llama : hparams

ggml-ci
This commit is contained in:
Georgi Gerganov 2024-12-22 21:00:44 +02:00
parent ac62ce0236
commit 0969970a48
No known key found for this signature in database
GPG Key ID: 449E073F9DC10735
7 changed files with 212 additions and 178 deletions

View File

@ -9,11 +9,12 @@ llama_add_compile_flags()
add_library(llama
../include/llama.h
llama.cpp
llama-adapter.cpp
llama-arch.cpp
llama-batch.cpp
llama-chat.cpp
llama-context.cpp
llama-adapter.cpp
llama-hparams.cpp
llama-grammar.cpp
llama-kv-cache.cpp
llama-mmap.cpp

View File

@ -5,9 +5,10 @@
#include "llama-model.h" // TODO: need only hparams
#include <vector>
#include <map>
#include <algorithm>
#include <cassert>
#include <map>
#include <vector>
//
// llama_adapter_vec

View File

@ -2,6 +2,7 @@
#include <string>
#include <vector>
#include <cstdint>
enum llm_chat_template {
LLM_CHAT_TEMPLATE_CHATML,

71
src/llama-hparams.cpp Normal file
View File

@ -0,0 +1,71 @@
#include "llama-hparams.h"
#include "ggml.h"
uint32_t llama_hparams::n_head(uint32_t il) const {
if (il < n_layer) {
return n_head_arr[il];
}
GGML_ABORT("fatal error");
}
uint32_t llama_hparams::n_head_kv(uint32_t il) const {
if (il < n_layer) {
return n_head_kv_arr[il];
}
GGML_ABORT("fatal error");
}
uint32_t llama_hparams::n_ff(uint32_t il) const {
if (il < n_layer) {
return n_ff_arr[il];
}
GGML_ABORT("fatal error");
}
uint32_t llama_hparams::n_gqa(uint32_t il) const {
const uint32_t n_head = this->n_head(il);
const uint32_t n_head_kv = this->n_head_kv(il);
if (n_head_kv == 0) {
return 0;
}
return n_head/n_head_kv;
}
uint32_t llama_hparams::n_embd_k_gqa(uint32_t il) const {
const uint32_t n_head_kv = this->n_head_kv(il);
return n_embd_head_k * n_head_kv;
}
uint32_t llama_hparams::n_embd_v_gqa(uint32_t il) const {
const uint32_t n_head_kv = this->n_head_kv(il);
return n_embd_head_v * n_head_kv;
}
uint32_t llama_hparams::n_embd_k_s() const {
if (wkv_head_size != 0) {
// for RWKV models
return 2 * n_embd;
}
// TODO: maybe support other convolution strides than 1
// NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
}
uint32_t llama_hparams::n_embd_v_s() const {
if (wkv_head_size != 0) {
// corresponds to RWKV's wkv_states size
return n_embd * wkv_head_size;
}
// corresponds to Mamba's ssm_states size
return ssm_d_state * ssm_d_inner;
}

131
src/llama-hparams.h Normal file
View File

@ -0,0 +1,131 @@
#pragma once
#include "llama.h"
#include <array>
// bump if necessary
#define LLAMA_MAX_LAYERS 512
#define LLAMA_MAX_EXPERTS 160 // DeepSeekV2
struct llama_hparams_posnet {
uint32_t n_embd;
uint32_t n_layer;
};
struct llama_hparams_convnext {
uint32_t n_embd;
uint32_t n_layer;
};
struct llama_hparams {
bool vocab_only;
bool rope_finetuned;
bool use_par_res;
bool swin_norm;
uint32_t n_vocab = 0;
uint32_t n_ctx_train; // context size the model was trained on
uint32_t n_embd;
uint32_t n_embd_features = 0;
uint32_t n_layer;
uint32_t n_rot;
uint32_t n_swa = 0; // sliding window attention (SWA)
uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
uint32_t n_expert = 0;
uint32_t n_expert_used = 0;
uint32_t n_vocab_type = 0; // for BERT-style token types
uint32_t n_rel_attn_bkts = 0;
// for WavTokenizer
struct llama_hparams_posnet posnet;
struct llama_hparams_convnext convnext;
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_arr;
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr;
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
uint32_t n_layer_dense_lead = 0;
uint32_t n_lora_q = 0;
uint32_t n_lora_kv = 0;
uint32_t n_ff_exp = 0;
uint32_t n_ff_shexp = 0;
uint32_t n_expert_shared = 0;
uint32_t n_norm_groups = 0;
float expert_weights_scale = 0.0;
float f_norm_eps;
float f_norm_rms_eps;
float f_norm_group_eps;
float f_attn_logit_softcapping = 50.0f;
float f_final_logit_softcapping = 30.0f;
// for RWKV
uint32_t rescale_every_n_layers = 0;
uint32_t time_mix_extra_dim = 0;
uint32_t time_decay_extra_dim = 0;
uint32_t wkv_head_size = 0;
float rope_attn_factor = 1.0f;
float rope_freq_base_train;
float rope_freq_scale_train;
uint32_t n_ctx_orig_yarn;
float rope_yarn_log_mul;
int rope_sections[4]; // TODO: actually this should be std::array (I was wrong)
// for State Space Models
uint32_t ssm_d_conv = 0;
uint32_t ssm_d_inner = 0;
uint32_t ssm_d_state = 0;
uint32_t ssm_dt_rank = 0;
bool ssm_dt_b_c_rms = false;
float f_clamp_kqv = 0.0f;
float f_max_alibi_bias = 0.0f;
float f_logit_scale = 0.0f;
// Additional scale factors (Granite/Granite MoE)
float f_residual_scale = 0.0f;
float f_embedding_scale = 0.0f;
float f_attention_scale = 0.0f;
bool causal_attn = true;
bool use_alibi = false;
bool attn_soft_cap = false;
// needed by encoder-decoder models (e.g. T5, FLAN-T5)
// ref: https://github.com/ggerganov/llama.cpp/pull/8141
llama_token dec_start_token_id = LLAMA_TOKEN_NULL;
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
uint32_t n_head(uint32_t il = 0) const;
uint32_t n_head_kv(uint32_t il = 0) const;
uint32_t n_ff(uint32_t il = 0) const;
uint32_t n_gqa(uint32_t il = 0) const;
// dimension of key embeddings across all k-v heads
uint32_t n_embd_k_gqa(uint32_t il = 0) const;
// dimension of value embeddings across all k-v heads
uint32_t n_embd_v_gqa(uint32_t il = 0) const;
// dimension of the rolling state embeddings
// corresponds to Mamba's conv_states size or RWKV's token_shift states size
uint32_t n_embd_k_s() const;
// dimension of the recurrent state embeddings
uint32_t n_embd_v_s() const;
};
static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");

View File

@ -2,6 +2,8 @@
#include "llama-impl.h"
#include <cassert>
const char * llm_type_name(llm_type type) {
switch (type) {
case MODEL_14M: return "14M";

View File

@ -2,18 +2,13 @@
#include "llama.h"
#include "llama-arch.h"
#include "llama-hparams.h"
#include "llama-vocab.h"
#include "llama-mmap.h"
#include "ggml-cpp.h"
#include <array>
#include <vector>
#include <cassert>
// bump if necessary
#define LLAMA_MAX_LAYERS 512
#define LLAMA_MAX_EXPERTS 160 // DeepSeekV2
// available models
// TODO: this enum does not follow the enum naming convention
@ -82,175 +77,6 @@ enum llm_type {
MODEL_27B,
};
struct llama_hparams_posnet {
uint32_t n_embd;
uint32_t n_layer;
};
struct llama_hparams_convnext {
uint32_t n_embd;
uint32_t n_layer;
};
struct llama_hparams {
bool vocab_only;
bool rope_finetuned;
bool use_par_res;
bool swin_norm;
uint32_t n_vocab = 0;
uint32_t n_ctx_train; // context size the model was trained on
uint32_t n_embd;
uint32_t n_embd_features = 0;
uint32_t n_layer;
uint32_t n_rot;
uint32_t n_swa = 0; // sliding window attention (SWA)
uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
uint32_t n_expert = 0;
uint32_t n_expert_used = 0;
uint32_t n_vocab_type = 0; // for BERT-style token types
uint32_t n_rel_attn_bkts = 0;
// for WavTokenizer
struct llama_hparams_posnet posnet;
struct llama_hparams_convnext convnext;
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_arr;
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr;
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
uint32_t n_layer_dense_lead = 0;
uint32_t n_lora_q = 0;
uint32_t n_lora_kv = 0;
uint32_t n_ff_exp = 0;
uint32_t n_ff_shexp = 0;
uint32_t n_expert_shared = 0;
uint32_t n_norm_groups = 0;
float expert_weights_scale = 0.0;
float f_norm_eps;
float f_norm_rms_eps;
float f_norm_group_eps;
float f_attn_logit_softcapping = 50.0f;
float f_final_logit_softcapping = 30.0f;
// for RWKV
uint32_t rescale_every_n_layers = 0;
uint32_t time_mix_extra_dim = 0;
uint32_t time_decay_extra_dim = 0;
uint32_t wkv_head_size = 0;
float rope_attn_factor = 1.0f;
float rope_freq_base_train;
float rope_freq_scale_train;
uint32_t n_ctx_orig_yarn;
float rope_yarn_log_mul;
int rope_sections[4];
// for State Space Models
uint32_t ssm_d_conv = 0;
uint32_t ssm_d_inner = 0;
uint32_t ssm_d_state = 0;
uint32_t ssm_dt_rank = 0;
bool ssm_dt_b_c_rms = false;
float f_clamp_kqv = 0.0f;
float f_max_alibi_bias = 0.0f;
float f_logit_scale = 0.0f;
// Additional scale factors (Granite/Granite MoE)
float f_residual_scale = 0.0f;
float f_embedding_scale = 0.0f;
float f_attention_scale = 0.0f;
bool causal_attn = true;
bool use_alibi = false;
bool attn_soft_cap = false;
// needed by encoder-decoder models (e.g. T5, FLAN-T5)
// ref: https://github.com/ggerganov/llama.cpp/pull/8141
llama_token dec_start_token_id = LLAMA_TOKEN_NULL;
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
uint32_t n_head(uint32_t il = 0) const {
if (il < n_layer) {
return n_head_arr[il];
}
GGML_ABORT("fatal error");
}
uint32_t n_head_kv(uint32_t il = 0) const {
if (il < n_layer) {
return n_head_kv_arr[il];
}
GGML_ABORT("fatal error");
}
uint32_t n_ff(uint32_t il = 0) const {
if (il < n_layer) {
return n_ff_arr[il];
}
GGML_ABORT("fatal error");
}
uint32_t n_gqa(uint32_t il = 0) const {
const uint32_t n_head = this->n_head(il);
const uint32_t n_head_kv = this->n_head_kv(il);
if (n_head_kv == 0) {
return 0;
}
return n_head/n_head_kv;
}
uint32_t n_embd_k_gqa(uint32_t il = 0) const { // dimension of key embeddings across all k-v heads
const uint32_t n_head_kv = this->n_head_kv(il);
return n_embd_head_k * n_head_kv;
}
uint32_t n_embd_v_gqa(uint32_t il = 0) const { // dimension of value embeddings across all k-v heads
const uint32_t n_head_kv = this->n_head_kv(il);
return n_embd_head_v * n_head_kv;
}
uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings
// corresponds to Mamba's conv_states size or RWKV's token_shift states size
if (wkv_head_size != 0) {
// for RWKV models
return 2 * n_embd;
}
// TODO: maybe support other convolution strides than 1
// NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
}
uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings
if (wkv_head_size != 0) {
// corresponds to RWKV's wkv_states size
return n_embd * wkv_head_size;
}
// corresponds to Mamba's ssm_states size
return ssm_d_state * ssm_d_inner;
}
};
static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");
struct llama_layer_posnet {
// resnet
struct ggml_tensor * norm1 = nullptr;
@ -522,6 +348,7 @@ struct llama_model {
llama_mmaps mappings;
// objects representing data potentially being locked in memory
// TODO: should these be part of llama_context instead?
llama_mlocks mlock_bufs;
llama_mlocks mlock_mmaps;