mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-28 12:57:03 +01:00
Clean-up GritLM sample code.
This commit is contained in:
parent
bd3d9fbfed
commit
03acc82a85
@ -3,7 +3,6 @@
|
|||||||
|
|
||||||
#include <string>
|
#include <string>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
#include <format>
|
|
||||||
|
|
||||||
static float dot_product(const std::vector<float>& v1, const std::vector<float>& v2) {
|
static float dot_product(const std::vector<float>& v1, const std::vector<float>& v2) {
|
||||||
float dot = 0.0f;
|
float dot = 0.0f;
|
||||||
@ -21,7 +20,7 @@ static float cosine_similarity(const std::vector<float>& v1, const std::vector<f
|
|||||||
return dot_product(v1, v2) / (norm(v1) * norm(v2));
|
return dot_product(v1, v2) / (norm(v1) * norm(v2));
|
||||||
}
|
}
|
||||||
|
|
||||||
static void normalize(std::vector<float> in, float* out) {
|
static void normalize(const std::vector<float>& in, float* out) {
|
||||||
float inorm = norm(in);
|
float inorm = norm(in);
|
||||||
for (uint64_t i = 0; i < in.size(); i++) {
|
for (uint64_t i = 0; i < in.size(); i++) {
|
||||||
out[i] = in[i] / inorm;
|
out[i] = in[i] / inorm;
|
||||||
@ -32,23 +31,25 @@ static std::vector<std::vector<float>> encode(llama_context* ctx, const std::vec
|
|||||||
auto result = std::vector<std::vector<float>>{};
|
auto result = std::vector<std::vector<float>>{};
|
||||||
|
|
||||||
auto mdl = llama_get_model(ctx);
|
auto mdl = llama_get_model(ctx);
|
||||||
|
|
||||||
for (uint64_t i = 0; i < sentences.size(); i++) {
|
|
||||||
auto batch = llama_batch_init(llama_n_batch(ctx), 0, 1);
|
auto batch = llama_batch_init(llama_n_batch(ctx), 0, 1);
|
||||||
|
|
||||||
// testing with and without EOS - unexpected embeddings in both cases - GritLM seems to have EOS = ""
|
for (uint64_t i = 0; i < sentences.size(); i++) {
|
||||||
|
llama_batch_clear(batch);
|
||||||
|
|
||||||
std::string input_string = instruction + sentences[i];
|
std::string input_string = instruction + sentences[i];
|
||||||
auto inputs = llama_tokenize(mdl, input_string, true, false);
|
std::vector<llama_token> inputs = llama_tokenize(mdl, input_string, true, false);
|
||||||
uint64_t n_toks = inputs.size();
|
auto n_toks = (int32_t)inputs.size();
|
||||||
|
|
||||||
|
// testing with and without EOS - unexpected embeddings in both cases - GritLM seems to have EOS = ""
|
||||||
// https://github.com/ContextualAI/gritlm/blob/92025b16534712b31b3c4aaaf069350e222bd5f8/gritlm/gritlm.py#L116
|
// https://github.com/ContextualAI/gritlm/blob/92025b16534712b31b3c4aaaf069350e222bd5f8/gritlm/gritlm.py#L116
|
||||||
// inputs.push_back(llama_token_eos(mdl));
|
// inputs.push_back(llama_token_eos(mdl));
|
||||||
|
|
||||||
// we want to ignore instruction tokens for mean pooling
|
// we want to ignore instruction tokens for mean pooling
|
||||||
auto inputs_instruct = llama_tokenize(mdl, instruction, true, false);
|
std::vector<llama_token> inputs_instruct = llama_tokenize(mdl, instruction, true, false);
|
||||||
uint64_t n_inst = inputs_instruct.size();
|
auto n_inst = (int32_t)inputs_instruct.size();
|
||||||
|
|
||||||
/*
|
/*
|
||||||
// debug tokens - these are matching as referenced in their sample so doesn't appear to be a token issue
|
// debug tokens - should be matching as referenced in the GritLM sample
|
||||||
std::for_each(inputs.begin(), inputs.end(), [&ctx](llama_token t) {
|
std::for_each(inputs.begin(), inputs.end(), [&ctx](llama_token t) {
|
||||||
std::printf("[%u:%s]", t, llama_token_to_piece(ctx, t).c_str());
|
std::printf("[%u:%s]", t, llama_token_to_piece(ctx, t).c_str());
|
||||||
});
|
});
|
||||||
@ -56,7 +57,7 @@ static std::vector<std::vector<float>> encode(llama_context* ctx, const std::vec
|
|||||||
*/
|
*/
|
||||||
|
|
||||||
// add input to batch (this increments n_tokens)
|
// add input to batch (this increments n_tokens)
|
||||||
for (uint64_t j = 0; j < n_toks; j++) {
|
for (int32_t j = 0; j < n_toks; j++) {
|
||||||
llama_batch_add(batch, inputs[j], j, { 0 }, j >= n_inst);
|
llama_batch_add(batch, inputs[j], j, { 0 }, j >= n_inst);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -73,8 +74,8 @@ static std::vector<std::vector<float>> encode(llama_context* ctx, const std::vec
|
|||||||
std::vector<float> emb_unorm(n_embd, 0.0f);
|
std::vector<float> emb_unorm(n_embd, 0.0f);
|
||||||
|
|
||||||
// sum up all token embeddings
|
// sum up all token embeddings
|
||||||
for (uint64_t k = n_inst; k < n_toks; k++) {
|
for (int32_t k = n_inst; k < n_toks; k++) {
|
||||||
float * emb = llama_get_embeddings_ith(ctx, k);
|
float* emb = llama_get_embeddings_ith(ctx, k);
|
||||||
for (uint64_t j = 0; j < n_embd; j++) {
|
for (uint64_t j = 0; j < n_embd; j++) {
|
||||||
emb_unorm[j] += emb[j];
|
emb_unorm[j] += emb[j];
|
||||||
}
|
}
|
||||||
@ -98,14 +99,80 @@ static std::vector<std::vector<float>> encode(llama_context* ctx, const std::vec
|
|||||||
}
|
}
|
||||||
std::printf("\n\n");
|
std::printf("\n\n");
|
||||||
*/
|
*/
|
||||||
|
}
|
||||||
|
|
||||||
llama_batch_free(batch);
|
llama_batch_free(batch);
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
static std::string aggregate_pieces(const std::vector<std::string>& pieces) {
|
||||||
|
// calculate total length required
|
||||||
|
size_t length = 0;
|
||||||
|
for (const auto& str : pieces) {
|
||||||
|
length += str.size();
|
||||||
|
}
|
||||||
|
|
||||||
|
// reserve memory
|
||||||
|
std::string result;
|
||||||
|
result.reserve(length);
|
||||||
|
|
||||||
|
// append pieces
|
||||||
|
for (const auto& str : pieces) {
|
||||||
|
result += str;
|
||||||
}
|
}
|
||||||
|
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
// ./gritlm -m ggml-gritlm-7b-q8_0.gguf -ngl 99
|
static std::string generate(llama_context* ctx, const std::string& prompt, bool stream) {
|
||||||
|
std::vector<std::string> pieces;
|
||||||
|
|
||||||
|
const llama_model* mdl = llama_get_model(ctx);
|
||||||
|
llama_batch bat = llama_batch_init(llama_n_batch(ctx), 0, 1);
|
||||||
|
|
||||||
|
std::vector<llama_token> inputs = llama_tokenize(mdl, prompt, false, true);
|
||||||
|
int32_t i_current_token = 0;
|
||||||
|
|
||||||
|
while (true) {
|
||||||
|
llama_batch_clear(bat);
|
||||||
|
|
||||||
|
for (auto i = 0; i < inputs.size(); i++)
|
||||||
|
llama_batch_add(bat, inputs[i], i_current_token++, { 0 }, i == inputs.size() - 1);
|
||||||
|
|
||||||
|
inputs.clear();
|
||||||
|
|
||||||
|
llama_decode(ctx, bat);
|
||||||
|
|
||||||
|
auto logits = llama_get_logits_ith(ctx, bat.n_tokens - 1);
|
||||||
|
|
||||||
|
auto candidates = std::vector<llama_token_data>(llama_n_vocab(mdl));
|
||||||
|
for (auto token = 0; token < candidates.size(); token++)
|
||||||
|
candidates[token] = llama_token_data{ token, logits[token], 0.0f };
|
||||||
|
|
||||||
|
auto candidates_p = llama_token_data_array{ candidates.data(), candidates.size(), false };
|
||||||
|
|
||||||
|
llama_token token = llama_sample_token_greedy(ctx, &candidates_p);
|
||||||
|
if (token == llama_token_eos(mdl))
|
||||||
|
break;
|
||||||
|
|
||||||
|
std::string piece = llama_token_to_piece(ctx, token);
|
||||||
|
if (stream) {
|
||||||
|
std::printf("%s", piece.c_str());
|
||||||
|
}
|
||||||
|
|
||||||
|
pieces.push_back(piece);
|
||||||
|
inputs.push_back(token);
|
||||||
|
}
|
||||||
|
|
||||||
|
llama_batch_free(bat);
|
||||||
|
|
||||||
|
return aggregate_pieces(pieces);
|
||||||
|
}
|
||||||
|
|
||||||
|
static std::string gritlm_instruction(const std::string& instruction) {
|
||||||
|
return !instruction.empty() ? "<|user|>\n" + instruction + "\n<|embed|>\n" : "<|embed|>\n";
|
||||||
|
}
|
||||||
|
|
||||||
int main(int argc, char* argv[])
|
int main(int argc, char* argv[])
|
||||||
{
|
{
|
||||||
gpt_params params;
|
gpt_params params;
|
||||||
@ -113,27 +180,21 @@ int main(int argc, char* argv[])
|
|||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
auto mparams = llama_model_params_from_gpt_params(params);
|
llama_model_params mparams = llama_model_params_from_gpt_params(params);
|
||||||
auto cparams = llama_context_params_from_gpt_params(params);
|
llama_context_params cparams = llama_context_params_from_gpt_params(params);
|
||||||
|
|
||||||
mparams.progress_callback = [](std::float_t progress, void* state) {
|
|
||||||
std::printf(
|
|
||||||
"%s\rLoading model... %u%%\r",
|
|
||||||
std::string(32, ' ').c_str(),
|
|
||||||
static_cast<std::uint8_t>(progress * 100)
|
|
||||||
);
|
|
||||||
return true;
|
|
||||||
};
|
|
||||||
|
|
||||||
llama_backend_init();
|
llama_backend_init();
|
||||||
|
|
||||||
auto mdl = llama_load_model_from_file(params.model.c_str(), mparams);
|
llama_model* mdl = llama_load_model_from_file(params.model.c_str(), mparams);
|
||||||
auto ctx = llama_new_context_with_model(mdl, cparams);
|
|
||||||
|
|
||||||
// set to embedding mode
|
// create new context - set to embedding mode
|
||||||
llama_set_embeddings(ctx, true);
|
llama_context* embd_ctx = llama_new_context_with_model(mdl, cparams);
|
||||||
|
llama_set_embeddings(embd_ctx, true);
|
||||||
|
|
||||||
// ### Embedding/Representation ### taken sample from here:
|
// create new context - default mode is causal
|
||||||
|
llama_context* causal_ctx = llama_new_context_with_model(mdl, cparams);
|
||||||
|
|
||||||
|
// ### Embedding/Representation ### samples taken from here:
|
||||||
// https://github.com/ContextualAI/gritlm?tab=readme-ov-file#basic
|
// https://github.com/ContextualAI/gritlm?tab=readme-ov-file#basic
|
||||||
{
|
{
|
||||||
std::string instruction = "Given a scientific paper title, retrieve the paper's abstract";
|
std::string instruction = "Given a scientific paper title, retrieve the paper's abstract";
|
||||||
@ -148,18 +209,14 @@ int main(int argc, char* argv[])
|
|||||||
"All text-based language problems can be reduced to either generation or embedding. Current models only perform well at one or the other. We introduce generative representational instruction tuning (GRIT) whereby a large language model is trained to handle both generative and embedding tasks by distinguishing between them through instructions. Compared to other open models, our resulting GritLM 7B sets a new state of the art on the Massive Text Embedding Benchmark (MTEB) and outperforms all models up to its size on a range of generative tasks. By scaling up further, GritLM 8X7B outperforms all open generative language models that we tried while still being among the best embedding models. Notably, we find that GRIT matches training on only generative or embedding data, thus we can unify both at no performance loss. Among other benefits, the unification via GRIT speeds up Retrieval-Augmented Generation (RAG) by > 60% for long documents, by no longer requiring separate retrieval and generation models. Models, code, etc. are freely available at https://github.com/ContextualAI/gritlm.",
|
"All text-based language problems can be reduced to either generation or embedding. Current models only perform well at one or the other. We introduce generative representational instruction tuning (GRIT) whereby a large language model is trained to handle both generative and embedding tasks by distinguishing between them through instructions. Compared to other open models, our resulting GritLM 7B sets a new state of the art on the Massive Text Embedding Benchmark (MTEB) and outperforms all models up to its size on a range of generative tasks. By scaling up further, GritLM 8X7B outperforms all open generative language models that we tried while still being among the best embedding models. Notably, we find that GRIT matches training on only generative or embedding data, thus we can unify both at no performance loss. Among other benefits, the unification via GRIT speeds up Retrieval-Augmented Generation (RAG) by > 60% for long documents, by no longer requiring separate retrieval and generation models. Models, code, etc. are freely available at https://github.com/ContextualAI/gritlm.",
|
||||||
};
|
};
|
||||||
|
|
||||||
auto gritlm_instruction = [](const std::string& instruction) -> std::string {
|
|
||||||
return !instruction.empty() ? "<|user|>\n" + instruction + "\n<|embed|>\n" : "<|embed|>\n";
|
|
||||||
};
|
|
||||||
|
|
||||||
// No need to add instruction for retrieval documents
|
// No need to add instruction for retrieval documents
|
||||||
auto d_rep = encode(ctx, documents, gritlm_instruction(""));
|
std::vector<std::vector<float>> d_rep = encode(embd_ctx, documents, gritlm_instruction(""));
|
||||||
auto q_rep = encode(ctx, queries, gritlm_instruction(instruction));
|
std::vector<std::vector<float>> q_rep = encode(embd_ctx, queries, gritlm_instruction(instruction));
|
||||||
|
|
||||||
auto cosine_sim_q0_d0 = cosine_similarity(q_rep[0], d_rep[0]);
|
float cosine_sim_q0_d0 = cosine_similarity(q_rep[0], d_rep[0]);
|
||||||
auto cosine_sim_q0_d1 = cosine_similarity(q_rep[0], d_rep[1]);
|
float cosine_sim_q0_d1 = cosine_similarity(q_rep[0], d_rep[1]);
|
||||||
auto cosine_sim_q1_d0 = cosine_similarity(q_rep[1], d_rep[0]);
|
float cosine_sim_q1_d0 = cosine_similarity(q_rep[1], d_rep[0]);
|
||||||
auto cosine_sim_q1_d1 = cosine_similarity(q_rep[1], d_rep[1]);
|
float cosine_sim_q1_d1 = cosine_similarity(q_rep[1], d_rep[1]);
|
||||||
|
|
||||||
std::printf("Cosine similarity between \"%.50s\" and \"%.50s\" is: %.3f\n", queries[0].c_str(), documents[0].c_str(), cosine_sim_q0_d0);
|
std::printf("Cosine similarity between \"%.50s\" and \"%.50s\" is: %.3f\n", queries[0].c_str(), documents[0].c_str(), cosine_sim_q0_d0);
|
||||||
std::printf("Cosine similarity between \"%.50s\" and \"%.50s\" is: %.3f\n", queries[0].c_str(), documents[1].c_str(), cosine_sim_q0_d1);
|
std::printf("Cosine similarity between \"%.50s\" and \"%.50s\" is: %.3f\n", queries[0].c_str(), documents[1].c_str(), cosine_sim_q0_d1);
|
||||||
@ -167,7 +224,16 @@ int main(int argc, char* argv[])
|
|||||||
std::printf("Cosine similarity between \"%.50s\" and \"%.50s\" is: %.3f\n", queries[1].c_str(), documents[1].c_str(), cosine_sim_q1_d1);
|
std::printf("Cosine similarity between \"%.50s\" and \"%.50s\" is: %.3f\n", queries[1].c_str(), documents[1].c_str(), cosine_sim_q1_d1);
|
||||||
}
|
}
|
||||||
|
|
||||||
llama_free(ctx);
|
// ### Generation ###
|
||||||
|
// # GritLM models are not finetuned with system prompts, as you can just include system-like instructions together with your user instruction
|
||||||
|
{
|
||||||
|
const std::string prompt = "<|user|>\nPlease write me a poem about my recent hike of Mt. Fuji at midnight in the style of Shakespeare.\n<|assistant|>\n";
|
||||||
|
std::string response = generate(causal_ctx, prompt, true);
|
||||||
|
}
|
||||||
|
|
||||||
|
llama_free(embd_ctx);
|
||||||
|
llama_free(causal_ctx);
|
||||||
|
|
||||||
llama_free_model(mdl);
|
llama_free_model(mdl);
|
||||||
llama_backend_free();
|
llama_backend_free();
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user