python : add check-requirements.sh and GitHub workflow (#4585)

* python: add check-requirements.sh and GitHub workflow

This script and workflow forces package versions to remain compatible
across all convert*.py scripts, while allowing secondary convert scripts
to import dependencies not wanted in convert.py.

* Move requirements into ./requirements

* Fail on "==" being used for package requirements (but can be suppressed)

* Enforce "compatible release" syntax instead of ==

* Update workflow

* Add upper version bound for transformers and protobuf

* improve check-requirements.sh

* small syntax change

* don't remove venvs if nocleanup is passed

* See if this fixes docker workflow

* Move check-requirements.sh into ./scripts/

---------

Co-authored-by: Jared Van Bortel <jared@nomic.ai>
This commit is contained in:
crasm 2023-12-29 09:50:29 -05:00 committed by GitHub
parent 68eccbdc5b
commit 04ac0607e9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
16 changed files with 360 additions and 130 deletions

View File

@ -14,7 +14,8 @@ ARG CUDA_DOCKER_ARCH=all
RUN apt-get update && \ RUN apt-get update && \
apt-get install -y build-essential python3 python3-pip git apt-get install -y build-essential python3 python3-pip git
COPY requirements.txt requirements.txt COPY requirements.txt requirements.txt
COPY requirements requirements
RUN pip install --upgrade pip setuptools wheel \ RUN pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt && pip install -r requirements.txt

View File

@ -23,7 +23,8 @@ ARG ROCM_DOCKER_ARCH=\
gfx1101 \ gfx1101 \
gfx1102 gfx1102
COPY requirements.txt requirements.txt COPY requirements.txt requirements.txt
COPY requirements requirements
RUN pip install --upgrade pip setuptools wheel \ RUN pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt && pip install -r requirements.txt

View File

@ -5,7 +5,8 @@ FROM ubuntu:$UBUNTU_VERSION as build
RUN apt-get update && \ RUN apt-get update && \
apt-get install -y build-essential python3 python3-pip git apt-get install -y build-essential python3 python3-pip git
COPY requirements.txt requirements.txt COPY requirements.txt requirements.txt
COPY requirements requirements
RUN pip install --upgrade pip setuptools wheel \ RUN pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt && pip install -r requirements.txt

View File

@ -23,7 +23,8 @@ ARG ROCM_DOCKER_ARCH=\
gfx1101 \ gfx1101 \
gfx1102 gfx1102
COPY requirements.txt requirements.txt COPY requirements.txt requirements.txt
COPY requirements requirements
RUN pip install --upgrade pip setuptools wheel \ RUN pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt && pip install -r requirements.txt

View File

@ -0,0 +1,29 @@
name: Python check requirements.txt
on:
push:
paths:
- 'scripts/check-requirements.sh'
- 'convert*.py'
- 'requirements.txt'
- 'requirements/*.txt'
pull_request:
paths:
- 'scripts/check-requirements.sh'
- 'convert*.py'
- 'requirements.txt'
- 'requirements/*.txt'
jobs:
python-check-requirements:
runs-on: ubuntu-latest
name: check-requirements
steps:
- name: Check out source repository
uses: actions/checkout@v3
- name: Set up Python environment
uses: actions/setup-python@v4
with:
python-version: "3.11"
- name: Run check-requirements.sh script
run: bash scripts/check-requirements.sh nocleanup

View File

@ -242,7 +242,7 @@ class Model:
tokens: list[bytearray] = [] tokens: list[bytearray] = []
toktypes: list[int] = [] toktypes: list[int] = []
from transformers import AutoTokenizer # type: ignore[attr-defined] from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(dir_model) tokenizer = AutoTokenizer.from_pretrained(dir_model)
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab)) vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
assert max(tokenizer.vocab.values()) < vocab_size assert max(tokenizer.vocab.values()) < vocab_size
@ -856,7 +856,7 @@ class StableLMModel(Model):
hparams = self.hparams hparams = self.hparams
block_count = hparams["num_hidden_layers"] block_count = hparams["num_hidden_layers"]
self.gguf_writer.add_name(dir_model.name) self.gguf_writer.add_name(self.dir_model.name)
self.gguf_writer.add_context_length(hparams["max_position_embeddings"]) self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
self.gguf_writer.add_embedding_length(hparams["hidden_size"]) self.gguf_writer.add_embedding_length(hparams["hidden_size"])
self.gguf_writer.add_block_count(block_count) self.gguf_writer.add_block_count(block_count)
@ -902,7 +902,7 @@ class QwenModel(Model):
tokens: list[bytearray] = [] tokens: list[bytearray] = []
toktypes: list[int] = [] toktypes: list[int] = []
from transformers import AutoTokenizer # type: ignore[attr-defined] from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
vocab_size = hparams["vocab_size"] vocab_size = hparams["vocab_size"]
assert max(tokenizer.get_vocab().values()) < vocab_size assert max(tokenizer.get_vocab().values()) < vocab_size
@ -1185,57 +1185,62 @@ def parse_args() -> argparse.Namespace:
return parser.parse_args() return parser.parse_args()
args = parse_args() def main() -> None:
args = parse_args()
dir_model = args.model dir_model = args.model
if args.awq_path: if args.awq_path:
sys.path.insert(1, str(Path(__file__).parent / 'awq-py')) sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
from awq.apply_awq import add_scale_weights from awq.apply_awq import add_scale_weights
tmp_model_path = args.model / "weighted_model" tmp_model_path = args.model / "weighted_model"
dir_model = tmp_model_path dir_model = tmp_model_path
if tmp_model_path.is_dir(): if tmp_model_path.is_dir():
print(f"{tmp_model_path} exists as a weighted model.") print(f"{tmp_model_path} exists as a weighted model.")
else:
tmp_model_path.mkdir(parents=True, exist_ok=True)
print("Saving new weighted model ...")
add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
print(f"Saved weighted model at {tmp_model_path}.")
if not dir_model.is_dir():
print(f'Error: {args.model} is not a directory', file=sys.stderr)
sys.exit(1)
ftype_map = {
"f32": gguf.GGMLQuantizationType.F32,
"f16": gguf.GGMLQuantizationType.F16,
}
if args.outfile is not None:
fname_out = args.outfile
else: else:
tmp_model_path.mkdir(parents=True, exist_ok=True) # output in the same directory as the model by default
print("Saving new weighted model ...") fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
print(f"Saved weighted model at {tmp_model_path}.")
if not dir_model.is_dir(): print(f"Loading model: {dir_model.name}")
print(f'Error: {args.model} is not a directory', file=sys.stderr)
sys.exit(1)
ftype_map = { hparams = Model.load_hparams(dir_model)
"f32": gguf.GGMLQuantizationType.F32,
"f16": gguf.GGMLQuantizationType.F16,
}
if args.outfile is not None: with torch.inference_mode():
fname_out = args.outfile model_class = Model.from_model_architecture(hparams["architectures"][0])
else: model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian)
# output in the same directory as the model by default
fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
print(f"Loading model: {dir_model.name}") print("Set model parameters")
model_instance.set_gguf_parameters()
hparams = Model.load_hparams(dir_model) print("Set model tokenizer")
model_instance.set_vocab()
with torch.inference_mode(): if args.vocab_only:
model_class = Model.from_model_architecture(hparams["architectures"][0]) print(f"Exporting model vocab to '{fname_out}'")
model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian) model_instance.write_vocab()
else:
print(f"Exporting model to '{fname_out}'")
model_instance.write()
print("Set model parameters") print(f"Model successfully exported to '{fname_out}'")
model_instance.set_gguf_parameters()
print("Set model tokenizer")
model_instance.set_vocab()
if args.vocab_only: if __name__ == '__main__':
print(f"Exporting model vocab to '{fname_out}'") main()
model_instance.write_vocab()
else:
print(f"Exporting model to '{fname_out}'")
model_instance.write()
print(f"Model successfully exported to '{fname_out}'")

View File

@ -47,95 +47,96 @@ def write_tensor_header(fout: BinaryIO, name: str, shape: Sequence[int], data_ty
fout.seek((fout.tell() + 31) & -32) fout.seek((fout.tell() + 31) & -32)
if len(sys.argv) < 2: if __name__ == '__main__':
print(f"Usage: python {sys.argv[0]} <path> [arch]") if len(sys.argv) < 2:
print( print(f"Usage: python {sys.argv[0]} <path> [arch]")
"Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'" print(
) "Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'"
print(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)") )
sys.exit(1) print(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)")
sys.exit(1)
input_json = os.path.join(sys.argv[1], "adapter_config.json") input_json = os.path.join(sys.argv[1], "adapter_config.json")
input_model = os.path.join(sys.argv[1], "adapter_model.bin") input_model = os.path.join(sys.argv[1], "adapter_model.bin")
output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin") output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin")
model = torch.load(input_model, map_location="cpu") model = torch.load(input_model, map_location="cpu")
arch_name = sys.argv[2] if len(sys.argv) == 3 else "llama" arch_name = sys.argv[2] if len(sys.argv) == 3 else "llama"
if arch_name not in gguf.MODEL_ARCH_NAMES.values(): if arch_name not in gguf.MODEL_ARCH_NAMES.values():
print(f"Error: unsupported architecture {arch_name}") print(f"Error: unsupported architecture {arch_name}")
sys.exit(1) sys.exit(1)
arch = list(gguf.MODEL_ARCH_NAMES.keys())[list(gguf.MODEL_ARCH_NAMES.values()).index(arch_name)] arch = list(gguf.MODEL_ARCH_NAMES.keys())[list(gguf.MODEL_ARCH_NAMES.values()).index(arch_name)]
name_map = gguf.TensorNameMap(arch, 200) # 200 layers ought to be enough for anyone name_map = gguf.TensorNameMap(arch, 200) # 200 layers ought to be enough for anyone
with open(input_json, "r") as f: with open(input_json, "r") as f:
params = json.load(f) params = json.load(f)
if params["peft_type"] != "LORA": if params["peft_type"] != "LORA":
print(f"Error: unsupported adapter type {params['peft_type']}, expected LORA") print(f"Error: unsupported adapter type {params['peft_type']}, expected LORA")
sys.exit(1) sys.exit(1)
if params["fan_in_fan_out"] is True: if params["fan_in_fan_out"] is True:
print("Error: param fan_in_fan_out is not supported") print("Error: param fan_in_fan_out is not supported")
sys.exit(1) sys.exit(1)
if params["bias"] is not None and params["bias"] != "none": if params["bias"] is not None and params["bias"] != "none":
print("Error: param bias is not supported") print("Error: param bias is not supported")
sys.exit(1) sys.exit(1)
# TODO: these seem to be layers that have been trained but without lora. # TODO: these seem to be layers that have been trained but without lora.
# doesn't seem widely used but eventually should be supported # doesn't seem widely used but eventually should be supported
if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0: if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0:
print("Error: param modules_to_save is not supported") print("Error: param modules_to_save is not supported")
sys.exit(1) sys.exit(1)
with open(output_path, "wb") as fout: with open(output_path, "wb") as fout:
fout.truncate() fout.truncate()
write_file_header(fout, params) write_file_header(fout, params)
for k, v in model.items(): for k, v in model.items():
orig_k = k orig_k = k
if k.endswith(".default.weight"): if k.endswith(".default.weight"):
k = k.replace(".default.weight", ".weight") k = k.replace(".default.weight", ".weight")
if k in ["llama_proj.weight", "llama_proj.bias"]: if k in ["llama_proj.weight", "llama_proj.bias"]:
continue continue
if k.endswith("lora_A.weight"): if k.endswith("lora_A.weight"):
if v.dtype != torch.float16 and v.dtype != torch.float32: if v.dtype != torch.float16 and v.dtype != torch.float32:
v = v.float()
v = v.T
else:
v = v.float() v = v.float()
v = v.T
else:
v = v.float()
t = v.detach().numpy() t = v.detach().numpy()
prefix = "base_model.model." prefix = "base_model.model."
if k.startswith(prefix): if k.startswith(prefix):
k = k[len(prefix) :] k = k[len(prefix) :]
lora_suffixes = (".lora_A.weight", ".lora_B.weight") lora_suffixes = (".lora_A.weight", ".lora_B.weight")
if k.endswith(lora_suffixes): if k.endswith(lora_suffixes):
suffix = k[-len(lora_suffixes[0]):] suffix = k[-len(lora_suffixes[0]):]
k = k[: -len(lora_suffixes[0])] k = k[: -len(lora_suffixes[0])]
else: else:
print(f"Error: unrecognized tensor name {orig_k}") print(f"Error: unrecognized tensor name {orig_k}")
sys.exit(1) sys.exit(1)
tname = name_map.get_name(k) tname = name_map.get_name(k)
if tname is None: if tname is None:
print(f"Error: could not map tensor name {orig_k}") print(f"Error: could not map tensor name {orig_k}")
print(" Note: the arch parameter must be specified if the model is not llama") print(" Note: the arch parameter must be specified if the model is not llama")
sys.exit(1) sys.exit(1)
if suffix == ".lora_A.weight": if suffix == ".lora_A.weight":
tname += ".weight.loraA" tname += ".weight.loraA"
elif suffix == ".lora_B.weight": elif suffix == ".lora_B.weight":
tname += ".weight.loraB" tname += ".weight.loraB"
else: else:
assert False assert False
print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB") print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
write_tensor_header(fout, tname, t.shape, t.dtype) write_tensor_header(fout, tname, t.shape, t.dtype)
t.tofile(fout) t.tofile(fout)
print(f"Converted {input_json} and {input_model} to {output_path}") print(f"Converted {input_json} and {input_model} to {output_path}")

1
convert-persimmon-to-gguf.py Normal file → Executable file
View File

@ -1,3 +1,4 @@
#!/usr/bin/env python3
import torch import torch
import os import os
from pprint import pprint from pprint import pprint

View File

@ -1,3 +0,0 @@
-r requirements.txt
torch==2.1.1
transformers==4.35.2

View File

@ -1,5 +1,12 @@
numpy==1.24.4 # These requirements include all dependencies for all top-level python scripts
sentencepiece==0.1.98 # for llama.cpp. Avoid adding packages here directly.
transformers>=4.34.0 #
gguf>=0.1.0 # Package versions must stay compatible across all top-level python scripts.
protobuf>=4.21.0 #
-r ./requirements/requirements-convert.txt
-r ./requirements/requirements-convert-hf-to-gguf.txt
-r ./requirements/requirements-convert-llama-ggml-to-gguf.txt
-r ./requirements/requirements-convert-lora-to-ggml.txt
-r ./requirements/requirements-convert-persimmon-to-gguf.txt

View File

@ -0,0 +1,2 @@
-r ./requirements-convert.txt
torch~=2.1.1

View File

@ -0,0 +1 @@
-r ./requirements-convert.txt

View File

@ -0,0 +1,2 @@
-r ./requirements-convert.txt
torch~=2.1.1

View File

@ -0,0 +1,2 @@
-r ./requirements-convert.txt
torch~=2.1.1

View File

@ -0,0 +1,5 @@
numpy~=1.24.4
sentencepiece~=0.1.98
transformers>=4.35.2,<5.0.0
gguf>=0.1.0
protobuf>=4.21.0,<5.0.0

174
scripts/check-requirements.sh Executable file
View File

@ -0,0 +1,174 @@
#!/bin/bash
set -euo pipefail
#
# check-requirements.sh checks all requirements files for each top-level
# convert*.py script.
#
# WARNING: This is quite IO intensive, because a fresh venv is set up for every
# python script. As of 2023-12-22, this writes ~2.7GB of data. An adequately
# sized tmpfs /tmp or ramdisk is recommended if running this frequently.
#
# usage: check-requirements.sh [<working_dir>]
# check-requirements.sh nocleanup [<working_dir>]
#
# where:
# - <working_dir> is a directory that can be used as the base for
# setting up the venvs. Defaults to `/tmp`.
# - 'nocleanup' as the first argument will disable automatic cleanup
# of the files created by this script.
#
# requires:
# - bash >= 3.2.57
# - shellcheck
#
# For each script, it creates a fresh venv, `pip install`s the requirements, and
# finally imports the python script to check for `ImportError`.
#
log() {
local level=$1 msg=$2
printf >&2 '%s: %s\n' "$level" "$msg"
}
debug() {
log DEBUG "$@"
}
info() {
log INFO "$@"
}
fatal() {
log FATAL "$@"
exit 1
}
cleanup() {
if [[ -n ${workdir+x} && -d $workdir && -w $workdir ]]; then
info "Removing $workdir"
local count=0
rm -rfv -- "$workdir" | while read -r; do
if (( count++ > 750 )); then
printf .
count=0
fi
done
printf '\n'
info "Removed $workdir"
fi
}
do_cleanup=1
if [[ ${1-} == nocleanup ]]; then
do_cleanup=0; shift
fi
if (( do_cleanup )); then
trap exit INT TERM
trap cleanup EXIT
fi
this=$(realpath -- "$0"); readonly this
cd "$(dirname "$this")/.." # PWD should stay in llama.cpp project directory
shellcheck "$this"
readonly reqs_dir=requirements
if [[ ${1+x} ]]; then
tmp_dir=$(realpath -- "$1")
if [[ ! ( -d $tmp_dir && -w $tmp_dir ) ]]; then
fatal "$tmp_dir is not a writable directory"
fi
else
tmp_dir=/tmp
fi
workdir=$(mktemp -d "$tmp_dir/check-requirements.XXXX"); readonly workdir
info "Working directory: $workdir"
check_requirements() {
local reqs=$1
info "$reqs: beginning check"
pip --disable-pip-version-check install -qr "$reqs"
info "$reqs: OK"
}
check_convert_script() {
local py=$1 # e.g. ./convert-hf-to-gguf.py
local pyname=${py##*/} # e.g. convert-hf-to-gguf.py
pyname=${pyname%.py} # e.g. convert-hf-to-gguf
info "$py: beginning check"
local reqs="$reqs_dir/requirements-$pyname.txt"
if [[ ! -r $reqs ]]; then
fatal "$py missing requirements. Expected: $reqs"
fi
local venv="$workdir/$pyname-venv"
python3 -m venv "$venv"
(
# shellcheck source=/dev/null
source "$venv/bin/activate"
check_requirements "$reqs"
python - "$py" "$pyname" <<'EOF'
import sys
from importlib.machinery import SourceFileLoader
py, pyname = sys.argv[1:]
SourceFileLoader(pyname, py).load_module()
EOF
)
if (( do_cleanup )); then
rm -rf -- "$venv"
fi
info "$py: imports OK"
}
readonly ignore_eq_eq='check_requirements: ignore "=="'
for req in "$reqs_dir"/*; do
# Check that all sub-requirements are added to top-level requirements.txt
if ! grep -qF "$req" requirements.txt; then
fatal "$req needs to be added to requirements.txt"
fi
# Make sure exact release versions aren't being pinned in the requirements
# Filters out the ignore string
if grep -vF "$ignore_eq_eq" "$req" | grep -q '=='; then
tab=$'\t'
cat >&2 <<EOF
FATAL: Avoid pinning exact package versions. Use '~=' instead.
You can suppress this error by appending the following to the line:
$tab# $ignore_eq_eq
EOF
exit 1
fi
done
all_venv="$workdir/all-venv"
python3 -m venv "$all_venv"
(
# shellcheck source=/dev/null
source "$all_venv/bin/activate"
check_requirements requirements.txt
)
if (( do_cleanup )); then
rm -rf -- "$all_venv"
fi
check_convert_script convert.py
for py in convert-*.py; do
check_convert_script "$py"
done
info 'Done! No issues found.'