llama : add basic support for offloading moe with CUDA

This commit is contained in:
slaren 2023-12-09 13:21:09 +01:00
parent 2cbcba829f
commit 06dfde3e94
3 changed files with 61 additions and 19 deletions

View File

@ -8242,15 +8242,21 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s
// TODO: mmq/mmv support
#endif
const struct ggml_tensor * ids = src0;
const int32_t id = dst->op_params[0];
const int32_t n_as = dst->op_params[1];
GGML_ASSERT(dst->backend == GGML_BACKEND_GPU);
const char * ids_dev = (const char *)((const ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device];
const struct ggml_tensor * ids = src0;
const int32_t id = ((int32_t *) dst->op_params)[0];
const int32_t n_as = ((int32_t *) dst->op_params)[1];
std::vector<char> ids_host(ggml_nbytes(ids));
CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, g_cudaStreams[g_main_device][0]));
CUDA_CHECK(cudaStreamSynchronize(g_cudaStreams[g_main_device][0]));
if (ids->backend == GGML_BACKEND_GPU) {
const char * ids_dev = (const char *)((const ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device];
CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, g_cudaStreams[g_main_device][0]));
CUDA_CHECK(cudaStreamSynchronize(g_cudaStreams[g_main_device][0]));
} else {
memcpy(ids_host.data(), ids->data, ggml_nbytes(ids));
}
const ggml_tensor_extra_gpu * src1_extra = (const ggml_tensor_extra_gpu *) src1->extra;
const ggml_tensor_extra_gpu * dst_extra = (const ggml_tensor_extra_gpu *) dst->extra;
@ -8264,7 +8270,9 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s
src1_row.ne[1] = 1;
dst_row.ne[1] = 1;
src1_row.extra = &src1_row_extra;
if (src1->backend == GGML_BACKEND_GPU) {
src1_row.extra = &src1_row_extra;
}
dst_row.extra = &dst_row_extra;
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
@ -8278,7 +8286,12 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s
const struct ggml_tensor * src0_row = dst->src[row_id + 2];
src1_row_extra.data_device[g_main_device] = (char *) src1_extra->data_device[g_main_device] + i01*src1->nb[1];
if (src1->backend == GGML_BACKEND_GPU) {
src1_row_extra.data_device[g_main_device] = (char *) src1_extra->data_device[g_main_device] + i01*src1->nb[1];
} else {
src1_row.data = (char *) src1->data + i01*src1->nb[1];
}
dst_row_extra.data_device[g_main_device] = (char *) dst_extra->data_device[g_main_device] + i01*dst->nb[1];
ggml_cuda_mul_mat(src0_row, &src1_row, &dst_row);
@ -8694,7 +8707,9 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
func = ggml_cuda_repeat;
break;
case GGML_OP_GET_ROWS:
func = ggml_cuda_get_rows;
if (ggml_is_contiguous(tensor->src[1])) {
func = ggml_cuda_get_rows;
}
break;
case GGML_OP_DUP:
func = ggml_cuda_dup;

1
ggml.c
View File

@ -4105,7 +4105,6 @@ struct ggml_tensor * ggml_mul_mat_id(
result->src[0] = ids;
result->src[1] = b;
// TODO: n_as is the selected experts, but it should be the total number of experts
for (int i = 0; i < n_as; i++) {
struct ggml_tensor * a = as[i];
GGML_ASSERT(ggml_are_same_shape(as[0], a));

View File

@ -4247,16 +4247,25 @@ struct llm_build_context {
const int n_experts_per_tok = 2;
ggml_tensor * logits = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp, cur); // [n_tokens, num_experts]
cb(logits, "ffn_moe_logits", il);
ggml_tensor * probs = ggml_soft_max(ctx0, logits); // [n_tokens, num_experts]
cb(probs, "ffn_moe_probs", il);
// select experts
ggml_tensor * selected_experts = ggml_top_k(ctx0, probs, n_experts_per_tok); // [n_tokens, num_experts_per_tok]
ggml_tensor * weights =
ggml_reshape_2d(ctx0,
ggml_get_rows(ctx0,
ggml_reshape_3d(ctx0, probs, 1, n_experts, n_tokens), selected_experts),
ggml_tensor * weights = ggml_get_rows(ctx0,
ggml_reshape_3d(ctx0, probs, 1, n_experts, n_tokens), selected_experts);
cb(weights, "ffn_moe_weights", il);
weights = ggml_reshape_2d(ctx0, weights,
n_experts_per_tok, n_tokens); // [n_tokens, num_experts_per_tok]
weights = ggml_div(ctx0, weights, ggml_sum_rows(ctx0, weights)); // [n_tokens, num_experts_per_tok]
ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights);
cb(weights_sum, "ffn_moe_weights_sum", il);
weights = ggml_div(ctx0, weights, weights_sum); // [n_tokens, num_experts_per_tok]
cb(weights, "ffn_moe_weights_norm", il);
// compute expert outputs
ggml_tensor * moe_out;
@ -4269,19 +4278,30 @@ struct llm_build_context {
ggml_tensor ** ffn_gate_exp = (ggml_tensor **) model.layers[il].ffn_gate_exp;
ggml_tensor ** ffn_down_exp = (ggml_tensor **) model.layers[il].ffn_down_exp;
cur_expert = ggml_mul(ctx0,
ggml_mul_mat_id(ctx0, ffn_up_exp, n_experts, selected_experts, i, cur),
ggml_silu(ctx0,
ggml_mul_mat_id(ctx0, ffn_gate_exp, n_experts, selected_experts, i, cur))); // [n_tokens, n_embd]
ggml_tensor * cur_up = ggml_mul_mat_id(ctx0, ffn_up_exp, n_experts, selected_experts, i, cur);
cb(cur_up, "ffn_up", il);
ggml_tensor * cur_gate = ggml_mul_mat_id(ctx0, ffn_gate_exp, n_experts, selected_experts, i, cur);
cb(cur_gate, "ffn_gate", il);
cur_gate = ggml_silu(ctx0, cur_gate);
cb(cur_gate, "ffn_silu", il);
cur_expert = ggml_mul(ctx0, cur_up, cur_gate); // [n_tokens, n_embd]
cb(cur_expert, "ffn_gate_par", il);
cur_expert = ggml_mul_mat_id(ctx0, ffn_down_exp, n_experts, selected_experts, i, cur_expert); // [n_tokens, n_embd]
cb(cur_expert, "ffn_down", il);
cur_expert = ggml_mul(ctx0, cur_expert,
ggml_view_2d(ctx0, weights, 1, n_tokens, weights->nb[1], i*weights->nb[0]));
cb(cur_expert, "ffn_moe_weighted", il);
if (i == 0) {
moe_out = cur_expert;
} else {
moe_out = ggml_add(ctx0, moe_out, cur_expert);
cb(moe_out, "ffn_moe_out", il);
}
}
@ -5540,6 +5560,14 @@ static const std::unordered_map<const char *, llm_offload_func_e> k_offload_map
{ "ffn_relu", OFFLOAD_FUNC },
{ "ffn_sqr(relu)", OFFLOAD_FUNC },
{ "ffn_moe_logits", OFFLOAD_FUNC },
{ "ffn_moe_probs", OFFLOAD_FUNC },
{ "ffn_moe_weights", OFFLOAD_FUNC_NOP },
{ "ffn_moe_weights_sum", OFFLOAD_FUNC },
{ "ffn_moe_weights_norm", OFFLOAD_FUNC },
{ "ffn_moe_weighted", OFFLOAD_FUNC },
{ "ffn_moe_out", OFFLOAD_FUNC },
{ "l_out", OFFLOAD_FUNC },
{ "result_norm", OFFLOAD_FUNC_EMB },