mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-26 12:21:40 +01:00
python : add check-requirements.sh and GitHub workflow (#4585)
* python: add check-requirements.sh and GitHub workflow This script and workflow forces package versions to remain compatible across all convert*.py scripts, while allowing secondary convert scripts to import dependencies not wanted in convert.py. * Move requirements into ./requirements * Fail on "==" being used for package requirements (but can be suppressed) * Enforce "compatible release" syntax instead of == * Update workflow * Add upper version bound for transformers and protobuf * improve check-requirements.sh * small syntax change * don't remove venvs if nocleanup is passed * See if this fixes docker workflow * Move check-requirements.sh into ./scripts/ --------- Co-authored-by: Jared Van Bortel <jared@nomic.ai>
This commit is contained in:
parent
68eccbdc5b
commit
04ac0607e9
@ -14,7 +14,8 @@ ARG CUDA_DOCKER_ARCH=all
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential python3 python3-pip git
|
||||
|
||||
COPY requirements.txt requirements.txt
|
||||
COPY requirements.txt requirements.txt
|
||||
COPY requirements requirements
|
||||
|
||||
RUN pip install --upgrade pip setuptools wheel \
|
||||
&& pip install -r requirements.txt
|
||||
|
@ -23,7 +23,8 @@ ARG ROCM_DOCKER_ARCH=\
|
||||
gfx1101 \
|
||||
gfx1102
|
||||
|
||||
COPY requirements.txt requirements.txt
|
||||
COPY requirements.txt requirements.txt
|
||||
COPY requirements requirements
|
||||
|
||||
RUN pip install --upgrade pip setuptools wheel \
|
||||
&& pip install -r requirements.txt
|
||||
|
@ -5,7 +5,8 @@ FROM ubuntu:$UBUNTU_VERSION as build
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential python3 python3-pip git
|
||||
|
||||
COPY requirements.txt requirements.txt
|
||||
COPY requirements.txt requirements.txt
|
||||
COPY requirements requirements
|
||||
|
||||
RUN pip install --upgrade pip setuptools wheel \
|
||||
&& pip install -r requirements.txt
|
||||
|
@ -23,7 +23,8 @@ ARG ROCM_DOCKER_ARCH=\
|
||||
gfx1101 \
|
||||
gfx1102
|
||||
|
||||
COPY requirements.txt requirements.txt
|
||||
COPY requirements.txt requirements.txt
|
||||
COPY requirements requirements
|
||||
|
||||
RUN pip install --upgrade pip setuptools wheel \
|
||||
&& pip install -r requirements.txt
|
||||
|
29
.github/workflows/python-check-requirements.yml
vendored
Normal file
29
.github/workflows/python-check-requirements.yml
vendored
Normal file
@ -0,0 +1,29 @@
|
||||
name: Python check requirements.txt
|
||||
|
||||
on:
|
||||
push:
|
||||
paths:
|
||||
- 'scripts/check-requirements.sh'
|
||||
- 'convert*.py'
|
||||
- 'requirements.txt'
|
||||
- 'requirements/*.txt'
|
||||
pull_request:
|
||||
paths:
|
||||
- 'scripts/check-requirements.sh'
|
||||
- 'convert*.py'
|
||||
- 'requirements.txt'
|
||||
- 'requirements/*.txt'
|
||||
|
||||
jobs:
|
||||
python-check-requirements:
|
||||
runs-on: ubuntu-latest
|
||||
name: check-requirements
|
||||
steps:
|
||||
- name: Check out source repository
|
||||
uses: actions/checkout@v3
|
||||
- name: Set up Python environment
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: "3.11"
|
||||
- name: Run check-requirements.sh script
|
||||
run: bash scripts/check-requirements.sh nocleanup
|
@ -242,7 +242,7 @@ class Model:
|
||||
tokens: list[bytearray] = []
|
||||
toktypes: list[int] = []
|
||||
|
||||
from transformers import AutoTokenizer # type: ignore[attr-defined]
|
||||
from transformers import AutoTokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
||||
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
|
||||
assert max(tokenizer.vocab.values()) < vocab_size
|
||||
@ -856,7 +856,7 @@ class StableLMModel(Model):
|
||||
hparams = self.hparams
|
||||
block_count = hparams["num_hidden_layers"]
|
||||
|
||||
self.gguf_writer.add_name(dir_model.name)
|
||||
self.gguf_writer.add_name(self.dir_model.name)
|
||||
self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
|
||||
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
@ -902,7 +902,7 @@ class QwenModel(Model):
|
||||
tokens: list[bytearray] = []
|
||||
toktypes: list[int] = []
|
||||
|
||||
from transformers import AutoTokenizer # type: ignore[attr-defined]
|
||||
from transformers import AutoTokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
|
||||
vocab_size = hparams["vocab_size"]
|
||||
assert max(tokenizer.get_vocab().values()) < vocab_size
|
||||
@ -1185,57 +1185,62 @@ def parse_args() -> argparse.Namespace:
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
args = parse_args()
|
||||
def main() -> None:
|
||||
args = parse_args()
|
||||
|
||||
dir_model = args.model
|
||||
dir_model = args.model
|
||||
|
||||
if args.awq_path:
|
||||
sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
|
||||
from awq.apply_awq import add_scale_weights
|
||||
tmp_model_path = args.model / "weighted_model"
|
||||
dir_model = tmp_model_path
|
||||
if tmp_model_path.is_dir():
|
||||
print(f"{tmp_model_path} exists as a weighted model.")
|
||||
if args.awq_path:
|
||||
sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
|
||||
from awq.apply_awq import add_scale_weights
|
||||
tmp_model_path = args.model / "weighted_model"
|
||||
dir_model = tmp_model_path
|
||||
if tmp_model_path.is_dir():
|
||||
print(f"{tmp_model_path} exists as a weighted model.")
|
||||
else:
|
||||
tmp_model_path.mkdir(parents=True, exist_ok=True)
|
||||
print("Saving new weighted model ...")
|
||||
add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
|
||||
print(f"Saved weighted model at {tmp_model_path}.")
|
||||
|
||||
if not dir_model.is_dir():
|
||||
print(f'Error: {args.model} is not a directory', file=sys.stderr)
|
||||
sys.exit(1)
|
||||
|
||||
ftype_map = {
|
||||
"f32": gguf.GGMLQuantizationType.F32,
|
||||
"f16": gguf.GGMLQuantizationType.F16,
|
||||
}
|
||||
|
||||
if args.outfile is not None:
|
||||
fname_out = args.outfile
|
||||
else:
|
||||
tmp_model_path.mkdir(parents=True, exist_ok=True)
|
||||
print("Saving new weighted model ...")
|
||||
add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
|
||||
print(f"Saved weighted model at {tmp_model_path}.")
|
||||
# output in the same directory as the model by default
|
||||
fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
|
||||
|
||||
if not dir_model.is_dir():
|
||||
print(f'Error: {args.model} is not a directory', file=sys.stderr)
|
||||
sys.exit(1)
|
||||
print(f"Loading model: {dir_model.name}")
|
||||
|
||||
ftype_map = {
|
||||
"f32": gguf.GGMLQuantizationType.F32,
|
||||
"f16": gguf.GGMLQuantizationType.F16,
|
||||
}
|
||||
hparams = Model.load_hparams(dir_model)
|
||||
|
||||
if args.outfile is not None:
|
||||
fname_out = args.outfile
|
||||
else:
|
||||
# output in the same directory as the model by default
|
||||
fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
|
||||
with torch.inference_mode():
|
||||
model_class = Model.from_model_architecture(hparams["architectures"][0])
|
||||
model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian)
|
||||
|
||||
print(f"Loading model: {dir_model.name}")
|
||||
print("Set model parameters")
|
||||
model_instance.set_gguf_parameters()
|
||||
|
||||
hparams = Model.load_hparams(dir_model)
|
||||
print("Set model tokenizer")
|
||||
model_instance.set_vocab()
|
||||
|
||||
with torch.inference_mode():
|
||||
model_class = Model.from_model_architecture(hparams["architectures"][0])
|
||||
model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian)
|
||||
if args.vocab_only:
|
||||
print(f"Exporting model vocab to '{fname_out}'")
|
||||
model_instance.write_vocab()
|
||||
else:
|
||||
print(f"Exporting model to '{fname_out}'")
|
||||
model_instance.write()
|
||||
|
||||
print("Set model parameters")
|
||||
model_instance.set_gguf_parameters()
|
||||
print(f"Model successfully exported to '{fname_out}'")
|
||||
|
||||
print("Set model tokenizer")
|
||||
model_instance.set_vocab()
|
||||
|
||||
if args.vocab_only:
|
||||
print(f"Exporting model vocab to '{fname_out}'")
|
||||
model_instance.write_vocab()
|
||||
else:
|
||||
print(f"Exporting model to '{fname_out}'")
|
||||
model_instance.write()
|
||||
|
||||
print(f"Model successfully exported to '{fname_out}'")
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
@ -47,95 +47,96 @@ def write_tensor_header(fout: BinaryIO, name: str, shape: Sequence[int], data_ty
|
||||
fout.seek((fout.tell() + 31) & -32)
|
||||
|
||||
|
||||
if len(sys.argv) < 2:
|
||||
print(f"Usage: python {sys.argv[0]} <path> [arch]")
|
||||
print(
|
||||
"Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'"
|
||||
)
|
||||
print(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)")
|
||||
sys.exit(1)
|
||||
if __name__ == '__main__':
|
||||
if len(sys.argv) < 2:
|
||||
print(f"Usage: python {sys.argv[0]} <path> [arch]")
|
||||
print(
|
||||
"Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'"
|
||||
)
|
||||
print(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)")
|
||||
sys.exit(1)
|
||||
|
||||
input_json = os.path.join(sys.argv[1], "adapter_config.json")
|
||||
input_model = os.path.join(sys.argv[1], "adapter_model.bin")
|
||||
output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin")
|
||||
input_json = os.path.join(sys.argv[1], "adapter_config.json")
|
||||
input_model = os.path.join(sys.argv[1], "adapter_model.bin")
|
||||
output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin")
|
||||
|
||||
model = torch.load(input_model, map_location="cpu")
|
||||
arch_name = sys.argv[2] if len(sys.argv) == 3 else "llama"
|
||||
model = torch.load(input_model, map_location="cpu")
|
||||
arch_name = sys.argv[2] if len(sys.argv) == 3 else "llama"
|
||||
|
||||
if arch_name not in gguf.MODEL_ARCH_NAMES.values():
|
||||
print(f"Error: unsupported architecture {arch_name}")
|
||||
sys.exit(1)
|
||||
if arch_name not in gguf.MODEL_ARCH_NAMES.values():
|
||||
print(f"Error: unsupported architecture {arch_name}")
|
||||
sys.exit(1)
|
||||
|
||||
arch = list(gguf.MODEL_ARCH_NAMES.keys())[list(gguf.MODEL_ARCH_NAMES.values()).index(arch_name)]
|
||||
name_map = gguf.TensorNameMap(arch, 200) # 200 layers ought to be enough for anyone
|
||||
arch = list(gguf.MODEL_ARCH_NAMES.keys())[list(gguf.MODEL_ARCH_NAMES.values()).index(arch_name)]
|
||||
name_map = gguf.TensorNameMap(arch, 200) # 200 layers ought to be enough for anyone
|
||||
|
||||
with open(input_json, "r") as f:
|
||||
params = json.load(f)
|
||||
with open(input_json, "r") as f:
|
||||
params = json.load(f)
|
||||
|
||||
if params["peft_type"] != "LORA":
|
||||
print(f"Error: unsupported adapter type {params['peft_type']}, expected LORA")
|
||||
sys.exit(1)
|
||||
if params["peft_type"] != "LORA":
|
||||
print(f"Error: unsupported adapter type {params['peft_type']}, expected LORA")
|
||||
sys.exit(1)
|
||||
|
||||
if params["fan_in_fan_out"] is True:
|
||||
print("Error: param fan_in_fan_out is not supported")
|
||||
sys.exit(1)
|
||||
if params["fan_in_fan_out"] is True:
|
||||
print("Error: param fan_in_fan_out is not supported")
|
||||
sys.exit(1)
|
||||
|
||||
if params["bias"] is not None and params["bias"] != "none":
|
||||
print("Error: param bias is not supported")
|
||||
sys.exit(1)
|
||||
if params["bias"] is not None and params["bias"] != "none":
|
||||
print("Error: param bias is not supported")
|
||||
sys.exit(1)
|
||||
|
||||
# TODO: these seem to be layers that have been trained but without lora.
|
||||
# doesn't seem widely used but eventually should be supported
|
||||
if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0:
|
||||
print("Error: param modules_to_save is not supported")
|
||||
sys.exit(1)
|
||||
# TODO: these seem to be layers that have been trained but without lora.
|
||||
# doesn't seem widely used but eventually should be supported
|
||||
if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0:
|
||||
print("Error: param modules_to_save is not supported")
|
||||
sys.exit(1)
|
||||
|
||||
with open(output_path, "wb") as fout:
|
||||
fout.truncate()
|
||||
with open(output_path, "wb") as fout:
|
||||
fout.truncate()
|
||||
|
||||
write_file_header(fout, params)
|
||||
for k, v in model.items():
|
||||
orig_k = k
|
||||
if k.endswith(".default.weight"):
|
||||
k = k.replace(".default.weight", ".weight")
|
||||
if k in ["llama_proj.weight", "llama_proj.bias"]:
|
||||
continue
|
||||
if k.endswith("lora_A.weight"):
|
||||
if v.dtype != torch.float16 and v.dtype != torch.float32:
|
||||
write_file_header(fout, params)
|
||||
for k, v in model.items():
|
||||
orig_k = k
|
||||
if k.endswith(".default.weight"):
|
||||
k = k.replace(".default.weight", ".weight")
|
||||
if k in ["llama_proj.weight", "llama_proj.bias"]:
|
||||
continue
|
||||
if k.endswith("lora_A.weight"):
|
||||
if v.dtype != torch.float16 and v.dtype != torch.float32:
|
||||
v = v.float()
|
||||
v = v.T
|
||||
else:
|
||||
v = v.float()
|
||||
v = v.T
|
||||
else:
|
||||
v = v.float()
|
||||
|
||||
t = v.detach().numpy()
|
||||
t = v.detach().numpy()
|
||||
|
||||
prefix = "base_model.model."
|
||||
if k.startswith(prefix):
|
||||
k = k[len(prefix) :]
|
||||
prefix = "base_model.model."
|
||||
if k.startswith(prefix):
|
||||
k = k[len(prefix) :]
|
||||
|
||||
lora_suffixes = (".lora_A.weight", ".lora_B.weight")
|
||||
if k.endswith(lora_suffixes):
|
||||
suffix = k[-len(lora_suffixes[0]):]
|
||||
k = k[: -len(lora_suffixes[0])]
|
||||
else:
|
||||
print(f"Error: unrecognized tensor name {orig_k}")
|
||||
sys.exit(1)
|
||||
lora_suffixes = (".lora_A.weight", ".lora_B.weight")
|
||||
if k.endswith(lora_suffixes):
|
||||
suffix = k[-len(lora_suffixes[0]):]
|
||||
k = k[: -len(lora_suffixes[0])]
|
||||
else:
|
||||
print(f"Error: unrecognized tensor name {orig_k}")
|
||||
sys.exit(1)
|
||||
|
||||
tname = name_map.get_name(k)
|
||||
if tname is None:
|
||||
print(f"Error: could not map tensor name {orig_k}")
|
||||
print(" Note: the arch parameter must be specified if the model is not llama")
|
||||
sys.exit(1)
|
||||
tname = name_map.get_name(k)
|
||||
if tname is None:
|
||||
print(f"Error: could not map tensor name {orig_k}")
|
||||
print(" Note: the arch parameter must be specified if the model is not llama")
|
||||
sys.exit(1)
|
||||
|
||||
if suffix == ".lora_A.weight":
|
||||
tname += ".weight.loraA"
|
||||
elif suffix == ".lora_B.weight":
|
||||
tname += ".weight.loraB"
|
||||
else:
|
||||
assert False
|
||||
if suffix == ".lora_A.weight":
|
||||
tname += ".weight.loraA"
|
||||
elif suffix == ".lora_B.weight":
|
||||
tname += ".weight.loraB"
|
||||
else:
|
||||
assert False
|
||||
|
||||
print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
|
||||
write_tensor_header(fout, tname, t.shape, t.dtype)
|
||||
t.tofile(fout)
|
||||
print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
|
||||
write_tensor_header(fout, tname, t.shape, t.dtype)
|
||||
t.tofile(fout)
|
||||
|
||||
print(f"Converted {input_json} and {input_model} to {output_path}")
|
||||
print(f"Converted {input_json} and {input_model} to {output_path}")
|
||||
|
1
convert-persimmon-to-gguf.py
Normal file → Executable file
1
convert-persimmon-to-gguf.py
Normal file → Executable file
@ -1,3 +1,4 @@
|
||||
#!/usr/bin/env python3
|
||||
import torch
|
||||
import os
|
||||
from pprint import pprint
|
||||
|
@ -1,3 +0,0 @@
|
||||
-r requirements.txt
|
||||
torch==2.1.1
|
||||
transformers==4.35.2
|
@ -1,5 +1,12 @@
|
||||
numpy==1.24.4
|
||||
sentencepiece==0.1.98
|
||||
transformers>=4.34.0
|
||||
gguf>=0.1.0
|
||||
protobuf>=4.21.0
|
||||
# These requirements include all dependencies for all top-level python scripts
|
||||
# for llama.cpp. Avoid adding packages here directly.
|
||||
#
|
||||
# Package versions must stay compatible across all top-level python scripts.
|
||||
#
|
||||
|
||||
-r ./requirements/requirements-convert.txt
|
||||
|
||||
-r ./requirements/requirements-convert-hf-to-gguf.txt
|
||||
-r ./requirements/requirements-convert-llama-ggml-to-gguf.txt
|
||||
-r ./requirements/requirements-convert-lora-to-ggml.txt
|
||||
-r ./requirements/requirements-convert-persimmon-to-gguf.txt
|
||||
|
2
requirements/requirements-convert-hf-to-gguf.txt
Normal file
2
requirements/requirements-convert-hf-to-gguf.txt
Normal file
@ -0,0 +1,2 @@
|
||||
-r ./requirements-convert.txt
|
||||
torch~=2.1.1
|
1
requirements/requirements-convert-llama-ggml-to-gguf.txt
Normal file
1
requirements/requirements-convert-llama-ggml-to-gguf.txt
Normal file
@ -0,0 +1 @@
|
||||
-r ./requirements-convert.txt
|
2
requirements/requirements-convert-lora-to-ggml.txt
Normal file
2
requirements/requirements-convert-lora-to-ggml.txt
Normal file
@ -0,0 +1,2 @@
|
||||
-r ./requirements-convert.txt
|
||||
torch~=2.1.1
|
2
requirements/requirements-convert-persimmon-to-gguf.txt
Normal file
2
requirements/requirements-convert-persimmon-to-gguf.txt
Normal file
@ -0,0 +1,2 @@
|
||||
-r ./requirements-convert.txt
|
||||
torch~=2.1.1
|
5
requirements/requirements-convert.txt
Normal file
5
requirements/requirements-convert.txt
Normal file
@ -0,0 +1,5 @@
|
||||
numpy~=1.24.4
|
||||
sentencepiece~=0.1.98
|
||||
transformers>=4.35.2,<5.0.0
|
||||
gguf>=0.1.0
|
||||
protobuf>=4.21.0,<5.0.0
|
174
scripts/check-requirements.sh
Executable file
174
scripts/check-requirements.sh
Executable file
@ -0,0 +1,174 @@
|
||||
#!/bin/bash
|
||||
set -euo pipefail
|
||||
|
||||
#
|
||||
# check-requirements.sh checks all requirements files for each top-level
|
||||
# convert*.py script.
|
||||
#
|
||||
# WARNING: This is quite IO intensive, because a fresh venv is set up for every
|
||||
# python script. As of 2023-12-22, this writes ~2.7GB of data. An adequately
|
||||
# sized tmpfs /tmp or ramdisk is recommended if running this frequently.
|
||||
#
|
||||
# usage: check-requirements.sh [<working_dir>]
|
||||
# check-requirements.sh nocleanup [<working_dir>]
|
||||
#
|
||||
# where:
|
||||
# - <working_dir> is a directory that can be used as the base for
|
||||
# setting up the venvs. Defaults to `/tmp`.
|
||||
# - 'nocleanup' as the first argument will disable automatic cleanup
|
||||
# of the files created by this script.
|
||||
#
|
||||
# requires:
|
||||
# - bash >= 3.2.57
|
||||
# - shellcheck
|
||||
#
|
||||
# For each script, it creates a fresh venv, `pip install`s the requirements, and
|
||||
# finally imports the python script to check for `ImportError`.
|
||||
#
|
||||
|
||||
log() {
|
||||
local level=$1 msg=$2
|
||||
printf >&2 '%s: %s\n' "$level" "$msg"
|
||||
}
|
||||
|
||||
debug() {
|
||||
log DEBUG "$@"
|
||||
}
|
||||
|
||||
info() {
|
||||
log INFO "$@"
|
||||
}
|
||||
|
||||
fatal() {
|
||||
log FATAL "$@"
|
||||
exit 1
|
||||
}
|
||||
|
||||
cleanup() {
|
||||
if [[ -n ${workdir+x} && -d $workdir && -w $workdir ]]; then
|
||||
info "Removing $workdir"
|
||||
local count=0
|
||||
rm -rfv -- "$workdir" | while read -r; do
|
||||
if (( count++ > 750 )); then
|
||||
printf .
|
||||
count=0
|
||||
fi
|
||||
done
|
||||
printf '\n'
|
||||
info "Removed $workdir"
|
||||
fi
|
||||
}
|
||||
|
||||
do_cleanup=1
|
||||
if [[ ${1-} == nocleanup ]]; then
|
||||
do_cleanup=0; shift
|
||||
fi
|
||||
|
||||
if (( do_cleanup )); then
|
||||
trap exit INT TERM
|
||||
trap cleanup EXIT
|
||||
fi
|
||||
|
||||
this=$(realpath -- "$0"); readonly this
|
||||
cd "$(dirname "$this")/.." # PWD should stay in llama.cpp project directory
|
||||
|
||||
shellcheck "$this"
|
||||
|
||||
readonly reqs_dir=requirements
|
||||
|
||||
if [[ ${1+x} ]]; then
|
||||
tmp_dir=$(realpath -- "$1")
|
||||
if [[ ! ( -d $tmp_dir && -w $tmp_dir ) ]]; then
|
||||
fatal "$tmp_dir is not a writable directory"
|
||||
fi
|
||||
else
|
||||
tmp_dir=/tmp
|
||||
fi
|
||||
|
||||
workdir=$(mktemp -d "$tmp_dir/check-requirements.XXXX"); readonly workdir
|
||||
info "Working directory: $workdir"
|
||||
|
||||
check_requirements() {
|
||||
local reqs=$1
|
||||
|
||||
info "$reqs: beginning check"
|
||||
pip --disable-pip-version-check install -qr "$reqs"
|
||||
info "$reqs: OK"
|
||||
}
|
||||
|
||||
check_convert_script() {
|
||||
local py=$1 # e.g. ./convert-hf-to-gguf.py
|
||||
local pyname=${py##*/} # e.g. convert-hf-to-gguf.py
|
||||
pyname=${pyname%.py} # e.g. convert-hf-to-gguf
|
||||
|
||||
info "$py: beginning check"
|
||||
|
||||
local reqs="$reqs_dir/requirements-$pyname.txt"
|
||||
if [[ ! -r $reqs ]]; then
|
||||
fatal "$py missing requirements. Expected: $reqs"
|
||||
fi
|
||||
|
||||
local venv="$workdir/$pyname-venv"
|
||||
python3 -m venv "$venv"
|
||||
|
||||
(
|
||||
# shellcheck source=/dev/null
|
||||
source "$venv/bin/activate"
|
||||
|
||||
check_requirements "$reqs"
|
||||
|
||||
python - "$py" "$pyname" <<'EOF'
|
||||
import sys
|
||||
from importlib.machinery import SourceFileLoader
|
||||
py, pyname = sys.argv[1:]
|
||||
SourceFileLoader(pyname, py).load_module()
|
||||
EOF
|
||||
)
|
||||
|
||||
if (( do_cleanup )); then
|
||||
rm -rf -- "$venv"
|
||||
fi
|
||||
|
||||
info "$py: imports OK"
|
||||
}
|
||||
|
||||
readonly ignore_eq_eq='check_requirements: ignore "=="'
|
||||
|
||||
for req in "$reqs_dir"/*; do
|
||||
# Check that all sub-requirements are added to top-level requirements.txt
|
||||
if ! grep -qF "$req" requirements.txt; then
|
||||
fatal "$req needs to be added to requirements.txt"
|
||||
fi
|
||||
|
||||
# Make sure exact release versions aren't being pinned in the requirements
|
||||
# Filters out the ignore string
|
||||
if grep -vF "$ignore_eq_eq" "$req" | grep -q '=='; then
|
||||
tab=$'\t'
|
||||
cat >&2 <<EOF
|
||||
FATAL: Avoid pinning exact package versions. Use '~=' instead.
|
||||
You can suppress this error by appending the following to the line:
|
||||
$tab# $ignore_eq_eq
|
||||
EOF
|
||||
exit 1
|
||||
fi
|
||||
done
|
||||
|
||||
all_venv="$workdir/all-venv"
|
||||
python3 -m venv "$all_venv"
|
||||
|
||||
(
|
||||
# shellcheck source=/dev/null
|
||||
source "$all_venv/bin/activate"
|
||||
check_requirements requirements.txt
|
||||
)
|
||||
|
||||
if (( do_cleanup )); then
|
||||
rm -rf -- "$all_venv"
|
||||
fi
|
||||
|
||||
check_convert_script convert.py
|
||||
for py in convert-*.py; do
|
||||
check_convert_script "$py"
|
||||
done
|
||||
|
||||
info 'Done! No issues found.'
|
Loading…
Reference in New Issue
Block a user