diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index 18337839a..afa034a86 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -1216,6 +1216,8 @@ class LlamaModel(Model): tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) n_head = self.hparams.get("num_attention_heads") n_kv_head = self.hparams.get("num_key_value_heads") + n_experts = self.hparams.get("num_local_experts") + experts = dict() for name, data_torch in self.get_tensors(): # we don't need these if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")): @@ -1236,6 +1238,153 @@ class LlamaModel(Model): data = data.squeeze() + # process the experts separately + if name.find("block_sparse_moe.experts") != -1: + experts[name] = data + if len(experts) >= n_experts: + # merge the experts into a single 3d tensor + for bid in range(block_count): + for wid in range(1, 4): + full = True + for xid in range(n_experts): + ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight" + if ename not in experts: + full = False + break + if not full: + continue + + datas = [] + for xid in range(n_experts): + ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight" + datas.append(experts[ename]) + del experts[ename] + + data = np.stack(datas, axis=0) + data_dtype = data.dtype + + if self.ftype == 0 and data_dtype == np.float16: + data = data.astype(np.float32) + + if self.ftype == 1 and data_dtype == np.float32: + data = data.astype(np.float16) + + merged_name = f"layers.{bid}.feed_forward.experts.w{wid}.weight" + + new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias")) + if new_name is None: + print(f"Can not map tensor {name!r}") + sys.exit() + + print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}") + + self.gguf_writer.add_tensor(new_name, data) + continue + + # map tensor names + new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) + if new_name is None: + print(f"Can not map tensor {name!r}") + sys.exit() + + n_dims = len(data.shape) + data_dtype = data.dtype + + # if f32 desired, convert any float16 to float32 + if self.ftype == 0 and data_dtype == np.float16: + data = data.astype(np.float32) + + # 1d tensors need to be converted to float32 + if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1: + data = data.astype(np.float32) + + # if f16 desired, convert any float32 2-dim weight tensors to float16 + if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: + data = data.astype(np.float16) + + print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") + + self.gguf_writer.add_tensor(new_name, data) + + if len(experts) > 0: + raise ValueError(f"Unprocessed experts: {experts.keys()}") + + +@Model.register("GrokForCausalLM") +class GrokModel(Model): + model_arch = gguf.MODEL_ARCH.GROK + + def set_vocab(self): + self._set_vocab_sentencepiece() + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + def set_gguf_parameters(self): + super().set_gguf_parameters() + self.gguf_writer.add_name("Grok") + + def write_tensors(self): + block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer"))) + tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) + n_experts = self.hparams.get("num_local_experts") + experts = dict() + for name, data_torch in self.get_tensors(): + # we don't need these + if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")): + continue + + old_dtype = data_torch.dtype + + # convert any unsupported data types to float32 + if data_torch.dtype not in (torch.float16, torch.float32): + data_torch = data_torch.to(torch.float32) + + data = data_torch.squeeze().numpy() + + # process the experts separately + if name.find(".moe.") != -1: + experts[name] = data + if len(experts) >= n_experts: + # merge the experts into a single 3d tensor + for bid in range(block_count): + for wid in ["linear", "linear_1", "linear_v"]: + full = True + for xid in range(n_experts): + ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight" + if ename not in experts: + full = False + break + if not full: + continue + + datas = [] + for xid in range(n_experts): + ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight" + datas.append(experts[ename]) + del experts[ename] + + data = np.stack(datas, axis=0) + data_dtype = data.dtype + + if self.ftype == 0 and data_dtype == np.float16: + data = data.astype(np.float32) + + if self.ftype == 1 and data_dtype == np.float32: + data = data.astype(np.float16) + + merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight" + + new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias")) + if new_name is None: + print(f"Can not map tensor {name!r}") + sys.exit() + + print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}") + + self.gguf_writer.add_tensor(new_name, data) + continue + # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: @@ -1262,21 +1411,6 @@ class LlamaModel(Model): self.gguf_writer.add_tensor(new_name, data) -@Model.register("GrokForCausalLM") -class GrokModel(Model): - model_arch = gguf.MODEL_ARCH.GROK - - def set_vocab(self): - self._set_vocab_sentencepiece() - - def __init__(self, *args, **kwargs): - super().__init__(*args, **kwargs) - - def set_gguf_parameters(self): - super().set_gguf_parameters() - self.gguf_writer.add_name("Grok") - - @Model.register("MiniCPMForCausalLM") class MiniCPMModel(Model): model_arch = gguf.MODEL_ARCH.MINICPM diff --git a/convert.py b/convert.py index d3a9ccaf2..244eb7582 100755 --- a/convert.py +++ b/convert.py @@ -828,6 +828,15 @@ def part_lazy(lazy_tensor: LazyTensor, n_part: int) -> LazyTensor: return LazyTensor(load, s, lazy_tensor.data_type, 'part ' + lazy_tensor.description) +def pack_experts_lazy(lazy_tensors: list[LazyTensor]) -> LazyTensor: + def load() -> Tensor: + tensors = [lazy_tensor.load() for lazy_tensor in lazy_tensors] + return UnquantizedTensor(np.array([tensor.ndarray for tensor in tensors])) + s = lazy_tensors[0].shape.copy() + s.insert(0, len(lazy_tensors)) + return LazyTensor(load, s, lazy_tensors[0].data_type, 'pack_experts ' + ' | '.join(lt.description for lt in lazy_tensors)) + + # Functionality that simulates `torch.load` but where individual tensors are # only loaded into memory on demand, not all at once. # PyTorch can't do this natively as of time of writing: @@ -1246,6 +1255,22 @@ def convert_model_names(model: LazyModel, params: Params, skip_unknown: bool) -> tmp = model + # merge experts into one tensor + if params.n_experts and params.n_experts > 0: + for i_l in range(params.n_layer): + for w in range(1, 4): + experts = [] + for e in range(params.n_experts): + if f"layers.{i_l}.feed_forward.experts.{e}.w{w}.weight" in model: + experts.append(model[f"layers.{i_l}.feed_forward.experts.{e}.w{w}.weight"]) + del tmp[f"layers.{i_l}.feed_forward.experts.{e}.w{w}.weight"] + elif f"model.layers.{i_l}.block_sparse_moe.experts.{e}.w{w}.weight" in model: + experts.append(model[f"model.layers.{i_l}.block_sparse_moe.experts.{e}.w{w}.weight"]) + del tmp[f"model.layers.{i_l}.block_sparse_moe.experts.{e}.w{w}.weight"] + else: + raise ValueError(f"Expert tensor not found: layers.{i_l}.feed_forward.experts.{e}.w{w}.weight") + tmp[f"layers.{i_l}.feed_forward.experts.w{w}.weight"] = pack_experts_lazy(experts) + # HF models permut or pack some of the tensors, so we need to undo that for i in itertools.count(): if f"model.layers.{i}.self_attn.q_proj.weight" in model: diff --git a/examples/imatrix/imatrix.cpp b/examples/imatrix/imatrix.cpp index 12d34462b..d8cb0a642 100644 --- a/examples/imatrix/imatrix.cpp +++ b/examples/imatrix/imatrix.cpp @@ -98,35 +98,38 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * const float * data = is_host ? (const float *) src1->data : m_src1_data.data(); + // this has been adapted to the new format of storing merged experts in a single 3d tensor + // ref: https://github.com/ggerganov/llama.cpp/pull/6387 if (t->op == GGML_OP_MUL_MAT_ID) { const int idx = ((int32_t *) t->op_params)[0]; - const int n_as = ((int32_t *) t->op_params)[1]; + const ggml_tensor * ids = t->src[2]; + const int n_as = src0->ne[2]; - // the top-k selected expert ids are stored in the src0 tensor - // for simplicity, always copy src0 to host, because it is small - // take into account that src0 is not contiguous! - GGML_ASSERT(src0->ne[1] == src1->ne[1]); - GGML_ASSERT(n_as*ggml_nrows(src0)*sizeof(int) == GGML_PAD(ggml_nbytes(src0), n_as*sizeof(int))); - m_ids.resize(ggml_nbytes(src0)/sizeof(int)); - ggml_backend_tensor_get(src0, m_ids.data(), 0, ggml_nbytes(src0)); + // the top-k selected expert ids are stored in the ids tensor + // for simplicity, always copy ids to host, because it is small + // take into account that ids is not contiguous! + GGML_ASSERT(ids->ne[1] == src1->ne[1]); + GGML_ASSERT(n_as*ggml_nrows(ids)*sizeof(int) == GGML_PAD(ggml_nbytes(ids), n_as*sizeof(int))); + m_ids.resize(ggml_nbytes(ids)/sizeof(int)); + ggml_backend_tensor_get(ids, m_ids.data(), 0, ggml_nbytes(ids)); + + auto & e = m_stats[wname]; + + ++e.ncall; + // NOTE: since we select top-k experts, the number of calls for the expert tensors will be k times larger + // using the following line, we can correct for that if needed by replacing the line above with: + //if (idx == t->src[0]->ne[0] - 1) ++e.ncall; // loop over all possible experts, regardless if they are used or not in the batch - // this is necessary to guarantee equal number of "ncall" for each tensor for (int ex = 0; ex < n_as; ++ex) { - src0 = t->src[2 + ex]; - wname = filter_tensor_name(src0->name); - auto& e = m_stats[wname]; + size_t e_start = ex*src1->ne[0]; if (e.values.empty()) { - e.values.resize(src1->ne[0], 0); + e.values.resize(src1->ne[0]*n_as, 0); } - else if (e.values.size() != (size_t)src1->ne[0]) { - fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]); + else if (e.values.size() != (size_t)src1->ne[0]*n_as) { + fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]*n_as); exit(1); //GGML_ASSERT(false); } - // NOTE: since we select top-k experts, the number of calls for the expert tensors will be k times larger - // using the following line, we can correct for that if needed - //if (idx == t->src[0]->ne[0] - 1) ++e.ncall; - ++e.ncall; if (m_params.verbosity > 1) { printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type); } @@ -136,7 +139,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * if (excur != ex) continue; const float * x = data + row * src1->ne[0]; for (int j = 0; j < (int)src1->ne[0]; ++j) { - e.values[j] += x[j]*x[j]; + e.values[e_start + j] += x[j]*x[j]; } } if (e.ncall > m_last_call) { diff --git a/examples/quantize/quantize.cpp b/examples/quantize/quantize.cpp index 80c493f1f..64cb6db19 100644 --- a/examples/quantize/quantize.cpp +++ b/examples/quantize/quantize.cpp @@ -116,13 +116,13 @@ static void load_imatrix(const std::string & imatrix_file, std::unordered_map 0) { for (auto& v : e) v /= ncall; } + + if (getenv("LLAMA_TRACE")) { + printf("%s: loaded data (size = %6d, ncall = %6d) for '%s'\n", __func__, int(e.size()), ncall, name.c_str()); + } } printf("%s: loaded %d importance matrix entries from %s\n", __func__, int(imatrix_data.size()), imatrix_file.c_str()); } diff --git a/ggml-cuda.cu b/ggml-cuda.cu index be8e33a56..f51b2042d 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -401,10 +401,8 @@ GGML_CALL static void * ggml_backend_cuda_buffer_get_base(ggml_backend_buffer_t GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) { ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; - if (tensor->view_src != NULL && tensor->view_offs == 0) { + if (tensor->view_src != NULL) { assert(tensor->view_src->buffer->buft == buffer->buft); - tensor->backend = tensor->view_src->backend; - tensor->extra = tensor->view_src->extra; return; } @@ -1962,227 +1960,49 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor } } -#if 0 -template -static __global__ void k_compute_batched_ptrs_id( - const void ** ptrs_src, void ** ptrs_dst, - int ne12, int ne13, - int ne23, - int nb02, int nb03, - int nb12, int nb13, - int nb2, int nb3, - int r2, int r3, - ggml_type src0_type, half * src0_as_f16, int64_t src0_ne, - const half * src1_f16, half * dst_f16, - const int32_t * ids, const int id, - Srcs... src0s) { - - int i = ids[id]; - - half * src0_f16; - const void * srcs_ar[] = { (const half *) src0s... }; - if (src0_type == GGML_TYPE_F16) { - src0_f16 = (half *) srcs_ar[i]; - } else { - src0_f16 = src0_as_f16; - if (threadIdx.x == 0 && threadIdx.y == 0) { - const to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(src0_type); - to_fp16(srcs_ar[i], src0_f16, src0_ne, cudaStreamFireAndForget); - } - } - - int i13 = blockIdx.x * blockDim.x + threadIdx.x; - int i12 = blockIdx.y * blockDim.y + threadIdx.y; - - if (i13 >= ne13 || i12 >= ne12) { - return; - } - - int i03 = i13 / r3; - int i02 = i12 / r2; - - ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_f16 + i02*nb02 + i03*nb03; - ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_f16 + i12*nb12/2 + i13*nb13/2; - ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst_f16 + i12* nb2/2 + i13* nb3/2; -} - -static void ggml_cuda_mul_mat_id_cublas(ggml_tensor * dst) { - const struct ggml_tensor * ids = dst->src[0]; - const struct ggml_tensor * src1 = dst->src[1]; - const struct ggml_tensor * src00 = dst->src[2]; - - const int id = dst->op_params[0]; - - GGML_ASSERT(!ggml_is_transposed(src00)); - GGML_ASSERT(!ggml_is_transposed(src1)); - - GGML_ASSERT(src00->backend != GGML_BACKEND_TYPE_GPU_SPLIT); - GGML_ASSERT(src1->type == GGML_TYPE_F32); - - const int64_t ne00 = src00->ne[0]; GGML_UNUSED(ne00); - const int64_t ne01 = src00->ne[1]; - const int64_t ne02 = src00->ne[2]; - const int64_t ne03 = src00->ne[3]; - - //const int64_t nb01 = src00->nb[1]; - const int64_t nb02 = src00->nb[2]; GGML_UNUSED(nb02); - const int64_t nb03 = src00->nb[3]; GGML_UNUSED(nb03); - - const int64_t ne10 = src1->ne[0]; - const int64_t ne11 = src1->ne[1]; - const int64_t ne12 = src1->ne[2]; - const int64_t ne13 = src1->ne[3]; - - //const int64_t nb11 = src1->nb[1]; - const int64_t nb12 = src1->nb[2]; GGML_UNUSED(nb12); - const int64_t nb13 = src1->nb[3]; GGML_UNUSED(nb13); - - const int64_t ne1 = ggml_nelements(src1); - const int64_t ne = ggml_nelements(dst); - - ggml_cuda_set_device(g_main_device); - cudaStream_t main_stream = g_cudaStreams[g_main_device][0]; - - CUBLAS_CHECK(cublasSetStream(g_cublas_handles[g_main_device], main_stream)); - - //ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; - //void * src0_ddq = src0_extra->data_device[g_main_device]; - //half * src0_as_f16 = (half *) src0_ddq; - - ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra; - float * src1_ddf = (float *) src1_extra->data_device[g_main_device]; - - ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; - float * dst_ddf = (float *) dst_extra->data_device[g_main_device]; - - // convert src1 to fp16 - const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type); - GGML_ASSERT(to_fp16_cuda != nullptr); - - size_t src1_as = 0; - half * src1_as_f16 = (half *) ggml_cuda_pool_malloc(ne1 * sizeof(half), &src1_as); - to_fp16_cuda(src1_ddf, src1_as_f16, ne1, main_stream); - - size_t dst_as = 0; - half * dst_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &dst_as); - - GGML_ASSERT(ne12 % ne02 == 0); - GGML_ASSERT(ne13 % ne03 == 0); - - // broadcast factors - const int64_t r2 = ne12/ne02; - const int64_t r3 = ne13/ne03; - - const half alpha_f16 = 1.0f; - const half beta_f16 = 0.0f; - - // use cublasGemmBatchedEx - const int ne23 = ne12*ne13; - - const void ** ptrs_src = nullptr; - void ** ptrs_dst = nullptr; - - size_t ptrs_src_s = 0; - size_t ptrs_dst_s = 0; - - ptrs_src = (const void **) ggml_cuda_pool_malloc(2*ne23*sizeof(void *), &ptrs_src_s); - ptrs_dst = ( void **) ggml_cuda_pool_malloc(1*ne23*sizeof(void *), &ptrs_dst_s); - - int64_t src0_ne = ggml_nelements(src00); - half * src0_as_f16 = nullptr; - size_t src0_as = 0; - if (src00->type != GGML_TYPE_F16) { - src0_as_f16 = (half *) ggml_cuda_pool_malloc(src0_ne * sizeof(half), &src0_as); - } - - static_assert(GGML_MAX_SRC == 6, "GGML_MAX_SRC == 6"); - dim3 block_dims(ne13, ne12); - k_compute_batched_ptrs_id<<<1, block_dims, 0, main_stream>>>( - ptrs_src, ptrs_dst, - ne12, ne13, - ne23, - ne00*ne01*sizeof(half), ne00*ne01*ne02*sizeof(half), - nb12, nb13, - dst->nb[2], dst->nb[3], - r2, r3, - src00->type, src0_as_f16, src0_ne, - src1_as_f16, dst_f16, - (const int *)((ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device], id, - dst->src[2] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[2]->extra)->data_device[g_main_device] : nullptr, - dst->src[3] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[3]->extra)->data_device[g_main_device] : nullptr, - dst->src[4] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[4]->extra)->data_device[g_main_device] : nullptr, - dst->src[5] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[5]->extra)->data_device[g_main_device] : nullptr - ); - CUDA_CHECK(cudaGetLastError()); - - CUBLAS_CHECK( - cublasGemmBatchedEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N, - ne01, ne11, ne10, - &alpha_f16, (const void **) (ptrs_src + 0*ne23), CUDA_R_16F, ne00, - (const void **) (ptrs_src + 1*ne23), CUDA_R_16F, ne10, - &beta_f16, ( void **) (ptrs_dst + 0*ne23), CUDA_R_16F, ne01, - ne23, - CUBLAS_COMPUTE_16F, - CUBLAS_GEMM_DEFAULT_TENSOR_OP)); - - if (src0_as != 0) { - ggml_cuda_pool_free(src0_as_f16, src0_as); - } - if (ptrs_src_s != 0) { - ggml_cuda_pool_free(ptrs_src, ptrs_src_s); - } - if (ptrs_dst_s != 0) { - ggml_cuda_pool_free(ptrs_dst, ptrs_dst_s); - } - - const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16); - to_fp32_cuda(dst_f16, dst_ddf, ne, main_stream); - - ggml_cuda_pool_free(src1_as_f16, src1_as); - ggml_cuda_pool_free(dst_f16, dst_as); -} -#endif - static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { -#if 0 - ggml_cuda_mul_mat_id_cublas(dst); - // TODO: mmq/mmv support -#endif const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; + const ggml_tensor * ids = dst->src[2]; + + GGML_ASSERT(!ggml_backend_buffer_is_cuda_split(src0->buffer) && "mul_mat_id does not support split buffers"); cudaStream_t stream = ctx.stream(); const size_t nb11 = src1->nb[1]; const size_t nb1 = dst->nb[1]; - const struct ggml_tensor * ids = src0; const int32_t id = ((int32_t *) dst->op_params)[0]; - const int32_t n_as = ((int32_t *) dst->op_params)[1]; + const int32_t n_as = src0->ne[2]; std::vector ids_host(ggml_nbytes(ids)); const char * ids_dev = (const char *) ids->data; CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream)); CUDA_CHECK(cudaStreamSynchronize(stream)); + ggml_tensor src0_row = *src0; ggml_tensor src1_row = *src1; ggml_tensor dst_row = *dst; + char * src0_original = (char *) src0->data; char * src1_original = (char *) src1->data; char * dst_original = (char *) dst->data; + src0_row.ne[2] = 1; + src0_row.ne[3] = 1; + src0_row.nb[3] = src0->nb[2]; + if (src1->ne[1] == 1) { for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) { const int32_t row_id = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]); GGML_ASSERT(row_id >= 0 && row_id < n_as); - const struct ggml_tensor * src0_row = dst->src[row_id + 2]; - + src0_row.data = src0_original + row_id*src0->nb[2]; src1_row.data = src1_original + i01*src1->nb[1]; dst_row.data = dst_original + i01*dst->nb[1]; - ggml_cuda_mul_mat(ctx, src0_row, &src1_row, &dst_row); + ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row); } } else { ggml_cuda_pool_alloc src1_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(src1)); @@ -2192,8 +2012,6 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor * dst_row.data = dst_contiguous.get(); for (int32_t row_id = 0; row_id < n_as; ++row_id) { - const struct ggml_tensor * src0_row = dst->src[row_id + 2]; - int64_t num_src1_rows = 0; for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) { const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]); @@ -2213,6 +2031,8 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor * continue; } + src0_row.data = src0_original + row_id*src0->nb[2]; + src1_row.ne[1] = num_src1_rows; dst_row.ne[1] = num_src1_rows; @@ -2224,7 +2044,7 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor * dst_row.nb[2] = num_src1_rows*nb1; dst_row.nb[3] = num_src1_rows*nb1; - ggml_cuda_mul_mat(ctx, src0_row, &src1_row, &dst_row); + ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row); num_src1_rows = 0; for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) { @@ -2389,7 +2209,7 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg cudaError_t err = cudaGetLastError(); if (err != cudaSuccess) { fprintf(stderr, "%s: %s failed\n", __func__, ggml_op_desc(dst)); - GGML_ASSERT(false); + CUDA_CHECK(err); } return true; diff --git a/ggml-cuda/argsort.cu b/ggml-cuda/argsort.cu index 1333287e4..164144061 100644 --- a/ggml-cuda/argsort.cu +++ b/ggml-cuda/argsort.cu @@ -8,32 +8,41 @@ static inline __device__ void ggml_cuda_swap(T & a, T & b) { } template -static __global__ void k_argsort_f32_i32(const float * x, int * dst, const int ncols) { +static __global__ void k_argsort_f32_i32(const float * x, int * dst, const int ncols, int ncols_pad) { // bitonic sort int col = threadIdx.x; int row = blockIdx.y; - if (col >= ncols) return; + if (col >= ncols_pad) { + return; + } const float * x_row = x + row * ncols; - int * dst_row = dst + row * ncols; + extern __shared__ int dst_row[]; // initialize indices - if (col < ncols) { - dst_row[col] = col; - } + dst_row[col] = col; + __syncthreads(); - for (int k = 2; k <= ncols; k *= 2) { + for (int k = 2; k <= ncols_pad; k *= 2) { for (int j = k / 2; j > 0; j /= 2) { int ixj = col ^ j; if (ixj > col) { if ((col & k) == 0) { - if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) { + if (dst_row[col] >= ncols || + (dst_row[ixj] < ncols && (order == GGML_SORT_ORDER_ASC ? + x_row[dst_row[col]] > x_row[dst_row[ixj]] : + x_row[dst_row[col]] < x_row[dst_row[ixj]])) + ) { ggml_cuda_swap(dst_row[col], dst_row[ixj]); } } else { - if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) { + if (dst_row[ixj] >= ncols || + (dst_row[col] < ncols && (order == GGML_SORT_ORDER_ASC ? + x_row[dst_row[col]] < x_row[dst_row[ixj]] : + x_row[dst_row[col]] > x_row[dst_row[ixj]])) + ) { ggml_cuda_swap(dst_row[col], dst_row[ixj]); } } @@ -41,18 +50,35 @@ static __global__ void k_argsort_f32_i32(const float * x, int * dst, const int n __syncthreads(); } } + + // copy the result to dst without the padding + if (col < ncols) { + dst[row * ncols + col] = dst_row[col]; + } +} + +static int next_power_of_2(int x) { + int n = 1; + while (n < x) { + n *= 2; + } + return n; } static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, const int nrows, ggml_sort_order order, cudaStream_t stream) { // bitonic sort requires ncols to be power of 2 - GGML_ASSERT((ncols & (ncols - 1)) == 0); + const int ncols_pad = next_power_of_2(ncols); - const dim3 block_dims(ncols, 1, 1); + const dim3 block_dims(ncols_pad, 1, 1); const dim3 block_nums(1, nrows, 1); + const size_t shared_mem = ncols_pad * sizeof(int); + + GGML_ASSERT(shared_mem <= ggml_cuda_info().devices[ggml_cuda_get_device()].smpb); + if (order == GGML_SORT_ORDER_ASC) { - k_argsort_f32_i32<<>>(x, dst, ncols); + k_argsort_f32_i32<<>>(x, dst, ncols, ncols_pad); } else if (order == GGML_SORT_ORDER_DESC) { - k_argsort_f32_i32<<>>(x, dst, ncols); + k_argsort_f32_i32<<>>(x, dst, ncols, ncols_pad); } else { GGML_ASSERT(false); } diff --git a/ggml-metal.m b/ggml-metal.m index a08abbc29..419d8b9e5 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -1685,37 +1685,31 @@ static enum ggml_status ggml_metal_graph_compute( { //GGML_ASSERT(ne00 == ne10); //GGML_ASSERT(ne03 == ne13); - - GGML_ASSERT(src0t == GGML_TYPE_I32); - - const int n_as = ((int32_t *) dst->op_params)[1]; - - // TODO: make this more general - GGML_ASSERT(n_as <= 8); + const int n_as = src0->ne[2]; // max size of the src1ids array in the kernel shared buffer GGML_ASSERT(ne11 <= 4096); - const int64_t ne20 = src2 ? src2->ne[0] : 0; - const int64_t ne21 = src2 ? src2->ne[1] : 0; - const int64_t ne22 = src2 ? src2->ne[2] : 0; - const int64_t ne23 = src2 ? src2->ne[3] : 0; GGML_UNUSED(ne23); + // src2 = ids + const int64_t ne20 = src2->ne[0]; GGML_UNUSED(ne20); + const int64_t ne21 = src2->ne[1]; + const int64_t ne22 = src2->ne[2]; GGML_UNUSED(ne22); + const int64_t ne23 = src2->ne[3]; GGML_UNUSED(ne23); - const uint64_t nb20 = src2 ? src2->nb[0] : 0; GGML_UNUSED(nb20); - const uint64_t nb21 = src2 ? src2->nb[1] : 0; - const uint64_t nb22 = src2 ? src2->nb[2] : 0; - const uint64_t nb23 = src2 ? src2->nb[3] : 0; GGML_UNUSED(nb23); + const uint64_t nb20 = src2->nb[0]; GGML_UNUSED(nb20); + const uint64_t nb21 = src2->nb[1]; + const uint64_t nb22 = src2->nb[2]; GGML_UNUSED(nb22); + const uint64_t nb23 = src2->nb[3]; GGML_UNUSED(nb23); - const enum ggml_type src2t = src2 ? src2->type : GGML_TYPE_COUNT; GGML_UNUSED(src2t); + const enum ggml_type src2t = src2->type; GGML_UNUSED(src2t); - GGML_ASSERT(!ggml_is_transposed(src2)); + GGML_ASSERT(src2t == GGML_TYPE_I32); + + GGML_ASSERT(!ggml_is_transposed(src0)); GGML_ASSERT(!ggml_is_transposed(src1)); GGML_ASSERT(src1t == GGML_TYPE_F32); - const uint r2 = ne12/ne22; - const uint r3 = ne13/ne23; - // find the break-even point where the matrix-matrix kernel becomes more efficient compared // to the matrix-vector kernel int ne11_mm_min = n_as; @@ -1723,7 +1717,10 @@ static enum ggml_status ggml_metal_graph_compute( const int idx = ((int32_t *) dst->op_params)[0]; // batch size - GGML_ASSERT(ne01 == ne11); + GGML_ASSERT(ne21 == ne11); // ? + GGML_ASSERT(ne12 == 1 && ne13 == 1); // no broadcasting + const uint r2 = 1; + const uint r3 = 1; // for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs // AMD GPU and older A-chips will reuse matrix-vector multiplication kernel @@ -1732,7 +1729,7 @@ static enum ggml_status ggml_metal_graph_compute( // indirect matrix multiplication // !!! if ([ctx->device supportsFamily:MTLGPUFamilyApple7] && - ne20 % 32 == 0 && ne20 >= 64 && + ne00 % 32 == 0 && ne00 >= 64 && ne11 > ne11_mm_min) { // some Metal matrix data types require aligned pointers @@ -1745,7 +1742,7 @@ static enum ggml_status ggml_metal_graph_compute( id pipeline = nil; - switch (src2->type) { + switch (src0->type) { case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32 ].pipeline; break; case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32 ].pipeline; break; case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32 ].pipeline; break; @@ -1774,36 +1771,27 @@ static enum ggml_status ggml_metal_graph_compute( [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; - [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:3]; - [encoder setBytes:&ne20 length:sizeof(ne20) atIndex:4]; - [encoder setBytes:&ne22 length:sizeof(ne22) atIndex:5]; - [encoder setBytes:&nb21 length:sizeof(nb21) atIndex:6]; - [encoder setBytes:&nb22 length:sizeof(nb22) atIndex:7]; - [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:8]; - [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:9]; - [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:10]; - [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:11]; - [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:12]; - [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:13]; - [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:14]; - [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15]; - [encoder setBytes:&r2 length:sizeof(r2) atIndex:16]; - [encoder setBytes:&r3 length:sizeof(r3) atIndex:17]; - [encoder setBytes:&idx length:sizeof(idx) atIndex:18]; - // TODO: how to make this an array? read Metal docs - for (int j = 0; j < 8; ++j) { - // NOTE: this is done like this to avoid uninitialized kernel arguments when n_as < 8 - struct ggml_tensor * src_cur = dst->src[2 + (j % n_as)]; - - size_t offs_src_cur = 0; - id id_src_cur = ggml_metal_get_buffer(src_cur, &offs_src_cur); - - [encoder setBuffer:id_src_cur offset:offs_src_cur atIndex:19 + j]; - } + [encoder setBuffer:id_src2 offset:offs_src2 atIndex:3]; + [encoder setBytes:&nb21 length:sizeof(nb21) atIndex:4]; + [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:5]; + [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:6]; + [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7]; + [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8]; + [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:9]; + [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:10]; + [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:11]; + [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:12]; + [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:13]; + [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:14]; + [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:15]; + [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:16]; + [encoder setBytes:&r2 length:sizeof(r2) atIndex:17]; + [encoder setBytes:&r3 length:sizeof(r3) atIndex:18]; + [encoder setBytes:&idx length:sizeof(idx) atIndex:19]; [encoder setThreadgroupMemoryLength:GGML_PAD(8192 + 2*ne11, 16) atIndex:0]; - [encoder dispatchThreadgroups:MTLSizeMake((ne11 + 31)/32, (ne21 + 63)/64, n_as*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)]; + [encoder dispatchThreadgroups:MTLSizeMake((ne11 + 31)/32, (ne01 + 63)/64, n_as*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)]; } else { int nth0 = 32; int nth1 = 1; @@ -1813,7 +1801,7 @@ static enum ggml_status ggml_metal_graph_compute( id pipeline = nil; // use custom matrix x vector kernel - switch (src2t) { + switch (src0t) { case GGML_TYPE_F32: { GGML_ASSERT(src1t == GGML_TYPE_F32); @@ -1947,8 +1935,8 @@ static enum ggml_status ggml_metal_graph_compute( } }; - if (ggml_is_quantized(src2t)) { - GGML_ASSERT(ne20 >= nth0*nth1); + if (ggml_is_quantized(src0t)) { + GGML_ASSERT(ne00 >= nth0*nth1); } const int64_t _ne1 = 1; // kernels needs a reference in constant memory @@ -1957,75 +1945,66 @@ static enum ggml_status ggml_metal_graph_compute( [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; - [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:3]; - [encoder setBytes:&ne20 length:sizeof(ne20) atIndex:4]; - [encoder setBytes:&ne21 length:sizeof(ne21) atIndex:5]; - [encoder setBytes:&ne22 length:sizeof(ne22) atIndex:6]; - [encoder setBytes:&nb20 length:sizeof(nb20) atIndex:7]; - [encoder setBytes:&nb21 length:sizeof(nb21) atIndex:8]; - [encoder setBytes:&nb22 length:sizeof(nb22) atIndex:9]; - [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:10]; - [encoder setBytes:&_ne1 length:sizeof(_ne1) atIndex:11]; - [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:12]; - [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:13]; - [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:14]; - [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:15]; - [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:16]; - [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:17]; - [encoder setBytes:&_ne1 length:sizeof(_ne1) atIndex:18]; - [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:19]; - [encoder setBytes:&r2 length:sizeof(r2) atIndex:20]; - [encoder setBytes:&r3 length:sizeof(r3) atIndex:21]; - [encoder setBytes:&idx length:sizeof(idx) atIndex:22]; - // TODO: how to make this an array? read Metal docs - for (int j = 0; j < 8; ++j) { - // NOTE: this is done like this to avoid uninitialized kernel arguments when n_as < 8 - struct ggml_tensor * src_cur = dst->src[2 + (j % n_as)]; + [encoder setBuffer:id_src2 offset:offs_src2 atIndex:3]; + [encoder setBytes:&nb21 length:sizeof(nb21) atIndex:4]; + [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:5]; + [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:6]; + [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:7]; + [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:8]; + [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:9]; + [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:10]; + [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11]; + [encoder setBytes:&_ne1 length:sizeof(_ne1) atIndex:12]; + [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13]; + [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14]; + [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15]; + [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16]; + [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17]; + [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:18]; + [encoder setBytes:&_ne1 length:sizeof(_ne1) atIndex:19]; + [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:20]; + [encoder setBytes:&r2 length:sizeof(r2) atIndex:21]; + [encoder setBytes:&r3 length:sizeof(r3) atIndex:22]; + [encoder setBytes:&idx length:sizeof(idx) atIndex:23]; - size_t offs_src_cur = 0; - id id_src_cur = ggml_metal_get_buffer(src_cur, &offs_src_cur); - - [encoder setBuffer:id_src_cur offset:offs_src_cur atIndex:23 + j]; + if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || src0t == GGML_TYPE_Q5_0 || + src0t == GGML_TYPE_Q5_1 || src0t == GGML_TYPE_Q8_0 || src0t == GGML_TYPE_Q2_K || + src0t == GGML_TYPE_IQ1_S || src0t == GGML_TYPE_IQ1_M || src0t == GGML_TYPE_IQ2_S) { + [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, _ne1, ne21*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } - - if (src2t == GGML_TYPE_Q4_0 || src2t == GGML_TYPE_Q4_1 || src2t == GGML_TYPE_Q5_0 || - src2t == GGML_TYPE_Q5_1 || src2t == GGML_TYPE_Q8_0 || src2t == GGML_TYPE_Q2_K || - src2t == GGML_TYPE_IQ1_S || src2t == GGML_TYPE_IQ1_M || src2t == GGML_TYPE_IQ2_S) { - [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 7)/8, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; - } - else if (src2t == GGML_TYPE_IQ2_XXS || src2t == GGML_TYPE_IQ2_XS) { - const int mem_size = src2t == GGML_TYPE_IQ2_XXS ? 256*8+128 : 512*8+128; + else if (src0t == GGML_TYPE_IQ2_XXS || src0t == GGML_TYPE_IQ2_XS) { + const int mem_size = src0t == GGML_TYPE_IQ2_XXS ? 256*8+128 : 512*8+128; [encoder setThreadgroupMemoryLength:mem_size atIndex:0]; - [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 7)/8, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, _ne1, ne21*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } - else if (src2t == GGML_TYPE_IQ3_XXS || src2t == GGML_TYPE_IQ3_S) { - const int mem_size = src2t == GGML_TYPE_IQ3_XXS ? 256*4+128 : 512*4; + else if (src0t == GGML_TYPE_IQ3_XXS || src0t == GGML_TYPE_IQ3_S) { + const int mem_size = src0t == GGML_TYPE_IQ3_XXS ? 256*4+128 : 512*4; [encoder setThreadgroupMemoryLength:mem_size atIndex:0]; - [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 7)/8, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, _ne1, ne21*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } - else if (src2t == GGML_TYPE_IQ4_NL || src2t == GGML_TYPE_IQ4_XS) { + else if (src0t == GGML_TYPE_IQ4_NL || src0t == GGML_TYPE_IQ4_XS) { const int mem_size = 32*sizeof(float); [encoder setThreadgroupMemoryLength:mem_size atIndex:0]; - [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 3)/4, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, ne21*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } - else if (src2t == GGML_TYPE_Q4_K) { - [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 3)/4, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + else if (src0t == GGML_TYPE_Q4_K) { + [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, ne21*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } - else if (src2t == GGML_TYPE_Q3_K) { + else if (src0t == GGML_TYPE_Q3_K) { #ifdef GGML_QKK_64 - [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 1)/2, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, _ne1, ne21*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; #else - [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 3)/4, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, ne21*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; #endif } - else if (src2t == GGML_TYPE_Q5_K) { - [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 3)/4, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + else if (src0t == GGML_TYPE_Q5_K) { + [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, ne21*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } - else if (src2t == GGML_TYPE_Q6_K) { - [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 1)/2, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + else if (src0t == GGML_TYPE_Q6_K) { + [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, _ne1, ne21*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } else { const int64_t ny = (_ne1 + nrows - 1)/nrows; - [encoder dispatchThreadgroups:MTLSizeMake(ne21, ny, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + [encoder dispatchThreadgroups:MTLSizeMake(ne01, ny, ne21*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } } } break; @@ -2432,6 +2411,16 @@ static enum ggml_status ggml_metal_graph_compute( enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0]; + // bitonic sort requires the number of elements to be power of 2 + int64_t ne00_padded = 1; + while (ne00_padded < ne00) { + ne00_padded *= 2; + } + + // Metal kernels require the buffer size to be multiple of 16 bytes + // https://developer.apple.com/documentation/metal/mtlcomputecommandencoder/1443142-setthreadgroupmemorylength + const int mem_size = GGML_PAD(ne00_padded*sizeof(int32_t), 16); + id pipeline = nil; switch (order) { @@ -2441,11 +2430,13 @@ static enum ggml_status ggml_metal_graph_compute( }; [encoder setComputePipelineState:pipeline]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; - [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; + [encoder setBytes:&ne00_padded length:sizeof( int64_t) atIndex:3]; + [encoder setThreadgroupMemoryLength:mem_size atIndex:0]; - [encoder dispatchThreadgroups:MTLSizeMake(1, nrows, 1) threadsPerThreadgroup:MTLSizeMake(ne00, 1, 1)]; + [encoder dispatchThreadgroups:MTLSizeMake(1, nrows, 1) threadsPerThreadgroup:MTLSizeMake(ne00_padded, 1, 1)]; } break; case GGML_OP_LEAKY_RELU: { diff --git a/ggml-metal.metal b/ggml-metal.metal index 744b2a8b4..9a29f57a3 100644 --- a/ggml-metal.metal +++ b/ggml-metal.metal @@ -13,8 +13,8 @@ using namespace metal; #define N_SIMDWIDTH 32 // assuming SIMD group size is 32 enum ggml_sort_order { - GGML_SORT_ASC, - GGML_SORT_DESC, + GGML_SORT_ORDER_ASC, + GGML_SORT_ORDER_DESC, }; // general-purpose kernel for addition, multiplication and division of two tensors @@ -1973,9 +1973,11 @@ kernel void kernel_timestep_embedding_f32( // bitonic sort implementation following the CUDA kernels as reference typedef void (argsort_t)( - device const float * x, - device int32_t * dst, - constant int64_t & ncols, + device const float * x, + device int32_t * dst, + constant int64_t & ncols, + constant int64_t & ncols_pad, + threadgroup int32_t * shared_values [[threadgroup(0)]], uint3 tgpig[[threadgroup_position_in_grid]], uint3 tpitg[[thread_position_in_threadgroup]]); @@ -1984,33 +1986,42 @@ kernel void kernel_argsort_f32_i32( device const float * x, device int32_t * dst, constant int64_t & ncols, + constant int64_t & ncols_pad, + threadgroup int32_t * shared_values [[threadgroup(0)]], uint3 tgpig[[threadgroup_position_in_grid]], uint3 tpitg[[thread_position_in_threadgroup]]) { // bitonic sort int col = tpitg[0]; int row = tgpig[1]; - if (col >= ncols) return; + if (col >= ncols_pad) return; - device const float * x_row = x + row * ncols; - device int32_t * dst_row = dst + row * ncols; + device const float * x_row = x + row * ncols; + threadgroup int32_t * dst_row = shared_values; // initialize indices - if (col < ncols) { - dst_row[col] = col; - } + dst_row[col] = col; + threadgroup_barrier(mem_flags::mem_threadgroup); - for (int k = 2; k <= ncols; k *= 2) { + for (int k = 2; k <= ncols_pad; k *= 2) { for (int j = k / 2; j > 0; j /= 2) { int ixj = col ^ j; if (ixj > col) { if ((col & k) == 0) { - if (order == GGML_SORT_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) { + if (dst_row[col] >= ncols || + (dst_row[ixj] < ncols && (order == GGML_SORT_ORDER_ASC ? + x_row[dst_row[col]] > x_row[dst_row[ixj]] : + x_row[dst_row[col]] < x_row[dst_row[ixj]])) + ) { SWAP(dst_row[col], dst_row[ixj]); } } else { - if (order == GGML_SORT_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) { + if (dst_row[ixj] >= ncols || + (dst_row[col] < ncols && (order == GGML_SORT_ORDER_ASC ? + x_row[dst_row[col]] < x_row[dst_row[ixj]] : + x_row[dst_row[col]] > x_row[dst_row[ixj]])) + ) { SWAP(dst_row[col], dst_row[ixj]); } } @@ -2018,10 +2029,15 @@ kernel void kernel_argsort_f32_i32( threadgroup_barrier(mem_flags::mem_threadgroup); } } + + // copy the result to dst without the padding + if (col < ncols) { + dst[row * ncols + col] = dst_row[col]; + } } -template [[host_name("kernel_argsort_f32_i32_asc")]] kernel argsort_t kernel_argsort_f32_i32; -template [[host_name("kernel_argsort_f32_i32_desc")]] kernel argsort_t kernel_argsort_f32_i32; +template [[host_name("kernel_argsort_f32_i32_asc")]] kernel argsort_t kernel_argsort_f32_i32; +template [[host_name("kernel_argsort_f32_i32_desc")]] kernel argsort_t kernel_argsort_f32_i32; kernel void kernel_leaky_relu_f32( device const float * src0, @@ -5785,9 +5801,10 @@ kernel void kernel_mul_mm(device const uchar * src0, template kernel void kernel_mul_mm_id( - device const uchar * ids, + device const uchar * src0s, device const uchar * src1, device float * dst, + device const uchar * ids, constant uint64_t & nbi1, constant int64_t & ne00, constant int64_t & ne02, @@ -5804,22 +5821,14 @@ kernel void kernel_mul_mm_id( constant uint & r2, constant uint & r3, constant int & idx, - device const uchar * src00, - device const uchar * src01, - device const uchar * src02, - device const uchar * src03, - device const uchar * src04, - device const uchar * src05, - device const uchar * src06, - device const uchar * src07, threadgroup uchar * shared_memory [[threadgroup(0)]], uint3 tgpig[[threadgroup_position_in_grid]], uint tiitg[[thread_index_in_threadgroup]], uint sgitg[[simdgroup_index_in_threadgroup]]) { - device const uchar * src0s[8] = {src00, src01, src02, src03, src04, src05, src06, src07}; // expert id const int32_t id = tgpig.z/(ne12*ne13); + device const uchar * src0 = src0s + id*nb02; tgpig.z = tgpig.z%(ne12*ne13); @@ -5834,7 +5843,7 @@ kernel void kernel_mul_mm_id( } kernel_mul_mm_id_impl( - src0s[id], + src0, src1, src1ids, dst, @@ -5960,9 +5969,10 @@ template [[host_name("kernel_mul_mm_iq4_xs_f32")]] kernel mat_mm_t kernel_mul_m // typedef void (mat_mm_id_t)( - device const uchar * ids, + device const uchar * src0s, device const uchar * src1, device float * dst, + device const uchar * ids, constant uint64_t & nbi1, constant int64_t & ne00, constant int64_t & ne02, @@ -5979,14 +5989,6 @@ typedef void (mat_mm_id_t)( constant uint & r2, constant uint & r3, constant int & idx, - device const uchar * src00, - device const uchar * src01, - device const uchar * src02, - device const uchar * src03, - device const uchar * src04, - device const uchar * src05, - device const uchar * src06, - device const uchar * src07, threadgroup uchar *, uint3, uint, uint); @@ -6022,9 +6024,10 @@ template [[host_name("kernel_mul_mm_id_iq4_xs_f32")]] kernel mat_mm_id_t kernel [[host_name("kernel_mul_mv_id_f32_f32")]] kernel void kernel_mul_mv_id_f32_f32( - device const char * ids, + device const char * src0s, device const char * src1, device float * dst, + device const char * ids, constant uint64_t & nbi1, constant int64_t & ne00, constant int64_t & ne01, @@ -6045,28 +6048,19 @@ kernel void kernel_mul_mv_id_f32_f32( constant uint & r2, constant uint & r3, constant int & idx, - device const char * src00, - device const char * src01, - device const char * src02, - device const char * src03, - device const char * src04, - device const char * src05, - device const char * src06, - device const char * src07, uint3 tgpig[[threadgroup_position_in_grid]], uint tiitg[[thread_index_in_threadgroup]], uint tiisg[[thread_index_in_simdgroup]], uint sgitg[[simdgroup_index_in_threadgroup]]) { - device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07}; - const int64_t bid = tgpig.z/(ne12*ne13); tgpig.z = tgpig.z%(ne12*ne13); const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx]; + device const char * src0 = src0s + id*nb02; kernel_mul_mv_f32_f32_impl( - src0[id], + src0, src1 + bid*nb11, dst + bid*ne0, ne00, @@ -6091,9 +6085,10 @@ kernel void kernel_mul_mv_id_f32_f32( [[host_name("kernel_mul_mv_id_f16_f32")]] kernel void kernel_mul_mv_id_f16_f32( - device const char * ids, + device const char * src0s, device const char * src1, device float * dst, + device const char * ids, constant uint64_t & nbi1, constant int64_t & ne00, constant int64_t & ne01, @@ -6114,28 +6109,19 @@ kernel void kernel_mul_mv_id_f16_f32( constant uint & r2, constant uint & r3, constant int & idx, - device const char * src00, - device const char * src01, - device const char * src02, - device const char * src03, - device const char * src04, - device const char * src05, - device const char * src06, - device const char * src07, uint3 tgpig[[threadgroup_position_in_grid]], uint tiitg[[thread_index_in_threadgroup]], uint tiisg[[thread_index_in_simdgroup]], uint sgitg[[simdgroup_index_in_threadgroup]]) { - device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07}; - const int64_t bid = tgpig.z/(ne12*ne13); tgpig.z = tgpig.z%(ne12*ne13); const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx]; + device const char * src0 = src0s + id*nb02; kernel_mul_mv_f16_f32_impl( - src0[id], + src0, src1 + bid*nb11, dst + bid*ne0, ne00, @@ -6160,9 +6146,10 @@ kernel void kernel_mul_mv_id_f16_f32( [[host_name("kernel_mul_mv_id_q8_0_f32")]] kernel void kernel_mul_mv_id_q8_0_f32( - device const char * ids, + device const char * src0s, device const char * src1, device float * dst, + device const char * ids, constant uint64_t & nbi1, constant int64_t & ne00, constant int64_t & ne01, @@ -6183,28 +6170,19 @@ kernel void kernel_mul_mv_id_q8_0_f32( constant uint & r2, constant uint & r3, constant int & idx, - device const char * src00, - device const char * src01, - device const char * src02, - device const char * src03, - device const char * src04, - device const char * src05, - device const char * src06, - device const char * src07, uint3 tgpig[[threadgroup_position_in_grid]], uint tiitg[[thread_index_in_threadgroup]], uint tiisg[[thread_index_in_simdgroup]], uint sgitg[[simdgroup_index_in_threadgroup]]) { - device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07}; - const int64_t bid = tgpig.z/(ne12*ne13); tgpig.z = tgpig.z%(ne12*ne13); const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx]; + device const char * src0 = src0s + id*nb02; kernel_mul_mv_q8_0_f32_impl( - src0[id], + src0, (device const float *) (src1 + bid*nb11), dst + bid*ne0, ne00, @@ -6223,9 +6201,10 @@ kernel void kernel_mul_mv_id_q8_0_f32( [[host_name("kernel_mul_mv_id_q4_0_f32")]] kernel void kernel_mul_mv_id_q4_0_f32( - device const char * ids, + device const char * src0s, device const char * src1, device float * dst, + device const char * ids, constant uint64_t & nbi1, constant int64_t & ne00, constant int64_t & ne01, @@ -6246,28 +6225,19 @@ kernel void kernel_mul_mv_id_q4_0_f32( constant uint & r2, constant uint & r3, constant int & idx, - device const char * src00, - device const char * src01, - device const char * src02, - device const char * src03, - device const char * src04, - device const char * src05, - device const char * src06, - device const char * src07, uint3 tgpig[[threadgroup_position_in_grid]], uint tiitg[[thread_index_in_threadgroup]], uint tiisg[[thread_index_in_simdgroup]], uint sgitg[[simdgroup_index_in_threadgroup]]) { - device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07}; - const int64_t bid = tgpig.z/(ne12*ne13); tgpig.z = tgpig.z%(ne12*ne13); const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx]; + device const char * src0 = src0s + id*nb02; mul_vec_q_n_f32_impl( - src0[id], + src0, (device const float *) (src1 + bid*nb11), dst + bid*ne0, ne00, @@ -6286,9 +6256,10 @@ kernel void kernel_mul_mv_id_q4_0_f32( [[host_name("kernel_mul_mv_id_q4_1_f32")]] kernel void kernel_mul_mv_id_q4_1_f32( - device const char * ids, + device const char * src0s, device const char * src1, device float * dst, + device const char * ids, constant uint64_t & nbi1, constant int64_t & ne00, constant int64_t & ne01, @@ -6309,28 +6280,19 @@ kernel void kernel_mul_mv_id_q4_1_f32( constant uint & r2, constant uint & r3, constant int & idx, - device const char * src00, - device const char * src01, - device const char * src02, - device const char * src03, - device const char * src04, - device const char * src05, - device const char * src06, - device const char * src07, uint3 tgpig[[threadgroup_position_in_grid]], uint tiitg[[thread_index_in_threadgroup]], uint tiisg[[thread_index_in_simdgroup]], uint sgitg[[simdgroup_index_in_threadgroup]]) { - device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07}; - const int64_t bid = tgpig.z/(ne12*ne13); tgpig.z = tgpig.z%(ne12*ne13); const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx]; + device const char * src0 = src0s + id*nb02; mul_vec_q_n_f32_impl( - src0[id], + src0, (device const float *) (src1 + bid*nb11), dst + bid*ne0, ne00, @@ -6349,9 +6311,10 @@ kernel void kernel_mul_mv_id_q4_1_f32( [[host_name("kernel_mul_mv_id_q5_0_f32")]] kernel void kernel_mul_mv_id_q5_0_f32( - device const char * ids, + device const char * src0s, device const char * src1, device float * dst, + device const char * ids, constant uint64_t & nbi1, constant int64_t & ne00, constant int64_t & ne01, @@ -6372,28 +6335,19 @@ kernel void kernel_mul_mv_id_q5_0_f32( constant uint & r2, constant uint & r3, constant int & idx, - device const char * src00, - device const char * src01, - device const char * src02, - device const char * src03, - device const char * src04, - device const char * src05, - device const char * src06, - device const char * src07, uint3 tgpig[[threadgroup_position_in_grid]], uint tiitg[[thread_index_in_threadgroup]], uint tiisg[[thread_index_in_simdgroup]], uint sgitg[[simdgroup_index_in_threadgroup]]) { - device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07}; - const int64_t bid = tgpig.z/(ne12*ne13); tgpig.z = tgpig.z%(ne12*ne13); const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx]; + device const char * src0 = src0s + id*nb02; mul_vec_q_n_f32_impl( - src0[id], + src0, (device const float *) (src1 + bid*nb11), dst + bid*ne0, ne00, @@ -6412,9 +6366,10 @@ kernel void kernel_mul_mv_id_q5_0_f32( [[host_name("kernel_mul_mv_id_q5_1_f32")]] kernel void kernel_mul_mv_id_q5_1_f32( - device const char * ids, + device const char * src0s, device const char * src1, device float * dst, + device const char * ids, constant uint64_t & nbi1, constant int64_t & ne00, constant int64_t & ne01, @@ -6435,28 +6390,19 @@ kernel void kernel_mul_mv_id_q5_1_f32( constant uint & r2, constant uint & r3, constant int & idx, - device const char * src00, - device const char * src01, - device const char * src02, - device const char * src03, - device const char * src04, - device const char * src05, - device const char * src06, - device const char * src07, uint3 tgpig[[threadgroup_position_in_grid]], uint tiitg[[thread_index_in_threadgroup]], uint tiisg[[thread_index_in_simdgroup]], uint sgitg[[simdgroup_index_in_threadgroup]]) { - device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07}; - const int64_t bid = tgpig.z/(ne12*ne13); tgpig.z = tgpig.z%(ne12*ne13); const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx]; + device const char * src0 = src0s + id*nb02; mul_vec_q_n_f32_impl( - src0[id], + src0, (device const float *) (src1 + bid*nb11), dst + bid*ne0, ne00, @@ -6475,9 +6421,10 @@ kernel void kernel_mul_mv_id_q5_1_f32( [[host_name("kernel_mul_mv_id_q2_K_f32")]] kernel void kernel_mul_mv_id_q2_K_f32( - device const char * ids, + device const char * src0s, device const char * src1, device float * dst, + device const char * ids, constant uint64_t & nbi1, constant int64_t & ne00, constant int64_t & ne01, @@ -6498,28 +6445,19 @@ kernel void kernel_mul_mv_id_q2_K_f32( constant uint & r2, constant uint & r3, constant int & idx, - device const char * src00, - device const char * src01, - device const char * src02, - device const char * src03, - device const char * src04, - device const char * src05, - device const char * src06, - device const char * src07, uint3 tgpig[[threadgroup_position_in_grid]], uint tiitg[[thread_index_in_threadgroup]], uint tiisg[[thread_index_in_simdgroup]], uint sgitg[[simdgroup_index_in_threadgroup]]) { - device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07}; - const int64_t bid = tgpig.z/(ne12*ne13); tgpig.z = tgpig.z%(ne12*ne13); const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx]; + device const char * src0 = src0s + id*nb02; kernel_mul_mv_q2_K_f32_impl( - src0[id], + src0, (device const float *) (src1 + bid*nb11), dst + bid*ne0, ne00, @@ -6538,9 +6476,10 @@ kernel void kernel_mul_mv_id_q2_K_f32( [[host_name("kernel_mul_mv_id_q3_K_f32")]] kernel void kernel_mul_mv_id_q3_K_f32( - device const char * ids, + device const char * src0s, device const char * src1, device float * dst, + device const char * ids, constant uint64_t & nbi1, constant int64_t & ne00, constant int64_t & ne01, @@ -6561,28 +6500,19 @@ kernel void kernel_mul_mv_id_q3_K_f32( constant uint & r2, constant uint & r3, constant int & idx, - device const char * src00, - device const char * src01, - device const char * src02, - device const char * src03, - device const char * src04, - device const char * src05, - device const char * src06, - device const char * src07, uint3 tgpig[[threadgroup_position_in_grid]], uint tiitg[[thread_index_in_threadgroup]], uint tiisg[[thread_index_in_simdgroup]], uint sgitg[[simdgroup_index_in_threadgroup]]) { - device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07}; - const int64_t bid = tgpig.z/(ne12*ne13); tgpig.z = tgpig.z%(ne12*ne13); const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx]; + device const char * src0 = src0s + id*nb02; kernel_mul_mv_q3_K_f32_impl( - src0[id], + src0, (device const float *) (src1 + bid*nb11), dst + bid*ne0, ne00, @@ -6601,9 +6531,10 @@ kernel void kernel_mul_mv_id_q3_K_f32( [[host_name("kernel_mul_mv_id_q4_K_f32")]] kernel void kernel_mul_mv_id_q4_K_f32( - device const char * ids, + device const char * src0s, device const char * src1, device float * dst, + device const char * ids, constant uint64_t & nbi1, constant int64_t & ne00, constant int64_t & ne01, @@ -6624,28 +6555,19 @@ kernel void kernel_mul_mv_id_q4_K_f32( constant uint & r2, constant uint & r3, constant int & idx, - device const char * src00, - device const char * src01, - device const char * src02, - device const char * src03, - device const char * src04, - device const char * src05, - device const char * src06, - device const char * src07, uint3 tgpig[[threadgroup_position_in_grid]], uint tiitg[[thread_index_in_threadgroup]], uint tiisg[[thread_index_in_simdgroup]], uint sgitg[[simdgroup_index_in_threadgroup]]) { - device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07}; - const int64_t bid = tgpig.z/(ne12*ne13); tgpig.z = tgpig.z%(ne12*ne13); const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx]; + device const char * src0 = src0s + id*nb02; kernel_mul_mv_q4_K_f32_impl( - src0[id], + src0, (device const float *) (src1 + bid*nb11), dst + bid*ne0, ne00, @@ -6664,9 +6586,10 @@ kernel void kernel_mul_mv_id_q4_K_f32( [[host_name("kernel_mul_mv_id_q5_K_f32")]] kernel void kernel_mul_mv_id_q5_K_f32( - device const char * ids, + device const char * src0s, device const char * src1, device float * dst, + device const char * ids, constant uint64_t & nbi1, constant int64_t & ne00, constant int64_t & ne01, @@ -6687,28 +6610,19 @@ kernel void kernel_mul_mv_id_q5_K_f32( constant uint & r2, constant uint & r3, constant int & idx, - device const char * src00, - device const char * src01, - device const char * src02, - device const char * src03, - device const char * src04, - device const char * src05, - device const char * src06, - device const char * src07, uint3 tgpig[[threadgroup_position_in_grid]], uint tiitg[[thread_index_in_threadgroup]], uint tiisg[[thread_index_in_simdgroup]], uint sgitg[[simdgroup_index_in_threadgroup]]) { - device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07}; - const int64_t bid = tgpig.z/(ne12*ne13); tgpig.z = tgpig.z%(ne12*ne13); const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx]; + device const char * src0 = src0s + id*nb02; kernel_mul_mv_q5_K_f32_impl( - src0[id], + src0, (device const float *) (src1 + bid*nb11), dst + bid*ne0, ne00, @@ -6727,9 +6641,10 @@ kernel void kernel_mul_mv_id_q5_K_f32( [[host_name("kernel_mul_mv_id_q6_K_f32")]] kernel void kernel_mul_mv_id_q6_K_f32( - device const char * ids, + device const char * src0s, device const char * src1, device float * dst, + device const char * ids, constant uint64_t & nbi1, constant int64_t & ne00, constant int64_t & ne01, @@ -6750,28 +6665,19 @@ kernel void kernel_mul_mv_id_q6_K_f32( constant uint & r2, constant uint & r3, constant int & idx, - device const char * src00, - device const char * src01, - device const char * src02, - device const char * src03, - device const char * src04, - device const char * src05, - device const char * src06, - device const char * src07, uint3 tgpig[[threadgroup_position_in_grid]], uint tiitg[[thread_index_in_threadgroup]], uint tiisg[[thread_index_in_simdgroup]], uint sgitg[[simdgroup_index_in_threadgroup]]) { - device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07}; - const int64_t bid = tgpig.z/(ne12*ne13); tgpig.z = tgpig.z%(ne12*ne13); const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx]; + device const char * src0 = src0s + id*nb02; kernel_mul_mv_q6_K_f32_impl( - src0[id], + src0, (device const float *) (src1 + bid*nb11), dst + bid*ne0, ne00, @@ -6790,9 +6696,10 @@ kernel void kernel_mul_mv_id_q6_K_f32( [[host_name("kernel_mul_mv_id_iq2_xxs_f32")]] kernel void kernel_mul_mv_id_iq2_xxs_f32( - device const char * ids, + device const char * src0s, device const char * src1, device float * dst, + device const char * ids, constant uint64_t & nbi1, constant int64_t & ne00, constant int64_t & ne01, @@ -6813,29 +6720,20 @@ kernel void kernel_mul_mv_id_iq2_xxs_f32( constant uint & r2, constant uint & r3, constant int & idx, - device const char * src00, - device const char * src01, - device const char * src02, - device const char * src03, - device const char * src04, - device const char * src05, - device const char * src06, - device const char * src07, threadgroup int8_t * shared_values [[threadgroup(0)]], uint3 tgpig[[threadgroup_position_in_grid]], uint tiitg[[thread_index_in_threadgroup]], uint tiisg[[thread_index_in_simdgroup]], uint sgitg[[simdgroup_index_in_threadgroup]]) { - device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07}; - const int64_t bid = tgpig.z/(ne12*ne13); tgpig.z = tgpig.z%(ne12*ne13); const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx]; + device const char * src0 = src0s + id*nb02; kernel_mul_mv_iq2_xxs_f32_impl( - src0[id], + src0, (device const float *) (src1 + bid*nb11), dst + bid*ne0, ne00, @@ -6855,9 +6753,10 @@ kernel void kernel_mul_mv_id_iq2_xxs_f32( [[host_name("kernel_mul_mv_id_iq2_xs_f32")]] kernel void kernel_mul_mv_id_iq2_xs_f32( - device const char * ids, + device const char * src0s, device const char * src1, device float * dst, + device const char * ids, constant uint64_t & nbi1, constant int64_t & ne00, constant int64_t & ne01, @@ -6878,29 +6777,20 @@ kernel void kernel_mul_mv_id_iq2_xs_f32( constant uint & r2, constant uint & r3, constant int & idx, - device const char * src00, - device const char * src01, - device const char * src02, - device const char * src03, - device const char * src04, - device const char * src05, - device const char * src06, - device const char * src07, threadgroup int8_t * shared_values [[threadgroup(0)]], uint3 tgpig[[threadgroup_position_in_grid]], uint tiitg[[thread_index_in_threadgroup]], uint tiisg[[thread_index_in_simdgroup]], uint sgitg[[simdgroup_index_in_threadgroup]]) { - device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07}; - const int64_t bid = tgpig.z/(ne12*ne13); tgpig.z = tgpig.z%(ne12*ne13); const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx]; + device const char * src0 = src0s + id*nb02; kernel_mul_mv_iq2_xs_f32_impl( - src0[id], + src0, (device const float *) (src1 + bid*nb11), dst + bid*ne0, ne00, @@ -6920,9 +6810,10 @@ kernel void kernel_mul_mv_id_iq2_xs_f32( [[host_name("kernel_mul_mv_id_iq3_xxs_f32")]] kernel void kernel_mul_mv_id_iq3_xxs_f32( - device const char * ids, + device const char * src0s, device const char * src1, device float * dst, + device const char * ids, constant uint64_t & nbi1, constant int64_t & ne00, constant int64_t & ne01, @@ -6943,29 +6834,20 @@ kernel void kernel_mul_mv_id_iq3_xxs_f32( constant uint & r2, constant uint & r3, constant int & idx, - device const char * src00, - device const char * src01, - device const char * src02, - device const char * src03, - device const char * src04, - device const char * src05, - device const char * src06, - device const char * src07, threadgroup int8_t * shared_values [[threadgroup(0)]], uint3 tgpig[[threadgroup_position_in_grid]], uint tiitg[[thread_index_in_threadgroup]], uint tiisg[[thread_index_in_simdgroup]], uint sgitg[[simdgroup_index_in_threadgroup]]) { - device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07}; - const int64_t bid = tgpig.z/(ne12*ne13); tgpig.z = tgpig.z%(ne12*ne13); const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx]; + device const char * src0 = src0s + id*nb02; kernel_mul_mv_iq3_xxs_f32_impl( - src0[id], + src0, (device const float *) (src1 + bid*nb11), dst + bid*ne0, ne00, @@ -6985,9 +6867,10 @@ kernel void kernel_mul_mv_id_iq3_xxs_f32( [[host_name("kernel_mul_mv_id_iq3_s_f32")]] kernel void kernel_mul_mv_id_iq3_s_f32( - device const char * ids, + device const char * src0s, device const char * src1, device float * dst, + device const char * ids, constant uint64_t & nbi1, constant int64_t & ne00, constant int64_t & ne01, @@ -7008,29 +6891,20 @@ kernel void kernel_mul_mv_id_iq3_s_f32( constant uint & r2, constant uint & r3, constant int & idx, - device const char * src00, - device const char * src01, - device const char * src02, - device const char * src03, - device const char * src04, - device const char * src05, - device const char * src06, - device const char * src07, threadgroup int8_t * shared_values [[threadgroup(0)]], uint3 tgpig[[threadgroup_position_in_grid]], uint tiitg[[thread_index_in_threadgroup]], uint tiisg[[thread_index_in_simdgroup]], uint sgitg[[simdgroup_index_in_threadgroup]]) { - device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07}; - const int64_t bid = tgpig.z/(ne12*ne13); tgpig.z = tgpig.z%(ne12*ne13); const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx]; + device const char * src0 = src0s + id*nb02; kernel_mul_mv_iq3_s_f32_impl( - src0[id], + src0, (device const float *) (src1 + bid*nb11), dst + bid*ne0, ne00, @@ -7050,9 +6924,10 @@ kernel void kernel_mul_mv_id_iq3_s_f32( [[host_name("kernel_mul_mv_id_iq2_s_f32")]] kernel void kernel_mul_mv_id_iq2_s_f32( - device const char * ids, + device const char * src0s, device const char * src1, device float * dst, + device const char * ids, constant uint64_t & nbi1, constant int64_t & ne00, constant int64_t & ne01, @@ -7073,29 +6948,20 @@ kernel void kernel_mul_mv_id_iq2_s_f32( constant uint & r2, constant uint & r3, constant int & idx, - device const char * src00, - device const char * src01, - device const char * src02, - device const char * src03, - device const char * src04, - device const char * src05, - device const char * src06, - device const char * src07, threadgroup int8_t * shared_values [[threadgroup(0)]], uint3 tgpig[[threadgroup_position_in_grid]], uint tiitg[[thread_index_in_threadgroup]], uint tiisg[[thread_index_in_simdgroup]], uint sgitg[[simdgroup_index_in_threadgroup]]) { - device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07}; - const int64_t bid = tgpig.z/(ne12*ne13); tgpig.z = tgpig.z%(ne12*ne13); const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx]; + device const char * src0 = src0s + id*nb02; kernel_mul_mv_iq2_s_f32_impl( - src0[id], + src0, (device const float *) (src1 + bid*nb11), dst + bid*ne0, ne00, @@ -7115,9 +6981,10 @@ kernel void kernel_mul_mv_id_iq2_s_f32( [[host_name("kernel_mul_mv_id_iq1_s_f32")]] kernel void kernel_mul_mv_id_iq1_s_f32( - device const char * ids, + device const char * src0s, device const char * src1, device float * dst, + device const char * ids, constant uint64_t & nbi1, constant int64_t & ne00, constant int64_t & ne01, @@ -7138,28 +7005,19 @@ kernel void kernel_mul_mv_id_iq1_s_f32( constant uint & r2, constant uint & r3, constant int & idx, - device const char * src00, - device const char * src01, - device const char * src02, - device const char * src03, - device const char * src04, - device const char * src05, - device const char * src06, - device const char * src07, uint3 tgpig[[threadgroup_position_in_grid]], uint tiitg[[thread_index_in_threadgroup]], uint tiisg[[thread_index_in_simdgroup]], uint sgitg[[simdgroup_index_in_threadgroup]]) { - device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07}; - const int64_t bid = tgpig.z/(ne12*ne13); tgpig.z = tgpig.z%(ne12*ne13); const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx]; + device const char * src0 = src0s + id*nb02; kernel_mul_mv_iq1_s_f32_impl( - src0[id], + src0, (device const float *) (src1 + bid*nb11), dst + bid*ne0, ne00, @@ -7178,9 +7036,10 @@ kernel void kernel_mul_mv_id_iq1_s_f32( [[host_name("kernel_mul_mv_id_iq1_m_f32")]] kernel void kernel_mul_mv_id_iq1_m_f32( - device const char * ids, + device const char * src0s, device const char * src1, device float * dst, + device const char * ids, constant uint64_t & nbi1, constant int64_t & ne00, constant int64_t & ne01, @@ -7201,28 +7060,19 @@ kernel void kernel_mul_mv_id_iq1_m_f32( constant uint & r2, constant uint & r3, constant int & idx, - device const char * src00, - device const char * src01, - device const char * src02, - device const char * src03, - device const char * src04, - device const char * src05, - device const char * src06, - device const char * src07, uint3 tgpig[[threadgroup_position_in_grid]], uint tiitg[[thread_index_in_threadgroup]], uint tiisg[[thread_index_in_simdgroup]], uint sgitg[[simdgroup_index_in_threadgroup]]) { - device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07}; - const int64_t bid = tgpig.z/(ne12*ne13); tgpig.z = tgpig.z%(ne12*ne13); const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx]; + device const char * src0 = src0s + id*nb02; kernel_mul_mv_iq1_m_f32_impl( - src0[id], + src0, (device const float *) (src1 + bid*nb11), dst + bid*ne0, ne00, @@ -7241,9 +7091,10 @@ kernel void kernel_mul_mv_id_iq1_m_f32( [[host_name("kernel_mul_mv_id_iq4_nl_f32")]] kernel void kernel_mul_mv_id_iq4_nl_f32( - device const char * ids, + device const char * src0s, device const char * src1, device float * dst, + device const char * ids, constant uint64_t & nbi1, constant int64_t & ne00, constant int64_t & ne01, @@ -7264,29 +7115,20 @@ kernel void kernel_mul_mv_id_iq4_nl_f32( constant uint & r2, constant uint & r3, constant int & idx, - device const char * src00, - device const char * src01, - device const char * src02, - device const char * src03, - device const char * src04, - device const char * src05, - device const char * src06, - device const char * src07, threadgroup float * shared_values [[threadgroup(0)]], uint3 tgpig[[threadgroup_position_in_grid]], uint tiitg[[thread_index_in_threadgroup]], uint tiisg[[thread_index_in_simdgroup]], uint sgitg[[simdgroup_index_in_threadgroup]]) { - device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07}; - const int64_t bid = tgpig.z/(ne12*ne13); tgpig.z = tgpig.z%(ne12*ne13); const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx]; + device const char * src0 = src0s + id*nb02; kernel_mul_mv_iq4_nl_f32_impl( - src0[id], + src0, (device const float *) (src1 + bid*nb11), dst + bid*ne0, ne00, @@ -7306,9 +7148,10 @@ kernel void kernel_mul_mv_id_iq4_nl_f32( [[host_name("kernel_mul_mv_id_iq4_xs_f32")]] kernel void kernel_mul_mv_id_iq4_xs_f32( - device const char * ids, + device const char * src0s, device const char * src1, device float * dst, + device const char * ids, constant uint64_t & nbi1, constant int64_t & ne00, constant int64_t & ne01, @@ -7329,33 +7172,24 @@ kernel void kernel_mul_mv_id_iq4_xs_f32( constant uint & r2, constant uint & r3, constant int & idx, - device const char * src00, - device const char * src01, - device const char * src02, - device const char * src03, - device const char * src04, - device const char * src05, - device const char * src06, - device const char * src07, threadgroup float * shared_values [[threadgroup(0)]], uint3 tgpig[[threadgroup_position_in_grid]], uint tiitg[[thread_index_in_threadgroup]], uint tiisg[[thread_index_in_simdgroup]], uint sgitg[[simdgroup_index_in_threadgroup]]) { - device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07}; - const int64_t bid = tgpig.z/(ne12*ne13); tgpig.z = tgpig.z%(ne12*ne13); const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx]; + device const char * src0 = src0s + id*nb02; #if QK_K == 64 kernel_mul_mv_iq4_nl_f32_impl( #else kernel_mul_mv_iq4_xs_f32_impl( #endif - src0[id], + src0, (device const float *) (src1 + bid*nb11), dst + bid*ne0, ne00, diff --git a/ggml.c b/ggml.c index 7471e7926..c9b0a6a0e 100644 --- a/ggml.c +++ b/ggml.c @@ -4573,45 +4573,38 @@ void ggml_mul_mat_set_prec( // ggml_mul_mat_id +// NOTE: id will be removed in the future and instead all the experts listed in ids will be computed +// this will allow computing all the used experts in a single matrix multiplication struct ggml_tensor * ggml_mul_mat_id( struct ggml_context * ctx, - struct ggml_tensor * const as[], - int n_as, + struct ggml_tensor * as, struct ggml_tensor * ids, int id, struct ggml_tensor * b) { GGML_ASSERT(ids->type == GGML_TYPE_I32); - GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); - GGML_ASSERT(ids->ne[1] == b->ne[1]); + GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d + GGML_ASSERT(ids->ne[1] == b->ne[1]); // must have an expert per b row GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]); - GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2); - GGML_ASSERT(id >= 0 && id < ids->ne[0]); + GGML_ASSERT(id >= 0 && id < ids->ne[0]); // valid id + GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat bool is_node = false; - if (as[0]->grad || b->grad) { + if (as->grad || b->grad) { is_node = true; } - const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] }; + const int64_t ne[4] = { as->ne[1], b->ne[1], b->ne[2], b->ne[3] }; struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); ggml_set_op_params_i32(result, 0, id); - ggml_set_op_params_i32(result, 1, n_as); result->op = GGML_OP_MUL_MAT_ID; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; - result->src[0] = ids; + result->src[0] = as; result->src[1] = b; - - for (int i = 0; i < n_as; i++) { - struct ggml_tensor * a = as[i]; - GGML_ASSERT(ggml_are_same_shape(as[0], a)); - GGML_ASSERT(ggml_can_mul_mat(a, b)); - GGML_ASSERT(!ggml_is_transposed(a)); - result->src[i + 2] = a; - } + result->src[2] = ids; return result; } @@ -10948,10 +10941,9 @@ static void ggml_compute_forward_mul_mat_id( const struct ggml_compute_params * params, struct ggml_tensor * dst) { - const struct ggml_tensor * ids = dst->src[0]; + const struct ggml_tensor * src0 = dst->src[0]; const struct ggml_tensor * src1 = dst->src[1]; - - const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS + const struct ggml_tensor * ids = dst->src[2]; GGML_TENSOR_BINARY_OP_LOCALS @@ -10981,13 +10973,13 @@ static void ggml_compute_forward_mul_mat_id( GGML_ASSERT(nb1 <= nb2); GGML_ASSERT(nb2 <= nb3); - // broadcast factors - const int64_t r2 = ne12/ne02; - const int64_t r3 = ne13/ne03; + // broadcast is not supported with mmid + assert(ne12 == 1); + assert(ne13 == 1); // row groups const int id = ggml_get_op_params_i32(dst, 0); - const int n_as = ggml_get_op_params_i32(dst, 1); + const int n_as = src0->ne[2]; char * wdata_src1_end = (src1->type == vec_dot_type) ? (char *) params->wdata : @@ -11047,7 +11039,7 @@ static void ggml_compute_forward_mul_mat_id( continue; } - const struct ggml_tensor * src0_cur = dst->src[cur_a + 2]; + size_t src0_offset = cur_a*src0->nb[2]; const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata; const size_t row_size = ggml_row_size(vec_dot_type, ne10); @@ -11082,9 +11074,6 @@ static void ggml_compute_forward_mul_mat_id( continue; } - assert(ne12 % ne02 == 0); - assert(ne13 % ne03 == 0); - // block-tiling attempt const int64_t blck_0 = 16; const int64_t blck_1 = 16; @@ -11101,14 +11090,14 @@ static void ggml_compute_forward_mul_mat_id( const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11); // broadcast src0 into src1 - const int64_t i03 = i13/r3; - const int64_t i02 = i12/r2; + //const int64_t i03 = i13/r3; + //const int64_t i02 = i12/r2; const int64_t i1 = i11; const int64_t i2 = i12; const int64_t i3 = i13; - const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03); + const char * src0_row = (const char *) src0->data + src0_offset; // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using @@ -18464,13 +18453,13 @@ struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threa case GGML_OP_MUL_MAT_ID: { cur = 0; - const struct ggml_tensor * src0 = node->src[2]; + const struct ggml_tensor * src0 = node->src[0]; const struct ggml_tensor * src1 = node->src[1]; const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type; if (src1->type != vec_dot_type) { cur += ggml_row_size(vec_dot_type, ggml_nelements(src1)); } - const int n_as = ggml_get_op_params_i32(node, 1); + const int n_as = src0->ne[2]; cur += GGML_PAD(cur, sizeof(int64_t)); // align cur += n_as * sizeof(int64_t); // matrix_row_counts cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows diff --git a/ggml.h b/ggml.h index 5d4a4ceb6..5cef45c0b 100644 --- a/ggml.h +++ b/ggml.h @@ -1164,8 +1164,7 @@ extern "C" { // ggml_mul_mat_id(ctx, as, ids, id, b) ~= ggml_mul_mat(as[ids[id]], b) GGML_API struct ggml_tensor * ggml_mul_mat_id( struct ggml_context * ctx, - struct ggml_tensor * const as[], - int n_as, + struct ggml_tensor * as, struct ggml_tensor * ids, int id, struct ggml_tensor * b); diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index 27eaf723c..f468802d1 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -221,9 +221,9 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = { MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", MODEL_TENSOR.FFN_ACT: "blk.{bid}.ffn", - MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate.{xid}", - MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down.{xid}", - MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up.{xid}", + MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate_exps", + MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down_exps", + MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up_exps", MODEL_TENSOR.LAYER_OUT_NORM: "blk.{bid}.layer_output_norm", MODEL_TENSOR.SSM_IN: "blk.{bid}.ssm_in", MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d", diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py index 11fd34b8b..93a5a455e 100644 --- a/gguf-py/gguf/tensor_mapping.py +++ b/gguf-py/gguf/tensor_mapping.py @@ -231,9 +231,8 @@ class TensorNameMap: ), MODEL_TENSOR.FFN_UP_EXP: ( - "layers.{bid}.feed_forward.experts.{xid}.w3", # mixtral - "model.layers.{bid}.block_sparse_moe.experts.{xid}.w3", # mixtral - "transformer.decoder_layer.{bid}.moe.{xid}.linear_v", # Grok + "layers.{bid}.feed_forward.experts.w3", # mixtral (merged) + "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged) ), # AWQ-activation gate @@ -252,9 +251,8 @@ class TensorNameMap: ), MODEL_TENSOR.FFN_GATE_EXP: ( - "layers.{bid}.feed_forward.experts.{xid}.w1", # mixtral - "model.layers.{bid}.block_sparse_moe.experts.{xid}.w1", # mixtral - "transformer.decoder_layer.{bid}.moe.{xid}.linear" # Grok + "layers.{bid}.feed_forward.experts.w1", # mixtral (merged) + "transformer.decoder_layer.{bid}.moe.linear" # Grok (merged) ), # Feed-forward down @@ -280,10 +278,8 @@ class TensorNameMap: ), MODEL_TENSOR.FFN_DOWN_EXP: ( - "layers.{bid}.feed_forward.experts.{xid}.w2", # mixtral - "model.layers.{bid}.block_sparse_moe.experts.{xid}.w2", # mixtral - "transformer.decoder_layer.{bid}.moe.{xid}.linear_1", # Grok - + "layers.{bid}.feed_forward.experts.w2", # mixtral (merged) + "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged) ), MODEL_TENSOR.ATTN_Q_NORM: ( diff --git a/gguf-py/pyproject.toml b/gguf-py/pyproject.toml index 96396e04e..13cbfffbc 100644 --- a/gguf-py/pyproject.toml +++ b/gguf-py/pyproject.toml @@ -1,6 +1,6 @@ [tool.poetry] name = "gguf" -version = "0.8.0" +version = "0.9.0" description = "Read and write ML models in GGUF for GGML" authors = ["GGML "] packages = [ diff --git a/llama.cpp b/llama.cpp index 21e7a067a..2df03f990 100644 --- a/llama.cpp +++ b/llama.cpp @@ -426,9 +426,12 @@ enum llm_tensor { LLM_TENSOR_FFN_DOWN, LLM_TENSOR_FFN_UP, LLM_TENSOR_FFN_ACT, - LLM_TENSOR_FFN_DOWN_EXP, + LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility LLM_TENSOR_FFN_GATE_EXP, LLM_TENSOR_FFN_UP_EXP, + LLM_TENSOR_FFN_DOWN_EXPS, // merged experts + LLM_TENSOR_FFN_GATE_EXPS, + LLM_TENSOR_FFN_UP_EXPS, LLM_TENSOR_ATTN_Q_NORM, LLM_TENSOR_ATTN_K_NORM, LLM_TENSOR_LAYER_OUT_NORM, @@ -463,6 +466,9 @@ static const std::map> LLM_TENSOR_NA { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" }, { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" }, { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" }, + { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, + { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, + { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, }, }, { @@ -516,6 +522,9 @@ static const std::map> LLM_TENSOR_NA { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" }, { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" }, { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" }, + { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, + { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, + { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" }, { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" }, }, @@ -1864,9 +1873,9 @@ struct llama_layer { // ff MoE struct ggml_tensor * ffn_gate_inp; - struct ggml_tensor * ffn_gate_exp[LLAMA_MAX_EXPERTS]; - struct ggml_tensor * ffn_down_exp[LLAMA_MAX_EXPERTS]; - struct ggml_tensor * ffn_up_exp [LLAMA_MAX_EXPERTS]; + struct ggml_tensor * ffn_gate_exps; + struct ggml_tensor * ffn_down_exps; + struct ggml_tensor * ffn_up_exps ; // ff bias struct ggml_tensor * ffn_down_b; // b2 @@ -2868,19 +2877,19 @@ struct llama_model_loader { llama_mmaps mappings; - // Holds information on a model weights - struct llama_tensor_weights { + // Holds information on a model weight + struct llama_tensor_weight { uint16_t idx; // source file index size_t offs; // tensor data offset in the original file ggml_tensor * tensor; - llama_tensor_weights(uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) { + llama_tensor_weight(uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) { const int tensor_idx = gguf_find_tensor(gguf_ctx, name); offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx); } }; - std::vector weights; + std::vector weights; std::unordered_map kv_overrides; @@ -2920,7 +2929,7 @@ struct llama_model_loader { // For subsidiary files, `meta` tensor data offset must not be used, // so we build a unified tensors index for weights. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) { - weights.emplace_back(llama_tensor_weights(0, cur->name, meta, cur)); + weights.emplace_back(0, cur->name, meta, cur); } files.emplace_back(new llama_file(fname.c_str(), "rb")); contexts.emplace_back(ctx); @@ -2960,7 +2969,7 @@ struct llama_model_loader { // Save tensors data offset info of the shard. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) { - weights.emplace_back(llama_tensor_weights(idx, cur->name, ctx_gguf, cur)); + weights.emplace_back(idx, cur->name, ctx_gguf, cur); } files.emplace_back(new llama_file(split_path, "rb")); contexts.emplace_back(ctx); @@ -3164,21 +3173,37 @@ struct llama_model_loader { return weights.at(i).tensor->name; } - const llama_tensor_weights & get_weights(const char * name) const { + const llama_tensor_weight * get_weight(const char * name) const { for (const auto & weight : weights) { if (strcmp(name, weight.tensor->name) == 0) { - return weight; + return &weight; } } - throw std::runtime_error(format("tensor %s not found", name)); + return nullptr; + } + + const llama_tensor_weight & require_weight(const char * name) const { + const llama_tensor_weight * weight = get_weight(name); + if (!weight) { + throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name)); + } + return *weight; } struct ggml_tensor * get_tensor_meta(const char * name) const { - try { - return get_weights(name).tensor; - } catch (const std::runtime_error & e) { - return NULL; + const auto * weight = get_weight(name); + if (!weight) { + return nullptr; } + return weight->tensor; + } + + struct ggml_tensor * require_tensor_meta(const char * name) const { + struct ggml_tensor * tensor = get_tensor_meta(name); + if (!tensor) { + throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name)); + } + return tensor; } struct ggml_tensor * get_tensor_meta(int i) const { @@ -3194,7 +3219,7 @@ struct llama_model_loader { return tensor; } - struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector & ne, bool required = true) { + const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector & ne, bool required) const { const struct ggml_tensor * cur = get_tensor_meta(name.c_str()); if (cur == NULL) { @@ -3206,8 +3231,8 @@ struct llama_model_loader { { bool is_ok = true; - for (size_t i = 0; i < ne.size(); ++i) { - if (ne[i] != cur->ne[i]) { + for (size_t i = 0; i < GGML_MAX_DIMS; ++i) { + if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) { is_ok = false; break; } @@ -3221,9 +3246,47 @@ struct llama_model_loader { } } + return cur; + } + + struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector & ne, bool required = true) { + const struct ggml_tensor * cur = check_tensor_dims(name, ne, required); + + if (cur == NULL) { + return NULL; + } + return create_tensor_for(ctx, cur); } + struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector & ne, size_t offset, bool required = true) { + const struct ggml_tensor * cur = check_tensor_dims(name, ne, required); + + if (cur == NULL) { + return NULL; + } + + if (cur->type != base->type) { + throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type))); + } + + std::array dims; + for (size_t i = 0; i < GGML_MAX_DIMS; ++i) { + dims[i] = i < ne.size() ? ne[i] : 1; + } + + struct ggml_tensor * tensor = ggml_view_4d(ctx, base, + dims[0], dims[1], dims[2], dims[3], + cur->nb[1], cur->nb[2], cur->nb[3], + offset); + + ggml_set_name(tensor, name.c_str()); + + n_created++; + + return tensor; + } + void done_getting_tensors() const { if (n_created != n_tensors) { throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created)); @@ -3236,7 +3299,7 @@ struct llama_model_loader { mmaps_used.reserve(files.size()); for (const auto & file : files) { std::unique_ptr mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa())); - mmaps_used.emplace_back(std::make_pair(mapping->size, 0)); + mmaps_used.emplace_back(mapping->size, 0); if (mlock_mmaps) { std::unique_ptr mlock_mmap(new llama_mlock()); mlock_mmap->init(mapping->addr); @@ -3260,18 +3323,25 @@ struct llama_model_loader { *last = 0; *addr = mapping->addr; for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) { - const auto & w = get_weights(ggml_get_name(tensor)); - if (w.idx != idx) { - continue; + try { + const auto * weight = get_weight(ggml_get_name(tensor)); + if (!weight) { + continue; + } + if (weight->idx != idx) { + continue; + } + *first = std::min(*first, weight->offs); + *last = std::max(*last, weight->offs + ggml_nbytes(tensor)); + } catch(...) { + // the tensor is not in the model } - *first = std::min(*first, w.offs); - *last = std::max(*last, w.offs + ggml_nbytes(tensor)); } } // for backwards compatibility, does not support ggml-backend void load_data_for(struct ggml_tensor * cur) const { - const auto & w = get_weights(ggml_get_name(cur)); + const auto & w = require_weight(ggml_get_name(cur)); if (use_mmap) { const auto & mapping = mappings.at(w.idx); @@ -3304,44 +3374,49 @@ struct llama_model_loader { std::vector> read_buf; for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) { + const auto * weight = get_weight(ggml_get_name(cur)); + if (weight == nullptr) { + // this can happen with split experts models + continue; + } + if (progress_callback) { if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) { return false; } } - const auto & w = get_weights(ggml_get_name(cur)); size_t n_size = ggml_nbytes(cur); if (use_mmap) { - const auto & mapping = mappings.at(w.idx); + const auto & mapping = mappings.at(weight->idx); ggml_backend_buffer_t buf_mmap = nullptr; - if (bufs_mmap.count(w.idx)) { - buf_mmap = bufs_mmap.at(w.idx); + if (bufs_mmap.count(weight->idx)) { + buf_mmap = bufs_mmap.at(weight->idx); } GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated if (buf_mmap && cur->data == nullptr) { - ggml_backend_tensor_alloc(buf_mmap, cur, (uint8_t *) mapping->addr + w.offs); + ggml_backend_tensor_alloc(buf_mmap, cur, (uint8_t *) mapping->addr + weight->offs); if (lmlocks) { - const auto & lmlock = lmlocks->at(w.idx); - lmlock->grow_to(w.offs + ggml_nbytes(cur)); + const auto & lmlock = lmlocks->at(weight->idx); + lmlock->grow_to(weight->offs + ggml_nbytes(cur)); } - auto & mmap_used = mmaps_used[w.idx]; - mmap_used.first = std::min(mmap_used.first, w.offs); - mmap_used.second = std::max(mmap_used.second, w.offs + n_size); + auto & mmap_used = mmaps_used[weight->idx]; + mmap_used.first = std::min(mmap_used.first, weight->offs); + mmap_used.second = std::max(mmap_used.second, weight->offs + n_size); } else { - ggml_backend_tensor_set(cur, (uint8_t *) mapping->addr + w.offs, 0, n_size); + ggml_backend_tensor_set(cur, (uint8_t *) mapping->addr + weight->offs, 0, n_size); } } else { - GGML_ASSERT(w.idx < files.size()); - const auto & file = files.at(w.idx); + GGML_ASSERT(weight->idx < files.size()); + const auto & file = files.at(weight->idx); if (ggml_backend_buffer_is_host(cur->buffer)) { - file->seek(w.offs, SEEK_SET); + file->seek(weight->offs, SEEK_SET); file->read_raw(cur->data, ggml_nbytes(cur)); } else { read_buf.resize(ggml_nbytes(cur)); - file->seek(w.offs, SEEK_SET); + file->seek(weight->offs, SEEK_SET); file->read_raw(read_buf.data(), ggml_nbytes(cur)); ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size); } @@ -4270,6 +4345,7 @@ static bool llm_load_tensors( const int64_t n_layer = hparams.n_layer; const int64_t i_gpu_start = std::max((int64_t) hparams.n_layer - n_gpu_layers, (int64_t) 0); + bool use_mmap_buffer = true; // there is very little benefit to offloading the input layer, so always keep it on the CPU model.buft_input = llama_default_buffer_type_cpu(true); @@ -4358,6 +4434,10 @@ static bool llm_load_tensors( // create one context per buffer type size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output + + // for moe merged tensors + ctx_size += ggml_tensor_overhead()*hparams.n_expert*n_layer; + std::map ctx_map; for (auto & it : buft_layer_count) { struct ggml_init_params params = { @@ -4384,6 +4464,11 @@ static bool llm_load_tensors( const int64_t n_vocab = hparams.n_vocab; const int64_t n_vocab_type = hparams.n_vocab_type; const int64_t n_ff = hparams.n_ff; + const int64_t n_expert = hparams.n_expert; + + if (n_expert > 0 && hparams.n_expert_used == 0) { + throw std::runtime_error("model has expert layers but no expert layers are used"); + } GGML_ASSERT(n_embd_gqa == n_embd_k_gqa); @@ -4438,30 +4523,50 @@ static bool llm_load_tensors( layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd}, false); - - if (layer.ffn_gate_inp == nullptr) { - GGML_ASSERT(hparams.n_expert == 0); - GGML_ASSERT(hparams.n_expert_used == 0); - + if (n_expert == 0) { layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); } else { - GGML_ASSERT(hparams.n_expert > 0); - GGML_ASSERT(hparams.n_expert_used > 0); + layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}); - // MoE branch - for (uint32_t x = 0; x < hparams.n_expert; ++x) { - layer.ffn_gate_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), {n_embd, n_ff}); - layer.ffn_down_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd}); - layer.ffn_up_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), {n_embd, n_ff}); + layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false); + if (layer.ffn_gate_exps) { + layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}); + layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}); + } else { + // merge split expert into a single tensor for compatibility with older models + // requires disabling mmap + use_mmap_buffer = false; + + ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type; + ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type; + ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type; + + layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert); + layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert); + layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert); + + ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str()); + ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str()); + ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str()); + + for (uint32_t x = 0; x < n_expert; ++x) { + // the individual experts are loaded into a view of the merged tensor + ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x); + ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x); + ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x); + } } } } } break; case LLM_ARCH_GROK: { + if (n_expert == 0) { + throw std::runtime_error("Grok model cannot have zero experts"); + } + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // output @@ -4493,16 +4598,35 @@ static bool llm_load_tensors( layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd}); + layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}); - GGML_ASSERT(hparams.n_expert > 0); - GGML_ASSERT(hparams.n_expert_used > 0); + layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false); + if (layer.ffn_gate_exps) { + layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}); + layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}); + } else { + // merge split expert into a single tensor for compatibility with older models + // requires disabling mmap + use_mmap_buffer = false; - // MoE branch - for (uint32_t x = 0; x < hparams.n_expert; ++x) { - layer.ffn_gate_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), {n_embd, n_ff}); - layer.ffn_down_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd}); - layer.ffn_up_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), {n_embd, n_ff}); + ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type; + ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type; + ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type; + + layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert); + layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert); + layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert); + + ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str()); + ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str()); + ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str()); + + for (uint32_t x = 0; x < n_expert; ++x) { + // the individual experts are loaded into a view of the merged tensor + ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x); + ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x); + ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x); + } } layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}); @@ -5308,7 +5432,7 @@ static bool llm_load_tensors( // only the mmap region containing the tensors in the model is mapped to the backend buffer // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size - if (ml.use_mmap && buft == llama_default_buffer_type_cpu(true)) { + if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) { for (uint32_t idx = 0; idx < ml.files.size(); idx++) { void * addr = nullptr; size_t first, last; @@ -5332,7 +5456,7 @@ static bool llm_load_tensors( } } #ifdef GGML_USE_METAL - else if (ml.use_mmap && buft == ggml_backend_metal_buffer_type()) { + else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) { for (uint32_t idx = 0; idx < ml.files.size(); idx++) { const size_t max_size = ggml_get_max_tensor_size(ctx); void * addr = nullptr; @@ -5415,8 +5539,10 @@ static bool llm_load_tensors( } } - for (auto & mapping : ml.mappings) { - model.mappings.emplace_back(std::move(mapping)); + if (use_mmap_buffer) { + for (auto & mapping : ml.mappings) { + model.mappings.emplace_back(std::move(mapping)); + } } // loading time will be recalculate after the first eval, so @@ -6284,19 +6410,19 @@ struct llm_build_context { for (int i = 0; i < n_expert_used; ++i) { ggml_tensor * cur_expert; - ggml_tensor * cur_up = ggml_mul_mat_id(ctx0, model.layers[il].ffn_up_exp, n_expert, selected_experts, i, cur); + ggml_tensor * cur_up = ggml_mul_mat_id(ctx0, model.layers[il].ffn_up_exps, selected_experts, i, cur); cb(cur_up, "ffn_moe_up", il); - ggml_tensor * cur_gate = ggml_mul_mat_id(ctx0, model.layers[il].ffn_gate_exp, n_expert, selected_experts, i, cur); + ggml_tensor * cur_gate = ggml_mul_mat_id(ctx0, model.layers[il].ffn_gate_exps, selected_experts, i, cur); cb(cur_gate, "ffn_moe_gate", il); cur_gate = ggml_silu(ctx0, cur_gate); cb(cur_gate, "ffn_moe_silu", il); - cur_expert = ggml_mul(ctx0, cur_up, cur_gate); // [n_tokens, n_embd] + cur_expert = ggml_mul(ctx0, cur_up, cur_gate); cb(cur_expert, "ffn_moe_gate_par", il); - cur_expert = ggml_mul_mat_id(ctx0, model.layers[il].ffn_down_exp, n_expert, selected_experts, i, cur_expert); // [n_tokens, n_embd] + cur_expert = ggml_mul_mat_id(ctx0, model.layers[il].ffn_down_exps, selected_experts, i, cur_expert); // [n_tokens, n_embd] cb(cur_expert, "ffn_moe_down", il); cur_expert = ggml_mul(ctx0, cur_expert, @@ -6818,20 +6944,20 @@ struct llm_build_context { for (int i = 0; i < n_expert_used; ++i) { ggml_tensor * cur_expert; - ggml_tensor * cur_up = ggml_mul_mat_id(ctx0, model.layers[il].ffn_up_exp, n_expert, selected_experts, i, cur); + ggml_tensor * cur_up = ggml_mul_mat_id(ctx0, model.layers[il].ffn_up_exps, selected_experts, i, cur); cb(cur_up, "ffn_moe_up", il); - ggml_tensor * cur_gate = ggml_mul_mat_id(ctx0, model.layers[il].ffn_gate_exp, n_expert, selected_experts, i, cur); + ggml_tensor * cur_gate = ggml_mul_mat_id(ctx0, model.layers[il].ffn_gate_exps, selected_experts, i, cur); cb(cur_gate, "ffn_moe_gate", il); //GeLU cur_gate = ggml_gelu(ctx0, cur_gate); cb(cur_gate, "ffn_moe_gelu", il); - cur_expert = ggml_mul(ctx0, cur_up, cur_gate); // [n_tokens, n_embd] + cur_expert = ggml_mul(ctx0, cur_up, cur_gate); cb(cur_expert, "ffn_moe_gate_par", il); - cur_expert = ggml_mul_mat_id(ctx0, model.layers[il].ffn_down_exp, n_expert, selected_experts, i, cur_expert); // [n_tokens, n_embd] + cur_expert = ggml_mul_mat_id(ctx0, model.layers[il].ffn_down_exps, selected_experts, i, cur_expert); // [n_tokens, n_embd] cb(cur_expert, "ffn_moe_down", il); cur_expert = ggml_mul(ctx0, cur_expert, @@ -12902,7 +13028,6 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work // for getting the current layer as I initially thought, and we need to resort to parsing the // tensor name. - n_layer /= n_expert; if (sscanf(name, "blk.%d.", &i_layer) != 1) { throw std::runtime_error(format("Failed to determine layer for tensor %s", name)); } @@ -13264,7 +13389,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s kv_overrides = v->data(); } llama_model_loader ml(fname_inp, use_mmap, kv_overrides); - ml.init_mappings(false); // no prefetching? + ml.init_mappings(false); // no prefetching llama_model model; llm_load_arch(ml, model); @@ -13316,20 +13441,15 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s // TODO: avoid hardcoded tensor names - use the TN_* constants if (name.find("attn_v.weight") != std::string::npos || name.find("attn_qkv.weight") != std::string::npos) { ++qs.n_attention_wv; - } else if (name.find("ffn_down") != std::string::npos) { - ++qs.n_ffn_down; - } else if (name.find("ffn_gate") != std::string::npos) { - ++qs.n_ffn_gate; - } else if (name.find("ffn_up") != std::string::npos) { - ++qs.n_ffn_up; } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) { qs.has_output = true; } } - if (qs.n_attention_wv != qs.n_ffn_down || (uint32_t) qs.n_attention_wv != model.hparams.n_layer) { - LLAMA_LOG_WARN("%s ============ Strange model: n_attention_wv = %d, n_ffn_down = %d, hparams.n_layer = %d\n", - __func__, qs.n_attention_wv, qs.n_ffn_down, model.hparams.n_layer); - } + + qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer; + + // sanity checks + GGML_ASSERT(qs.n_attention_wv == (int)model.hparams.n_layer && "n_attention_wv != n_layer is unexpected"); size_t total_size_org = 0; size_t total_size_new = 0; @@ -13359,6 +13479,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s // placeholder for the meta data ::zeros(fout, meta_size); + const auto tn = LLM_TN(model.arch); + for (int i = 0; i < ml.n_tensors; ++i) { struct ggml_tensor * tensor = ml.get_tensor_meta(i); @@ -13381,8 +13503,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s // This used to be a regex, but has an extreme cost to compile times. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'? - // quantize only 2D tensors - quantize &= (ggml_n_dims(tensor) == 2); + // quantize only 2D and 3D tensors (experts) + quantize &= (ggml_n_dims(tensor) >= 2); quantize &= params->quantize_output_tensor || name != "output.weight"; quantize &= !params->only_copy; @@ -13437,11 +13559,20 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s if (it == imatrix_data->end()) { LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name); } else { - if (it->second.size() == (size_t)tensor->ne[0]) { + if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) { imatrix = it->second.data(); } else { LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__, - int(it->second.size()), int(tensor->ne[0]), tensor->name); + int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name); + + // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix + // this is a significant error and it may be good idea to abort the process if this happens, + // since many people will miss the error and not realize that most of the model is being quantized without an imatrix + // tok_embd should be ignored in this case, since it always causes this warning + if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) { + throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s", + int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name)); + } } } } @@ -13478,15 +13609,24 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s new_data = work.data(); const int n_per_row = tensor->ne[0]; - const int nrows = nelements / n_per_row; + const int nrows = tensor->ne[1]; static const int min_chunk_size = 32 * 512; const int chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row); - const int nchunk = (nelements + chunk_size - 1)/chunk_size; + const int nelements_matrix = tensor->ne[0] * tensor->ne[1]; + const int nchunk = (nelements_matrix + chunk_size - 1)/chunk_size; const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1; - new_size = llama_tensor_quantize_internal(new_type, f32_data, new_data, chunk_size, nrows, n_per_row, imatrix, workers, nthread_use); + // quantize each expert separately since they have different importance matrices + new_size = 0; + for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) { + const float * f32_data_03 = f32_data + i03 * nelements_matrix; + void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows; + const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr; + + new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use); + } LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0); } total_size_org += ggml_nbytes(tensor); diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index 5dfea5662..51b3487b2 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -979,17 +979,13 @@ struct test_mul_mat_id : public test_case { ggml_tensor * build_graph(ggml_context * ctx) override { // C^T = A * B^T: (k, m) * (k, n) => (m, n) - std::vector mats; - for (int i = 0; i < n_mats; i++) { - ggml_tensor * a = ggml_new_tensor_2d(ctx, type_a, k, m); - mats.push_back(a); - } + ggml_tensor * mats = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats); ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n); if (v) { ids = ggml_view_2d(ctx, ids, n_mats/2, ids->ne[1], ids->nb[1], 0); } ggml_tensor * b = ggml_new_tensor_2d(ctx, type_b, k, n); - ggml_tensor * out = ggml_mul_mat_id(ctx, mats.data(), n_mats, ids, v ? id/2 : id, b); + ggml_tensor * out = ggml_mul_mat_id(ctx, mats, ids, v ? id/2 : id, b); return out; } @@ -1477,91 +1473,6 @@ struct test_leaky_relu : public test_case { } }; -// Mixtral MOE -struct test_moe : public test_case { - const int n_experts; - const int n_experts_per_tok; - const int n_tokens; - const int n_embd; - const int n_ff; - - std::string op_desc(ggml_tensor * t) override { - return "MOE"; - - GGML_UNUSED(t); - } - - std::string vars() override { - return VARS_TO_STR5(n_experts, n_experts_per_tok, n_tokens, n_embd, n_ff); - } - - test_moe(int n_experts = 8, int n_experts_per_tok = 2, int n_tokens = 1, int n_embd = 4096, int n_ff = 14336) - : n_experts(n_experts), n_experts_per_tok(n_experts_per_tok), n_tokens(n_tokens), n_embd(n_embd), n_ff(n_ff) { - } - - ggml_tensor * build_graph(ggml_context * ctx) override { - ggml_tensor * ffn_gate_inp = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_experts); - - std::vector ffn_up_exp(n_experts); - std::vector ffn_gate_exp(n_experts); - std::vector ffn_down_exp(n_experts); - - for (int i = 0; i < n_experts; ++i) { - ffn_up_exp[i] = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff); - ffn_gate_exp[i] = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff); - ffn_down_exp[i] = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd); - } - - ggml_tensor * cur = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_tokens); - - ggml_tensor * logits = ggml_mul_mat(ctx, ffn_gate_inp, cur); - ggml_tensor * probs = ggml_soft_max_ext(ctx, logits, nullptr, nullptr, 1.0f/sqrtf(n_embd), 0.0f); - - // select experts - ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_experts_per_tok); - - ggml_tensor * weights = ggml_get_rows(ctx, - ggml_reshape_3d(ctx, probs, 1, n_experts, n_tokens), selected_experts); - - weights = ggml_reshape_2d(ctx, weights, n_experts_per_tok, n_tokens); - - ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights); - - weights = ggml_div(ctx, weights, weights_sum); - - // compute expert outputs - ggml_tensor * moe_out = nullptr; - - for (int i = 0; i < n_experts_per_tok; ++i) { - ggml_tensor * cur_expert; - - ggml_tensor * cur_up = ggml_mul_mat_id(ctx, ffn_up_exp.data(), n_experts, selected_experts, i, cur); - - ggml_tensor * cur_gate = ggml_mul_mat_id(ctx, ffn_gate_exp.data(), n_experts, selected_experts, i, cur); - - cur_gate = ggml_silu(ctx, cur_gate); - - cur_expert = ggml_mul(ctx, cur_up, cur_gate); - - cur_expert = ggml_mul_mat_id(ctx, ffn_down_exp.data(), n_experts, selected_experts, i, cur_expert); - - cur_expert = ggml_mul(ctx, cur_expert, - ggml_view_2d(ctx, weights, 1, n_tokens, weights->nb[1], i*weights->nb[0])); - - if (i == 0) { - moe_out = cur_expert; - } else { - moe_out = ggml_add(ctx, moe_out, cur_expert); - } - } - - cur = moe_out; - - return cur; - } -}; - - enum llm_norm_type { LLM_NORM, LLM_NORM_RMS, @@ -2169,6 +2080,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) { test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order)); test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order)); + test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen } test_cases.emplace_back(new test_sum_rows()); @@ -2182,11 +2094,6 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op // these tests are disabled to save execution time, but they can be handy for debugging #if 0 -#if !defined(__SANITIZE_THREAD__) - // FIXME: these tests use too much memory with thread sanitizer - test_cases.emplace_back(new test_moe(8, 2, 1, 4096, 8*1024)); - //test_cases.emplace_back(new test_moe(8, 2, 8, 4096, 14336)); -#endif test_cases.emplace_back(new test_llama(1)); test_cases.emplace_back(new test_llama(2)); test_cases.emplace_back(new test_falcon(1));