sentencepiece bpe compatible tokenizer (#252)

* potential out of bounds read

* fix quantize

* style

* Update convert-pth-to-ggml.py

* mild cleanup

* don't need the space-prefixing here rn since main.cpp already does it

* new file magic + version header field

* readme notice

* missing newlines

Co-authored-by: slaren <2141330+slaren@users.noreply.github.com>
This commit is contained in:
Mack Straight 2023-03-20 03:17:23 -07:00 committed by GitHub
parent 5cb63e2493
commit 074bea2eb1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 180 additions and 44 deletions

View File

@ -31,7 +31,7 @@ endif
# #
CFLAGS = -I. -O3 -DNDEBUG -std=c11 -fPIC CFLAGS = -I. -O3 -DNDEBUG -std=c11 -fPIC
CXXFLAGS = -I. -I./examples -O3 -DNDEBUG -std=c++11 -fPIC CXXFLAGS = -I. -I./examples -O3 -DNDEBUG -std=c++17 -fPIC
LDFLAGS = LDFLAGS =
# OS specific # OS specific

View File

@ -11,6 +11,9 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
- Cache input prompts for faster initialization: https://github.com/ggerganov/llama.cpp/issues/64 - Cache input prompts for faster initialization: https://github.com/ggerganov/llama.cpp/issues/64
- Create a `llama.cpp` logo: https://github.com/ggerganov/llama.cpp/issues/105 - Create a `llama.cpp` logo: https://github.com/ggerganov/llama.cpp/issues/105
**TEMPORARY NOTICE:**
If you're updating to the latest master, you will need to regenerate your model files as the format has changed.
## Description ## Description
The main goal is to run the model using 4-bit quantization on a MacBook The main goal is to run the model using 4-bit quantization on a MacBook

View File

@ -60,7 +60,8 @@ def write_header(fout, hparams, ftype):
keys = ["vocab_size", "dim", "multiple_of", "n_heads", "n_layers"] keys = ["vocab_size", "dim", "multiple_of", "n_heads", "n_layers"]
values = [ values = [
0x67676d6c, # magic: ggml in hex 0x67676d66, # magic: ggml in hex
1, # file version
*[hparams[key] for key in keys], *[hparams[key] for key in keys],
hparams["dim"] // hparams["n_heads"], # rot (obsolete) hparams["dim"] // hparams["n_heads"], # rot (obsolete)
ftype ftype
@ -85,6 +86,7 @@ def write_tokens(fout, tokenizer):
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8") text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
fout.write(struct.pack("i", len(text))) fout.write(struct.pack("i", len(text)))
fout.write(text) fout.write(text)
fout.write(struct.pack("f", tokenizer.get_score(i)))
def process_and_write_variables(fout, model, ftype): def process_and_write_variables(fout, model, ftype):

View File

@ -3,6 +3,7 @@
#include "utils.h" #include "utils.h"
#include <cassert> #include <cassert>
#include <cinttypes>
#include <cmath> #include <cmath>
#include <cstdio> #include <cstdio>
#include <cstring> #include <cstring>
@ -105,10 +106,24 @@ bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab
{ {
uint32_t magic; uint32_t magic;
fin.read((char *) &magic, sizeof(magic)); fin.read((char *) &magic, sizeof(magic));
if (magic != 0x67676d6c) { if (magic == 0x67676d6c) {
fprintf(stderr, "%s: invalid model file '%s' (too old, regenerate your model files!)\n",
__func__, fname.c_str());
return false;
}
if (magic != 0x67676d66) {
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str()); fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
return false; return false;
} }
uint32_t format_version;
fin.read((char *) &format_version, sizeof(format_version));
if (format_version != 1) {
fprintf(stderr, "%s: invalid model file '%s' (unsupported format version %" PRIu32 ")\n",
__func__, fname.c_str(), format_version);
return false;
}
} }
int n_ff = 0; int n_ff = 0;
@ -154,8 +169,12 @@ bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab
word.resize(len); word.resize(len);
fin.read((char *) word.data(), len); fin.read((char *) word.data(), len);
float score;
fin.read((char *) &score, sizeof(score));
vocab.token_to_id[word] = i; vocab.token_to_id[word] = i;
vocab.id_to_token[i] = word; vocab.id_to_token[i] = word;
vocab.score[i] = score;
//if (i < 30000) { //if (i < 30000) {
// fprintf(stderr, "%s: vocab[%d] = '%s'\n", __func__, i, word.c_str()); // fprintf(stderr, "%s: vocab[%d] = '%s'\n", __func__, i, word.c_str());

View File

@ -3,6 +3,7 @@
#include "utils.h" #include "utils.h"
#include <cassert> #include <cassert>
#include <cinttypes>
#include <cmath> #include <cmath>
#include <cstdio> #include <cstdio>
#include <cstring> #include <cstring>
@ -63,12 +64,28 @@ bool llama_model_quantize(const std::string & fname_inp, const std::string & fna
{ {
uint32_t magic; uint32_t magic;
finp.read((char *) &magic, sizeof(magic)); finp.read((char *) &magic, sizeof(magic));
if (magic != 0x67676d6c) { if (magic == 0x67676d6c) {
fprintf(stderr, "%s: invalid model file '%s' (too old, regenerate your model files!)\n",
__func__, fname_inp.c_str());
return false;
}
if (magic != 0x67676d66) {
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname_inp.c_str()); fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname_inp.c_str());
return false; return false;
} }
fout.write((char *) &magic, sizeof(magic)); fout.write((char *) &magic, sizeof(magic));
uint32_t format_version;
finp.read((char *) &format_version, sizeof(format_version));
if (format_version != 1) {
fprintf(stderr, "%s: invalid model file '%s' (unsupported format version %" PRIu32 ")\n",
__func__, fname_inp.c_str(), format_version);
return false;
}
fout.write((char *) &format_version, sizeof(format_version));
} }
llama_hparams hparams; llama_hparams hparams;
@ -122,8 +139,13 @@ bool llama_model_quantize(const std::string & fname_inp, const std::string & fna
finp.read ((char *) word.data(), len); finp.read ((char *) word.data(), len);
fout.write((char *) word.data(), len); fout.write((char *) word.data(), len);
float score;
finp.read ((char *) &score, sizeof(score));
fout.write((char *) &score, sizeof(score));
vocab.token_to_id[word] = i; vocab.token_to_id[word] = i;
vocab.id_to_token[i] = word; vocab.id_to_token[i] = word;
vocab.score[i] = score;
} }
} }

167
utils.cpp
View File

@ -6,6 +6,7 @@
#include <regex> #include <regex>
#include <iostream> #include <iostream>
#include <iterator> #include <iterator>
#include <queue>
#include <string> #include <string>
#include <math.h> #include <math.h>
@ -294,58 +295,146 @@ std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::stri
return tokens; return tokens;
} }
// TODO: Calculate this constant from the vocabulary static size_t utf8_len(char src) {
#define MAX_TOKEN_LEN 18 const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
// SentencePiece implementation after https://guillaume-be.github.io/2020-05-30/sentence_piece uint8_t highbits = static_cast<uint8_t>(src) >> 4;
std::vector<gpt_vocab::id> llama_tokenize(const gpt_vocab & vocab, const std::string & text, bool bos) { return lookup[highbits];
std::vector<gpt_vocab::id> res; }
std::vector<int> score;
std::vector<gpt_vocab::id> prev;
int len = text.length();
score.resize(len + 1); struct llama_sp_symbol {
prev.resize(len + 1); using index = int;
index prev;
index next;
std::string_view text;
};
// Forward pass struct llama_sp_bigram {
for (int i = 0; i < len; i++) { struct comparator {
int max_len = std::min(len - i, MAX_TOKEN_LEN); bool operator()(llama_sp_bigram & l, llama_sp_bigram & r) {
for (int sub_len = 1; sub_len <= max_len; sub_len++) { return (l.score < r.score) || (l.score == r.score && l.left > r.left);
auto sub = text.substr(i, sub_len);
auto token = vocab.token_to_id.find(sub);
if (token != vocab.token_to_id.end()) {
int token_score = sub.length() * sub.length();
int local_score = score[i] + token_score;
int next = i + sub_len;
if (score[next] < local_score) {
score[next] = local_score;
prev[next] = (*token).second;
} }
};
using queue_storage = std::vector<llama_sp_bigram>;
using queue = std::priority_queue<llama_sp_bigram, queue_storage, comparator>;
llama_sp_symbol::index left;
llama_sp_symbol::index right;
float score;
size_t size;
};
struct llama_tokenizer {
llama_tokenizer(const gpt_vocab & vocab): vocab_(vocab) {}
void tokenize(std::string_view text, std::vector<gpt_vocab::id> & output) {
// split string into utf8 chars
int index = 0;
while (!text.empty()) {
llama_sp_symbol sym;
size_t char_len = std::min(text.size(), utf8_len(text.data()[0]));
sym.text = std::string_view(text.data(), char_len);
sym.prev = index - 1;
text.remove_prefix(char_len);
sym.next = text.empty() ? -1 : index + 1;
index++;
symbols_.emplace_back(std::move(sym));
}
// seed the work queue with all possible 2-character tokens.
for (size_t i = 1; i < symbols_.size(); ++i) {
try_add_bigram(i - 1, i);
}
// keep substituting the highest frequency pairs for as long as we can.
while (!work_queue_.empty()) {
auto bigram = work_queue_.top();
work_queue_.pop();
auto & left_sym = symbols_[bigram.left];
auto & right_sym = symbols_[bigram.right];
// if one of the symbols already got merged, skip it.
if (left_sym.text.empty() || right_sym.text.empty() ||
left_sym.text.size() + right_sym.text.size() != bigram.size) {
continue;
}
// merge the right sym into the left one
left_sym.text = std::string_view(left_sym.text.data(), left_sym.text.size() + right_sym.text.size());
right_sym.text = std::string_view("");
// remove the right sym from the chain
left_sym.next = right_sym.next;
if (right_sym.next >= 0) {
symbols_[right_sym.next].prev = bigram.left;
}
// find more substitutions
try_add_bigram(left_sym.prev, bigram.left);
try_add_bigram(bigram.left, left_sym.next);
}
for (int i = 0; i != -1; i = symbols_[i].next) {
auto& symbol = symbols_[i];
auto token = vocab_.token_to_id.find(std::string(symbol.text));
if (token == vocab_.token_to_id.end()) {
// output any symbols that did not form tokens as bytes.
for (int j = 0; j < symbol.text.size(); ++j) {
gpt_vocab::id token_id = static_cast<uint8_t>(symbol.text[j]) + 3;
output.push_back(token_id);
}
} else {
output.push_back((*token).second);
} }
} }
} }
// Backward pass private:
int i = len; void try_add_bigram(int left, int right) {
while (i > 0) { if (left == -1 || right == -1) {
gpt_vocab::id token_id = prev[i]; return;
if (token_id == 0) {
// TODO: Return error or something more meaningful
printf("failed to tokenize string!\n");
break;
} }
res.push_back(token_id);
auto token = (*vocab.id_to_token.find(token_id)).second; std::string_view text(symbols_[left].text.data(), symbols_[left].text.size() + symbols_[right].text.size());
i -= token.length(); auto token = vocab_.token_to_id.find(std::string(text));
if (token == vocab_.token_to_id.end()) {
return;
}
auto score = vocab_.score.find((*token).second);
if (score == vocab_.score.end()) {
return;
}
llama_sp_bigram bigram;
bigram.left = left;
bigram.right = right;
bigram.score = (*score).second;
bigram.size = text.size();
work_queue_.push(bigram);
}
const gpt_vocab & vocab_;
std::vector<llama_sp_symbol> symbols_;
llama_sp_bigram::queue work_queue_;
};
std::vector<gpt_vocab::id> llama_tokenize(const gpt_vocab & vocab, std::string_view text, bool bos) {
llama_tokenizer tokenizer(vocab);
std::vector<gpt_vocab::id> output;
if (text.size() == 0) {
return output;
} }
if (bos) { if (bos) {
res.push_back(1); // TODO: replace with vocab.bos output.push_back(1);
} }
// Pieces are in reverse order so correct that tokenizer.tokenize(text, output);
std::reverse(res.begin(), res.end()); return output;
return res;
} }
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab) { bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab) {

View File

@ -58,6 +58,7 @@ struct gpt_vocab {
std::map<token, id> token_to_id; std::map<token, id> token_to_id;
std::map<id, token> id_to_token; std::map<id, token> id_to_token;
std::map<id, float> score;
}; };
void replace(std::string & str, const std::string & needle, const std::string & replacement); void replace(std::string & str, const std::string & needle, const std::string & replacement);
@ -79,7 +80,7 @@ std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::stri
// TODO: this is probably wrong, but I cannot figure out how this tokenizer works .. // TODO: this is probably wrong, but I cannot figure out how this tokenizer works ..
// ref: https://github.com/google/sentencepiece // ref: https://github.com/google/sentencepiece
std::vector<gpt_vocab::id> llama_tokenize(const gpt_vocab & vocab, const std::string & text, bool bos); std::vector<gpt_vocab::id> llama_tokenize(const gpt_vocab & vocab, std::string_view text, bool bos);
// load the tokens from encoder.json // load the tokens from encoder.json
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab); bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab);