB, 0x338}, {0x22EC, 0x22B4}, +{0x22EC, 0x338}, {0x22ED, 0x22B5}, {0x22ED, 0x338}, {0x2329, 0x3008}, {0x232A, 0x3009}, {0x2ADC, 0x2ADD}, {0x2ADC, 0x338}, {0x304C, 0x304B}, {0x304C, 0x3099}, {0x304E, 0x304D}, {0x304E, 0x3099}, +{0x3050, 0x304F}, {0x3050, 0x3099}, {0x3052, 0x3051}, {0x3052, 0x3099}, {0x3054, 0x3053}, {0x3054, 0x3099}, {0x3056, 0x3055}, {0x3056, 0x3099}, {0x3058, 0x3057}, {0x3058, 0x3099}, {0x305A, 0x3059}, +{0x305A, 0x3099}, {0x305C, 0x305B}, {0x305C, 0x3099}, {0x305E, 0x305D}, {0x305E, 0x3099}, {0x3060, 0x305F}, {0x3060, 0x3099}, {0x3062, 0x3061}, {0x3062, 0x3099}, {0x3065, 0x3064}, {0x3065, 0x3099}, +{0x3067, 0x3066}, {0x3067, 0x3099}, {0x3069, 0x3068}, {0x3069, 0x3099}, {0x3070, 0x306F}, {0x3070, 0x3099}, {0x3071, 0x306F}, {0x3071, 0x309A}, {0x3073, 0x3072}, {0x3073, 0x3099}, {0x3074, 0x3072}, +{0x3074, 0x309A}, {0x3076, 0x3075}, {0x3076, 0x3099}, {0x3077, 0x3075}, {0x3077, 0x309A}, {0x3079, 0x3078}, {0x3079, 0x3099}, {0x307A, 0x3078}, {0x307A, 0x309A}, {0x307C, 0x307B}, {0x307C, 0x3099}, +{0x307D, 0x307B}, {0x307D, 0x309A}, {0x3094, 0x3046}, {0x3094, 0x3099}, {0x309E, 0x309D}, {0x309E, 0x3099}, {0x30AC, 0x30AB}, {0x30AC, 0x3099}, {0x30AE, 0x30AD}, {0x30AE, 0x3099}, {0x30B0, 0x30AF}, +{0x30B0, 0x3099}, {0x30B2, 0x30B1}, {0x30B2, 0x3099}, {0x30B4, 0x30B3}, {0x30B4, 0x3099}, {0x30B6, 0x30B5}, {0x30B6, 0x3099}, {0x30B8, 0x30B7}, {0x30B8, 0x3099}, {0x30BA, 0x30B9}, {0x30BA, 0x3099}, +{0x30BC, 0x30BB}, {0x30BC, 0x3099}, {0x30BE, 0x30BD}, {0x30BE, 0x3099}, {0x30C0, 0x30BF}, {0x30C0, 0x3099}, {0x30C2, 0x30C1}, {0x30C2, 0x3099}, {0x30C5, 0x30C4}, {0x30C5, 0x3099}, {0x30C7, 0x30C6}, +{0x30C7, 0x3099}, {0x30C9, 0x30C8}, {0x30C9, 0x3099}, {0x30D0, 0x30CF}, {0x30D0, 0x3099}, {0x30D1, 0x30CF}, {0x30D1, 0x309A}, {0x30D3, 0x30D2}, {0x30D3, 0x3099}, {0x30D4, 0x30D2}, {0x30D4, 0x309A}, +{0x30D6, 0x30D5}, {0x30D6, 0x3099}, {0x30D7, 0x30D5}, {0x30D7, 0x309A}, {0x30D9, 0x30D8}, {0x30D9, 0x3099}, {0x30DA, 0x30D8}, {0x30DA, 0x309A}, {0x30DC, 0x30DB}, {0x30DC, 0x3099}, {0x30DD, 0x30DB}, +{0x30DD, 0x309A}, {0x30F4, 0x30A6}, {0x30F4, 0x3099}, {0x30F7, 0x30EF}, {0x30F7, 0x3099}, {0x30F8, 0x30F0}, {0x30F8, 0x3099}, {0x30F9, 0x30F1}, {0x30F9, 0x3099}, {0x30FA, 0x30F2}, {0x30FA, 0x3099}, +{0x30FE, 0x30FD}, {0x30FE, 0x3099}, {0xF900, 0x8C48}, {0xF901, 0x66F4}, {0xF902, 0x8ECA}, {0xF903, 0x8CC8}, {0xF904, 0x6ED1}, {0xF905, 0x4E32}, {0xF906, 0x53E5}, {0xF907, 0x9F9C}, {0xF908, 0x9F9C}, +{0xF909, 0x5951}, {0xF90A, 0x91D1}, {0xF90B, 0x5587}, {0xF90C, 0x5948}, {0xF90D, 0x61F6}, {0xF90E, 0x7669}, {0xF90F, 0x7F85}, {0xF910, 0x863F}, {0xF911, 0x87BA}, {0xF912, 0x88F8}, {0xF913, 0x908F}, +{0xF914, 0x6A02}, {0xF915, 0x6D1B}, {0xF916, 0x70D9}, {0xF917, 0x73DE}, {0xF918, 0x843D}, {0xF919, 0x916A}, {0xF91A, 0x99F1}, {0xF91B, 0x4E82}, {0xF91C, 0x5375}, {0xF91D, 0x6B04}, {0xF91E, 0x721B}, +{0xF91F, 0x862D}, {0xF920, 0x9E1E}, {0xF921, 0x5D50}, {0xF922, 0x6FEB}, {0xF923, 0x85CD}, {0xF924, 0x8964}, {0xF925, 0x62C9}, {0xF926, 0x81D8}, {0xF927, 0x881F}, {0xF928, 0x5ECA}, {0xF929, 0x6717}, +{0xF92A, 0x6D6A}, {0xF92B, 0x72FC}, {0xF92C, 0x90CE}, {0xF92D, 0x4F86}, {0xF92E, 0x51B7}, {0xF92F, 0x52DE}, {0xF930, 0x64C4}, {0xF931, 0x6AD3}, {0xF932, 0x7210}, {0xF933, 0x76E7}, {0xF934, 0x8001}, +{0xF935, 0x8606}, {0xF936, 0x865C}, {0xF937, 0x8DEF}, {0xF938, 0x9732}, {0xF939, 0x9B6F}, {0xF93A, 0x9DFA}, {0xF93B, 0x788C}, {0xF93C, 0x797F}, {0xF93D, 0x7DA0}, {0xF93E, 0x83C9}, {0xF93F, 0x9304}, +{0xF940, 0x9E7F}, {0xF941, 0x8AD6}, {0xF942, 0x58DF}, {0xF943, 0x5F04}, {0xF944, 0x7C60}, {0xF945, 0x807E}, {0xF946, 0x7262}, {0xF947, 0x78CA}, {0xF948, 0x8CC2}, {0xF949, 0x96F7}, {0xF94A, 0x58D8}, +{0xF94B, 0x5C62}, {0xF94C, 0x6A13}, {0xF94D, 0x6DDA}, {0xF94E, 0x6F0F}, {0xF94F, 0x7D2F}, {0xF950, 0x7E37}, {0xF951, 0x964B}, {0xF952, 0x52D2}, {0xF953, 0x808B}, {0xF954, 0x51DC}, {0xF955, 0x51CC}, +{0xF956, 0x7A1C}, {0xF957, 0x7DBE}, {0xF958, 0x83F1}, {0xF959, 0x9675}, {0xF95A, 0x8B80}, {0xF95B, 0x62CF}, {0xF95C, 0x6A02}, {0xF95D, 0x8AFE}, {0xF95E, 0x4E39}, {0xF95F, 0x5BE7}, {0xF960, 0x6012}, +{0xF961, 0x7387}, {0xF962, 0x7570}, {0xF963, 0x5317}, {0xF964, 0x78FB}, {0xF965, 0x4FBF}, {0xF966, 0x5FA9}, {0xF967, 0x4E0D}, {0xF968, 0x6CCC}, {0xF969, 0x6578}, {0xF96A, 0x7D22}, {0xF96B, 0x53C3}, +{0xF96C, 0x585E}, {0xF96D, 0x7701}, {0xF96E, 0x8449}, {0xF96F, 0x8AAA}, {0xF970, 0x6BBA}, {0xF971, 0x8FB0}, {0xF972, 0x6C88}, {0xF973, 0x62FE}, {0xF974, 0x82E5}, {0xF975, 0x63A0}, {0xF976, 0x7565}, +{0xF977, 0x4EAE}, {0xF978, 0x5169}, {0xF979, 0x51C9}, {0xF97A, 0x6881}, {0xF97B, 0x7CE7}, {0xF97C, 0x826F}, {0xF97D, 0x8AD2}, {0xF97E, 0x91CF}, {0xF97F, 0x52F5}, {0xF980, 0x5442}, {0xF981, 0x5973}, +{0xF982, 0x5EEC}, {0xF983, 0x65C5}, {0xF984, 0x6FFE}, {0xF985, 0x792A}, {0xF986, 0x95AD}, {0xF987, 0x9A6A}, {0xF988, 0x9E97}, {0xF989, 0x9ECE}, {0xF98A, 0x529B}, {0xF98B, 0x66C6}, {0xF98C, 0x6B77}, +{0xF98D, 0x8F62}, {0xF98E, 0x5E74}, {0xF98F, 0x6190}, {0xF990, 0x6200}, {0xF991, 0x649A}, {0xF992, 0x6F23}, {0xF993, 0x7149}, {0xF994, 0x7489}, {0xF995, 0x79CA}, {0xF996, 0x7DF4}, {0xF997, 0x806F}, +{0xF998, 0x8F26}, {0xF999, 0x84EE}, {0xF99A, 0x9023}, {0xF99B, 0x934A}, {0xF99C, 0x5217}, {0xF99D, 0x52A3}, {0xF99E, 0x54BD}, {0xF99F, 0x70C8}, {0xF9A0, 0x88C2}, {0xF9A1, 0x8AAA}, {0xF9A2, 0x5EC9}, +{0xF9A3, 0x5FF5}, {0xF9A4, 0x637B}, {0xF9A5, 0x6BAE}, {0xF9A6, 0x7C3E}, {0xF9A7, 0x7375}, {0xF9A8, 0x4EE4}, {0xF9A9, 0x56F9}, {0xF9AA, 0x5BE7}, {0xF9AB, 0x5DBA}, {0xF9AC, 0x601C}, {0xF9AD, 0x73B2}, +{0xF9AE, 0x7469}, {0xF9AF, 0x7F9A}, {0xF9B0, 0x8046}, {0xF9B1, 0x9234}, {0xF9B2, 0x96F6}, {0xF9B3, 0x9748}, {0xF9B4, 0x9818}, {0xF9B5, 0x4F8B}, {0xF9B6, 0x79AE}, {0xF9B7, 0x91B4}, {0xF9B8, 0x96B8}, +{0xF9B9, 0x60E1}, {0xF9BA, 0x4E86}, {0xF9BB, 0x50DA}, {0xF9BC, 0x5BEE}, {0xF9BD, 0x5C3F}, {0xF9BE, 0x6599}, {0xF9BF, 0x6A02}, {0xF9C0, 0x71CE}, {0xF9C1, 0x7642}, {0xF9C2, 0x84FC}, {0xF9C3, 0x907C}, +{0xF9C4, 0x9F8D}, {0xF9C5, 0x6688}, {0xF9C6, 0x962E}, {0xF9C7, 0x5289}, {0xF9C8, 0x677B}, {0xF9C9, 0x67F3}, {0xF9CA, 0x6D41}, {0xF9CB, 0x6E9C}, {0xF9CC, 0x7409}, {0xF9CD, 0x7559}, {0xF9CE, 0x786B}, +{0xF9CF, 0x7D10}, {0xF9D0, 0x985E}, {0xF9D1, 0x516D}, {0xF9D2, 0x622E}, {0xF9D3, 0x9678}, {0xF9D4, 0x502B}, {0xF9D5, 0x5D19}, {0xF9D6, 0x6DEA}, {0xF9D7, 0x8F2A}, {0xF9D8, 0x5F8B}, {0xF9D9, 0x6144}, +{0xF9DA, 0x6817}, {0xF9DB, 0x7387}, {0xF9DC, 0x9686}, {0xF9DD, 0x5229}, {0xF9DE, 0x540F}, {0xF9DF, 0x5C65}, {0xF9E0, 0x6613}, {0xF9E1, 0x674E}, {0xF9E2, 0x68A8}, {0xF9E3, 0x6CE5}, {0xF9E4, 0x7406}, +{0xF9E5, 0x75E2}, {0xF9E6, 0x7F79}, {0xF9E7, 0x88CF}, {0xF9E8, 0x88E1}, {0xF9E9, 0x91CC}, {0xF9EA, 0x96E2}, {0xF9EB, 0x533F}, {0xF9EC, 0x6EBA}, {0xF9ED, 0x541D}, {0xF9EE, 0x71D0}, {0xF9EF, 0x7498}, +{0xF9F0, 0x85FA}, {0xF9F1, 0x96A3}, {0xF9F2, 0x9C57}, {0xF9F3, 0x9E9F}, {0xF9F4, 0x6797}, {0xF9F5, 0x6DCB}, {0xF9F6, 0x81E8}, {0xF9F7, 0x7ACB}, {0xF9F8, 0x7B20}, {0xF9F9, 0x7C92}, {0xF9FA, 0x72C0}, +{0xF9FB, 0x7099}, {0xF9FC, 0x8B58}, {0xF9FD, 0x4EC0}, {0xF9FE, 0x8336}, {0xF9FF, 0x523A}, {0xFA00, 0x5207}, {0xFA01, 0x5EA6}, {0xFA02, 0x62D3}, {0xFA03, 0x7CD6}, {0xFA04, 0x5B85}, {0xFA05, 0x6D1E}, +{0xFA06, 0x66B4}, {0xFA07, 0x8F3B}, {0xFA08, 0x884C}, {0xFA09, 0x964D}, {0xFA0A, 0x898B}, {0xFA0B, 0x5ED3}, {0xFA0C, 0x5140}, {0xFA0D, 0x55C0}, {0xFA10, 0x585A}, {0xFA12, 0x6674}, {0xFA15, 0x51DE}, +{0xFA16, 0x732A}, {0xFA17, 0x76CA}, {0xFA18, 0x793C}, {0xFA19, 0x795E}, {0xFA1A, 0x7965}, {0xFA1B, 0x798F}, {0xFA1C, 0x9756}, {0xFA1D, 0x7CBE}, {0xFA1E, 0x7FBD}, {0xFA20, 0x8612}, {0xFA22, 0x8AF8}, +{0xFA25, 0x9038}, {0xFA26, 0x90FD}, {0xFA2A, 0x98EF}, {0xFA2B, 0x98FC}, {0xFA2C, 0x9928}, {0xFA2D, 0x9DB4}, {0xFA2E, 0x90DE}, {0xFA2F, 0x96B7}, {0xFA30, 0x4FAE}, {0xFA31, 0x50E7}, {0xFA32, 0x514D}, +{0xFA33, 0x52C9}, {0xFA34, 0x52E4}, {0xFA35, 0x5351}, {0xFA36, 0x559D}, {0xFA37, 0x5606}, {0xFA38, 0x5668}, {0xFA39, 0x5840}, {0xFA3A, 0x58A8}, {0xFA3B, 0x5C64}, {0xFA3C, 0x5C6E}, {0xFA3D, 0x6094}, +{0xFA3E, 0x6168}, {0xFA3F, 0x618E}, {0xFA40, 0x61F2}, {0xFA41, 0x654F}, {0xFA42, 0x65E2}, {0xFA43, 0x6691}, {0xFA44, 0x6885}, {0xFA45, 0x6D77}, {0xFA46, 0x6E1A}, {0xFA47, 0x6F22}, {0xFA48, 0x716E}, +{0xFA49, 0x722B}, {0xFA4A, 0x7422}, {0xFA4B, 0x7891}, {0xFA4C, 0x793E}, {0xFA4D, 0x7949}, {0xFA4E, 0x7948}, {0xFA4F, 0x7950}, {0xFA50, 0x7956}, {0xFA51, 0x795D}, {0xFA52, 0x798D}, {0xFA53, 0x798E}, +{0xFA54, 0x7A40}, {0xFA55, 0x7A81}, {0xFA56, 0x7BC0}, {0xFA57, 0x7DF4}, {0xFA58, 0x7E09}, {0xFA59, 0x7E41}, {0xFA5A, 0x7F72}, {0xFA5B, 0x8005}, {0xFA5C, 0x81ED}, {0xFA5D, 0x8279}, {0xFA5E, 0x8279}, +{0xFA5F, 0x8457}, {0xFA60, 0x8910}, {0xFA61, 0x8996}, {0xFA62, 0x8B01}, {0xFA63, 0x8B39}, {0xFA64, 0x8CD3}, {0xFA65, 0x8D08}, {0xFA66, 0x8FB6}, {0xFA67, 0x9038}, {0xFA68, 0x96E3}, {0xFA69, 0x97FF}, +{0xFA6A, 0x983B}, {0xFA6B, 0x6075}, {0xFA6C, 0x242EE}, {0xFA6D, 0x8218}, {0xFA70, 0x4E26}, {0xFA71, 0x51B5}, {0xFA72, 0x5168}, {0xFA73, 0x4F80}, {0xFA74, 0x5145}, {0xFA75, 0x5180}, {0xFA76, 0x52C7}, +{0xFA77, 0x52FA}, {0xFA78, 0x559D}, {0xFA79, 0x5555}, {0xFA7A, 0x5599}, {0xFA7B, 0x55E2}, {0xFA7C, 0x585A}, {0xFA7D, 0x58B3}, {0xFA7E, 0x5944}, {0xFA7F, 0x5954}, {0xFA80, 0x5A62}, {0xFA81, 0x5B28}, +{0xFA82, 0x5ED2}, {0xFA83, 0x5ED9}, {0xFA84, 0x5F69}, {0xFA85, 0x5FAD}, {0xFA86, 0x60D8}, {0xFA87, 0x614E}, {0xFA88, 0x6108}, {0xFA89, 0x618E}, {0xFA8A, 0x6160}, {0xFA8B, 0x61F2}, {0xFA8C, 0x6234}, +{0xFA8D, 0x63C4}, {0xFA8E, 0x641C}, {0xFA8F, 0x6452}, {0xFA90, 0x6556}, {0xFA91, 0x6674}, {0xFA92, 0x6717}, {0xFA93, 0x671B}, {0xFA94, 0x6756}, {0xFA95, 0x6B79}, {0xFA96, 0x6BBA}, {0xFA97, 0x6D41}, +{0xFA98, 0x6EDB}, {0xFA99, 0x6ECB}, {0xFA9A, 0x6F22}, {0xFA9B, 0x701E}, {0xFA9C, 0x716E}, {0xFA9D, 0x77A7}, {0xFA9E, 0x7235}, {0xFA9F, 0x72AF}, {0xFAA0, 0x732A}, {0xFAA1, 0x7471}, {0xFAA2, 0x7506}, +{0xFAA3, 0x753B}, {0xFAA4, 0x761D}, {0xFAA5, 0x761F}, {0xFAA6, 0x76CA}, {0xFAA7, 0x76DB}, {0xFAA8, 0x76F4}, {0xFAA9, 0x774A}, {0xFAAA, 0x7740}, {0xFAAB, 0x78CC}, {0xFAAC, 0x7AB1}, {0xFAAD, 0x7BC0}, +{0xFAAE, 0x7C7B}, {0xFAAF, 0x7D5B}, {0xFAB0, 0x7DF4}, {0xFAB1, 0x7F3E}, {0xFAB2, 0x8005}, {0xFAB3, 0x8352}, {0xFAB4, 0x83EF}, {0xFAB5, 0x8779}, {0xFAB6, 0x8941}, {0xFAB7, 0x8986}, {0xFAB8, 0x8996}, +{0xFAB9, 0x8ABF}, {0xFABA, 0x8AF8}, {0xFABB, 0x8ACB}, {0xFABC, 0x8B01}, {0xFABD, 0x8AFE}, {0xFABE, 0x8AED}, {0xFABF, 0x8B39}, {0xFAC0, 0x8B8A}, {0xFAC1, 0x8D08}, {0xFAC2, 0x8F38}, {0xFAC3, 0x9072}, +{0xFAC4, 0x9199}, {0xFAC5, 0x9276}, {0xFAC6, 0x967C}, {0xFAC7, 0x96E3}, {0xFAC8, 0x9756}, {0xFAC9, 0x97DB}, {0xFACA, 0x97FF}, {0xFACB, 0x980B}, {0xFACC, 0x983B}, {0xFACD, 0x9B12}, {0xFACE, 0x9F9C}, +{0xFACF, 0x2284A}, {0xFAD0, 0x22844}, {0xFAD1, 0x233D5}, {0xFAD2, 0x3B9D}, {0xFAD3, 0x4018}, {0xFAD4, 0x4039}, {0xFAD5, 0x25249}, {0xFAD6, 0x25CD0}, {0xFAD7, 0x27ED3}, {0xFAD8, 0x9F43}, +{0xFAD9, 0x9F8E}, {0xFB1D, 0x5D9}, {0xFB1D, 0x5B4}, {0xFB1F, 0x5F2}, {0xFB1F, 0x5B7}, {0xFB2A, 0x5E9}, {0xFB2A, 0x5C1}, {0xFB2B, 0x5E9}, {0xFB2B, 0x5C2}, {0xFB2C, 0x5E9}, {0xFB2C, 0x5BC}, +{0xFB2C, 0x5C1}, {0xFB2D, 0x5E9}, {0xFB2D, 0x5BC}, {0xFB2D, 0x5C2}, {0xFB2E, 0x5D0}, {0xFB2E, 0x5B7}, {0xFB2F, 0x5D0}, {0xFB2F, 0x5B8}, {0xFB30, 0x5D0}, {0xFB30, 0x5BC}, {0xFB31, 0x5D1}, +{0xFB31, 0x5BC}, {0xFB32, 0x5D2}, {0xFB32, 0x5BC}, {0xFB33, 0x5D3}, {0xFB33, 0x5BC}, {0xFB34, 0x5D4}, {0xFB34, 0x5BC}, {0xFB35, 0x5D5}, {0xFB35, 0x5BC}, {0xFB36, 0x5D6}, {0xFB36, 0x5BC}, +{0xFB38, 0x5D8}, {0xFB38, 0x5BC}, {0xFB39, 0x5D9}, {0xFB39, 0x5BC}, {0xFB3A, 0x5DA}, {0xFB3A, 0x5BC}, {0xFB3B, 0x5DB}, {0xFB3B, 0x5BC}, {0xFB3C, 0x5DC}, {0xFB3C, 0x5BC}, {0xFB3E, 0x5DE}, +{0xFB3E, 0x5BC}, {0xFB40, 0x5E0}, {0xFB40, 0x5BC}, {0xFB41, 0x5E1}, {0xFB41, 0x5BC}, {0xFB43, 0x5E3}, {0xFB43, 0x5BC}, {0xFB44, 0x5E4}, {0xFB44, 0x5BC}, {0xFB46, 0x5E6}, {0xFB46, 0x5BC}, +{0xFB47, 0x5E7}, {0xFB47, 0x5BC}, {0xFB48, 0x5E8}, {0xFB48, 0x5BC}, {0xFB49, 0x5E9}, {0xFB49, 0x5BC}, {0xFB4A, 0x5EA}, {0xFB4A, 0x5BC}, {0xFB4B, 0x5D5}, {0xFB4B, 0x5B9}, {0xFB4C, 0x5D1}, +{0xFB4C, 0x5BF}, {0xFB4D, 0x5DB}, {0xFB4D, 0x5BF}, {0xFB4E, 0x5E4}, {0xFB4E, 0x5BF}, {0x1109A, 0x11099}, {0x1109A, 0x110BA}, {0x1109C, 0x1109B}, {0x1109C, 0x110BA}, {0x110AB, 0x110A5}, +{0x110AB, 0x110BA}, {0x1112E, 0x11131}, {0x1112E, 0x11127}, {0x1112F, 0x11132}, {0x1112F, 0x11127}, {0x1134B, 0x11347}, {0x1134B, 0x1133E}, {0x1134C, 0x11347}, {0x1134C, 0x11357}, {0x114BB, 0x114B9}, +{0x114BB, 0x114BA}, {0x114BC, 0x114B9}, {0x114BC, 0x114B0}, {0x114BE, 0x114B9}, {0x114BE, 0x114BD}, {0x115BA, 0x115B8}, {0x115BA, 0x115AF}, {0x115BB, 0x115B9}, {0x115BB, 0x115AF}, {0x1D15E, 0x1D157}, +{0x1D15E, 0x1D165}, {0x1D15F, 0x1D158}, {0x1D15F, 0x1D165}, {0x1D160, 0x1D158}, {0x1D160, 0x1D165}, {0x1D160, 0x1D16E}, {0x1D161, 0x1D158}, {0x1D161, 0x1D165}, {0x1D161, 0x1D16F}, {0x1D162, 0x1D158}, +{0x1D162, 0x1D165}, {0x1D162, 0x1D170}, {0x1D163, 0x1D158}, {0x1D163, 0x1D165}, {0x1D163, 0x1D171}, {0x1D164, 0x1D158}, {0x1D164, 0x1D165}, {0x1D164, 0x1D172}, {0x1D1BB, 0x1D1B9}, {0x1D1BB, 0x1D165}, +{0x1D1BC, 0x1D1BA}, {0x1D1BC, 0x1D165}, {0x1D1BD, 0x1D1B9}, {0x1D1BD, 0x1D165}, {0x1D1BD, 0x1D16E}, {0x1D1BE, 0x1D1BA}, {0x1D1BE, 0x1D165}, {0x1D1BE, 0x1D16E}, {0x1D1BF, 0x1D1B9}, {0x1D1BF, 0x1D165}, +{0x1D1BF, 0x1D16F}, {0x1D1C0, 0x1D1BA}, {0x1D1C0, 0x1D165}, {0x1D1C0, 0x1D16F}, {0x2F800, 0x4E3D}, {0x2F801, 0x4E38}, {0x2F802, 0x4E41}, {0x2F803, 0x20122}, {0x2F804, 0x4F60}, {0x2F805, 0x4FAE}, +{0x2F806, 0x4FBB}, {0x2F807, 0x5002}, {0x2F808, 0x507A}, {0x2F809, 0x5099}, {0x2F80A, 0x50E7}, {0x2F80B, 0x50CF}, {0x2F80C, 0x349E}, {0x2F80D, 0x2063A}, {0x2F80E, 0x514D}, {0x2F80F, 0x5154}, +{0x2F810, 0x5164}, {0x2F811, 0x5177}, {0x2F812, 0x2051C}, {0x2F813, 0x34B9}, {0x2F814, 0x5167}, {0x2F815, 0x518D}, {0x2F816, 0x2054B}, {0x2F817, 0x5197}, {0x2F818, 0x51A4}, {0x2F819, 0x4ECC}, +{0x2F81A, 0x51AC}, {0x2F81B, 0x51B5}, {0x2F81C, 0x291DF}, {0x2F81D, 0x51F5}, {0x2F81E, 0x5203}, {0x2F81F, 0x34DF}, {0x2F820, 0x523B}, {0x2F821, 0x5246}, {0x2F822, 0x5272}, {0x2F823, 0x5277}, +{0x2F824, 0x3515}, {0x2F825, 0x52C7}, {0x2F826, 0x52C9}, {0x2F827, 0x52E4}, {0x2F828, 0x52FA}, {0x2F829, 0x5305}, {0x2F82A, 0x5306}, {0x2F82B, 0x5317}, {0x2F82C, 0x5349}, {0x2F82D, 0x5351}, +{0x2F82E, 0x535A}, {0x2F82F, 0x5373}, {0x2F830, 0x537D}, {0x2F831, 0x537F}, {0x2F832, 0x537F}, {0x2F833, 0x537F}, {0x2F834, 0x20A2C}, {0x2F835, 0x7070}, {0x2F836, 0x53CA}, {0x2F837, 0x53DF}, +{0x2F838, 0x20B63}, {0x2F839, 0x53EB}, {0x2F83A, 0x53F1}, {0x2F83B, 0x5406}, {0x2F83C, 0x549E}, {0x2F83D, 0x5438}, {0x2F83E, 0x5448}, {0x2F83F, 0x5468}, {0x2F840, 0x54A2}, {0x2F841, 0x54F6}, +{0x2F842, 0x5510}, {0x2F843, 0x5553}, {0x2F844, 0x5563}, {0x2F845, 0x5584}, {0x2F846, 0x5584}, {0x2F847, 0x5599}, {0x2F848, 0x55AB}, {0x2F849, 0x55B3}, {0x2F84A, 0x55C2}, {0x2F84B, 0x5716}, +{0x2F84C, 0x5606}, {0x2F84D, 0x5717}, {0x2F84E, 0x5651}, {0x2F84F, 0x5674}, {0x2F850, 0x5207}, {0x2F851, 0x58EE}, {0x2F852, 0x57CE}, {0x2F853, 0x57F4}, {0x2F854, 0x580D}, {0x2F855, 0x578B}, +{0x2F856, 0x5832}, {0x2F857, 0x5831}, {0x2F858, 0x58AC}, {0x2F859, 0x214E4}, {0x2F85A, 0x58F2}, {0x2F85B, 0x58F7}, {0x2F85C, 0x5906}, {0x2F85D, 0x591A}, {0x2F85E, 0x5922}, {0x2F85F, 0x5962}, +{0x2F860, 0x216A8}, {0x2F861, 0x216EA}, {0x2F862, 0x59EC}, {0x2F863, 0x5A1B}, {0x2F864, 0x5A27}, {0x2F865, 0x59D8}, {0x2F866, 0x5A66}, {0x2F867, 0x36EE}, {0x2F868, 0x36FC}, {0x2F869, 0x5B08}, +{0x2F86A, 0x5B3E}, {0x2F86B, 0x5B3E}, {0x2F86C, 0x219C8}, {0x2F86D, 0x5BC3}, {0x2F86E, 0x5BD8}, {0x2F86F, 0x5BE7}, {0x2F870, 0x5BF3}, {0x2F871, 0x21B18}, {0x2F872, 0x5BFF}, {0x2F873, 0x5C06}, +{0x2F874, 0x5F53}, {0x2F875, 0x5C22}, {0x2F876, 0x3781}, {0x2F877, 0x5C60}, {0x2F878, 0x5C6E}, {0x2F879, 0x5CC0}, {0x2F87A, 0x5C8D}, {0x2F87B, 0x21DE4}, {0x2F87C, 0x5D43}, {0x2F87D, 0x21DE6}, +{0x2F87E, 0x5D6E}, {0x2F87F, 0x5D6B}, {0x2F880, 0x5D7C}, {0x2F881, 0x5DE1}, {0x2F882, 0x5DE2}, {0x2F883, 0x382F}, {0x2F884, 0x5DFD}, {0x2F885, 0x5E28}, {0x2F886, 0x5E3D}, {0x2F887, 0x5E69}, +{0x2F888, 0x3862}, {0x2F889, 0x22183}, {0x2F88A, 0x387C}, {0x2F88B, 0x5EB0}, {0x2F88C, 0x5EB3}, {0x2F88D, 0x5EB6}, {0x2F88E, 0x5ECA}, {0x2F88F, 0x2A392}, {0x2F890, 0x5EFE}, {0x2F891, 0x22331}, +{0x2F892, 0x22331}, {0x2F893, 0x8201}, {0x2F894, 0x5F22}, {0x2F895, 0x5F22}, {0x2F896, 0x38C7}, {0x2F897, 0x232B8}, {0x2F898, 0x261DA}, {0x2F899, 0x5F62}, {0x2F89A, 0x5F6B}, {0x2F89B, 0x38E3}, +{0x2F89C, 0x5F9A}, {0x2F89D, 0x5FCD}, {0x2F89E, 0x5FD7}, {0x2F89F, 0x5FF9}, {0x2F8A0, 0x6081}, {0x2F8A1, 0x393A}, {0x2F8A2, 0x391C}, {0x2F8A3, 0x6094}, {0x2F8A4, 0x226D4}, {0x2F8A5, 0x60C7}, +{0x2F8A6, 0x6148}, {0x2F8A7, 0x614C}, {0x2F8A8, 0x614E}, {0x2F8A9, 0x614C}, {0x2F8AA, 0x617A}, {0x2F8AB, 0x618E}, {0x2F8AC, 0x61B2}, {0x2F8AD, 0x61A4}, {0x2F8AE, 0x61AF}, {0x2F8AF, 0x61DE}, +{0x2F8B0, 0x61F2}, {0x2F8B1, 0x61F6}, {0x2F8B2, 0x6210}, {0x2F8B3, 0x621B}, {0x2F8B4, 0x625D}, {0x2F8B5, 0x62B1}, {0x2F8B6, 0x62D4}, {0x2F8B7, 0x6350}, {0x2F8B8, 0x22B0C}, {0x2F8B9, 0x633D}, +{0x2F8BA, 0x62FC}, {0x2F8BB, 0x6368}, {0x2F8BC, 0x6383}, {0x2F8BD, 0x63E4}, {0x2F8BE, 0x22BF1}, {0x2F8BF, 0x6422}, {0x2F8C0, 0x63C5}, {0x2F8C1, 0x63A9}, {0x2F8C2, 0x3A2E}, {0x2F8C3, 0x6469}, +{0x2F8C4, 0x647E}, {0x2F8C5, 0x649D}, {0x2F8C6, 0x6477}, {0x2F8C7, 0x3A6C}, {0x2F8C8, 0x654F}, {0x2F8C9, 0x656C}, {0x2F8CA, 0x2300A}, {0x2F8CB, 0x65E3}, {0x2F8CC, 0x66F8}, {0x2F8CD, 0x6649}, +{0x2F8CE, 0x3B19}, {0x2F8CF, 0x6691}, {0x2F8D0, 0x3B08}, {0x2F8D1, 0x3AE4}, {0x2F8D2, 0x5192}, {0x2F8D3, 0x5195}, {0x2F8D4, 0x6700}, {0x2F8D5, 0x669C}, {0x2F8D6, 0x80AD}, {0x2F8D7, 0x43D9}, +{0x2F8D8, 0x6717}, {0x2F8D9, 0x671B}, {0x2F8DA, 0x6721}, {0x2F8DB, 0x675E}, {0x2F8DC, 0x6753}, {0x2F8DD, 0x233C3}, {0x2F8DE, 0x3B49}, {0x2F8DF, 0x67FA}, {0x2F8E0, 0x6785}, {0x2F8E1, 0x6852}, +{0x2F8E2, 0x6885}, {0x2F8E3, 0x2346D}, {0x2F8E4, 0x688E}, {0x2F8E5, 0x681F}, {0x2F8E6, 0x6914}, {0x2F8E7, 0x3B9D}, {0x2F8E8, 0x6942}, {0x2F8E9, 0x69A3}, {0x2F8EA, 0x69EA}, {0x2F8EB, 0x6AA8}, +{0x2F8EC, 0x236A3}, {0x2F8ED, 0x6ADB}, {0x2F8EE, 0x3C18}, {0x2F8EF, 0x6B21}, {0x2F8F0, 0x238A7}, {0x2F8F1, 0x6B54}, {0x2F8F2, 0x3C4E}, {0x2F8F3, 0x6B72}, {0x2F8F4, 0x6B9F}, {0x2F8F5, 0x6BBA}, +{0x2F8F6, 0x6BBB}, {0x2F8F7, 0x23A8D}, {0x2F8F8, 0x21D0B}, {0x2F8F9, 0x23AFA}, {0x2F8FA, 0x6C4E}, {0x2F8FB, 0x23CBC}, {0x2F8FC, 0x6CBF}, {0x2F8FD, 0x6CCD}, {0x2F8FE, 0x6C67}, {0x2F8FF, 0x6D16}, +{0x2F900, 0x6D3E}, {0x2F901, 0x6D77}, {0x2F902, 0x6D41}, {0x2F903, 0x6D69}, {0x2F904, 0x6D78}, {0x2F905, 0x6D85}, {0x2F906, 0x23D1E}, {0x2F907, 0x6D34}, {0x2F908, 0x6E2F}, {0x2F909, 0x6E6E}, +{0x2F90A, 0x3D33}, {0x2F90B, 0x6ECB}, {0x2F90C, 0x6EC7}, {0x2F90D, 0x23ED1}, {0x2F90E, 0x6DF9}, {0x2F90F, 0x6F6E}, {0x2F910, 0x23F5E}, {0x2F911, 0x23F8E}, {0x2F912, 0x6FC6}, {0x2F913, 0x7039}, +{0x2F914, 0x701E}, {0x2F915, 0x701B}, {0x2F916, 0x3D96}, {0x2F917, 0x704A}, {0x2F918, 0x707D}, {0x2F919, 0x7077}, {0x2F91A, 0x70AD}, {0x2F91B, 0x20525}, {0x2F91C, 0x7145}, {0x2F91D, 0x24263}, +{0x2F91E, 0x719C}, {0x2F91F, 0x243AB}, {0x2F920, 0x7228}, {0x2F921, 0x7235}, {0x2F922, 0x7250}, {0x2F923, 0x24608}, {0x2F924, 0x7280}, {0x2F925, 0x7295}, {0x2F926, 0x24735}, {0x2F927, 0x24814}, +{0x2F928, 0x737A}, {0x2F929, 0x738B}, {0x2F92A, 0x3EAC}, {0x2F92B, 0x73A5}, {0x2F92C, 0x3EB8}, {0x2F92D, 0x3EB8}, {0x2F92E, 0x7447}, {0x2F92F, 0x745C}, {0x2F930, 0x7471}, {0x2F931, 0x7485}, +{0x2F932, 0x74CA}, {0x2F933, 0x3F1B}, {0x2F934, 0x7524}, {0x2F935, 0x24C36}, {0x2F936, 0x753E}, {0x2F937, 0x24C92}, {0x2F938, 0x7570}, {0x2F939, 0x2219F}, {0x2F93A, 0x7610}, {0x2F93B, 0x24FA1}, +{0x2F93C, 0x24FB8}, {0x2F93D, 0x25044}, {0x2F93E, 0x3FFC}, {0x2F93F, 0x4008}, {0x2F940, 0x76F4}, {0x2F941, 0x250F3}, {0x2F942, 0x250F2}, {0x2F943, 0x25119}, {0x2F944, 0x25133}, {0x2F945, 0x771E}, +{0x2F946, 0x771F}, {0x2F947, 0x771F}, {0x2F948, 0x774A}, {0x2F949, 0x4039}, {0x2F94A, 0x778B}, {0x2F94B, 0x4046}, {0x2F94C, 0x4096}, {0x2F94D, 0x2541D}, {0x2F94E, 0x784E}, {0x2F94F, 0x788C}, +{0x2F950, 0x78CC}, {0x2F951, 0x40E3}, {0x2F952, 0x25626}, {0x2F953, 0x7956}, {0x2F954, 0x2569A}, {0x2F955, 0x256C5}, {0x2F956, 0x798F}, {0x2F957, 0x79EB}, {0x2F958, 0x412F}, {0x2F959, 0x7A40}, +{0x2F95A, 0x7A4A}, {0x2F95B, 0x7A4F}, {0x2F95C, 0x2597C}, {0x2F95D, 0x25AA7}, {0x2F95E, 0x25AA7}, {0x2F95F, 0x7AEE}, {0x2F960, 0x4202}, {0x2F961, 0x25BAB}, {0x2F962, 0x7BC6}, {0x2F963, 0x7BC9}, +{0x2F964, 0x4227}, {0x2F965, 0x25C80}, {0x2F966, 0x7CD2}, {0x2F967, 0x42A0}, {0x2F968, 0x7CE8}, {0x2F969, 0x7CE3}, {0x2F96A, 0x7D00}, {0x2F96B, 0x25F86}, {0x2F96C, 0x7D63}, {0x2F96D, 0x4301}, +{0x2F96E, 0x7DC7}, {0x2F96F, 0x7E02}, {0x2F970, 0x7E45}, {0x2F971, 0x4334}, {0x2F972, 0x26228}, {0x2F973, 0x26247}, {0x2F974, 0x4359}, {0x2F975, 0x262D9}, {0x2F976, 0x7F7A}, {0x2F977, 0x2633E}, +{0x2F978, 0x7F95}, {0x2F979, 0x7FFA}, {0x2F97A, 0x8005}, {0x2F97B, 0x264DA}, {0x2F97C, 0x26523}, {0x2F97D, 0x8060}, {0x2F97E, 0x265A8}, {0x2F97F, 0x8070}, {0x2F980, 0x2335F}, {0x2F981, 0x43D5}, +{0x2F982, 0x80B2}, {0x2F983, 0x8103}, {0x2F984, 0x440B}, {0x2F985, 0x813E}, {0x2F986, 0x5AB5}, {0x2F987, 0x267A7}, {0x2F988, 0x267B5}, {0x2F989, 0x23393}, {0x2F98A, 0x2339C}, {0x2F98B, 0x8201}, +{0x2F98C, 0x8204}, {0x2F98D, 0x8F9E}, {0x2F98E, 0x446B}, {0x2F98F, 0x8291}, {0x2F990, 0x828B}, {0x2F991, 0x829D}, {0x2F992, 0x52B3}, {0x2F993, 0x82B1}, {0x2F994, 0x82B3}, {0x2F995, 0x82BD}, +{0x2F996, 0x82E6}, {0x2F997, 0x26B3C}, {0x2F998, 0x82E5}, {0x2F999, 0x831D}, {0x2F99A, 0x8363}, {0x2F99B, 0x83AD}, {0x2F99C, 0x8323}, {0x2F99D, 0x83BD}, {0x2F99E, 0x83E7}, {0x2F99F, 0x8457}, +{0x2F9A0, 0x8353}, {0x2F9A1, 0x83CA}, {0x2F9A2, 0x83CC}, {0x2F9A3, 0x83DC}, {0x2F9A4, 0x26C36}, {0x2F9A5, 0x26D6B}, {0x2F9A6, 0x26CD5}, {0x2F9A7, 0x452B}, {0x2F9A8, 0x84F1}, {0x2F9A9, 0x84F3}, +{0x2F9AA, 0x8516}, {0x2F9AB, 0x273CA}, {0x2F9AC, 0x8564}, {0x2F9AD, 0x26F2C}, {0x2F9AE, 0x455D}, {0x2F9AF, 0x4561}, {0x2F9B0, 0x26FB1}, {0x2F9B1, 0x270D2}, {0x2F9B2, 0x456B}, {0x2F9B3, 0x8650}, +{0x2F9B4, 0x865C}, {0x2F9B5, 0x8667}, {0x2F9B6, 0x8669}, {0x2F9B7, 0x86A9}, {0x2F9B8, 0x8688}, {0x2F9B9, 0x870E}, {0x2F9BA, 0x86E2}, {0x2F9BB, 0x8779}, {0x2F9BC, 0x8728}, {0x2F9BD, 0x876B}, +{0x2F9BE, 0x8786}, {0x2F9BF, 0x45D7}, {0x2F9C0, 0x87E1}, {0x2F9C1, 0x8801}, {0x2F9C2, 0x45F9}, {0x2F9C3, 0x8860}, {0x2F9C4, 0x8863}, {0x2F9C5, 0x27667}, {0x2F9C6, 0x88D7}, {0x2F9C7, 0x88DE}, +{0x2F9C8, 0x4635}, {0x2F9C9, 0x88FA}, {0x2F9CA, 0x34BB}, {0x2F9CB, 0x278AE}, {0x2F9CC, 0x27966}, {0x2F9CD, 0x46BE}, {0x2F9CE, 0x46C7}, {0x2F9CF, 0x8AA0}, {0x2F9D0, 0x8AED}, {0x2F9D1, 0x8B8A}, +{0x2F9D2, 0x8C55}, {0x2F9D3, 0x27CA8}, {0x2F9D4, 0x8CAB}, {0x2F9D5, 0x8CC1}, {0x2F9D6, 0x8D1B}, {0x2F9D7, 0x8D77}, {0x2F9D8, 0x27F2F}, {0x2F9D9, 0x20804}, {0x2F9DA, 0x8DCB}, {0x2F9DB, 0x8DBC}, +{0x2F9DC, 0x8DF0}, {0x2F9DD, 0x208DE}, {0x2F9DE, 0x8ED4}, {0x2F9DF, 0x8F38}, {0x2F9E0, 0x285D2}, {0x2F9E1, 0x285ED}, {0x2F9E2, 0x9094}, {0x2F9E3, 0x90F1}, {0x2F9E4, 0x9111}, {0x2F9E5, 0x2872E}, +{0x2F9E6, 0x911B}, {0x2F9E7, 0x9238}, {0x2F9E8, 0x92D7}, {0x2F9E9, 0x92D8}, {0x2F9EA, 0x927C}, {0x2F9EB, 0x93F9}, {0x2F9EC, 0x9415}, {0x2F9ED, 0x28BFA}, {0x2F9EE, 0x958B}, {0x2F9EF, 0x4995}, +{0x2F9F0, 0x95B7}, {0x2F9F1, 0x28D77}, {0x2F9F2, 0x49E6}, {0x2F9F3, 0x96C3}, {0x2F9F4, 0x5DB2}, {0x2F9F5, 0x9723}, {0x2F9F6, 0x29145}, {0x2F9F7, 0x2921A}, {0x2F9F8, 0x4A6E}, {0x2F9F9, 0x4A76}, +{0x2F9FA, 0x97E0}, {0x2F9FB, 0x2940A}, {0x2F9FC, 0x4AB2}, {0x2F9FD, 0x29496}, {0x2F9FE, 0x980B}, {0x2F9FF, 0x980B}, {0x2FA00, 0x9829}, {0x2FA01, 0x295B6}, {0x2FA02, 0x98E2}, {0x2FA03, 0x4B33}, +{0x2FA04, 0x9929}, {0x2FA05, 0x99A7}, {0x2FA06, 0x99C2}, {0x2FA07, 0x99FE}, {0x2FA08, 0x4BCE}, {0x2FA09, 0x29B30}, {0x2FA0A, 0x9B12}, {0x2FA0B, 0x9C40}, {0x2FA0C, 0x9CFD}, {0x2FA0D, 0x4CCE}, +{0x2FA0E, 0x4CED}, {0x2FA0F, 0x9D67}, {0x2FA10, 0x2A0CE}, {0x2FA11, 0x4CF8}, {0x2FA12, 0x2A105}, {0x2FA13, 0x2A20E}, {0x2FA14, 0x2A291}, {0x2FA15, 0x9EBB}, {0x2FA16, 0x4D56}, {0x2FA17, 0x9EF9}, +{0x2FA18, 0x9EFE}, {0x2FA19, 0x9F05}, {0x2FA1A, 0x9F0F}, {0x2FA1B, 0x9F16}, {0x2FA1D, 0x2A600}, +}; + static std::string codepoint_to_utf8(uint32_t cp) { std::string result; if (/* 0x00 <= cp && */ cp <= 0x7f) { @@ -404,7 +712,8 @@ static std::unordered_map codepoint_type_map() { static int codepoint_type(uint32_t cp) { static std::unordered_map codepoint_types = codepoint_type_map(); - return codepoint_types.find(cp) == codepoint_types.end() ? CODEPOINT_TYPE_UNIDENTIFIED : codepoint_types.at(cp); + const auto it = codepoint_types.find(cp); + return it == codepoint_types.end() ? CODEPOINT_TYPE_UNIDENTIFIED : it->second; } static int codepoint_type(const std::string & utf8) {